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Abstract complexes, their homologies and applications

Cataranciuc Sergiu, Soltan Petru

Abstract. The complex of multi-ary relations Kn is defined in a more natural
way than it was defined in [18, 58, 59]. The groups of homologies and co-homologies
of this complex over the group of integer numbers are constructed. The methods
used for these constructions are for the most part analogous with classical methods
[2,32,52], but sometimes they are based on methods from [18,44,58]. The importance
and originality consist in application of the multi-ary relations of a set of objects in
construction of homologies. This allows to extend areas of theoretical researches and
non-trivial practical applications in a lot of directions. Other abstract structures,
which are developed in a natural way from generalized complex of multi-ary relations
are also examined. New notions such as the notions of abstract quasi-simplex and its
homologies, the complex of abstract simplexes and the complex of the n-dimensional
abstract cubes are introduced.

Mathematics subject classification: 18F15, 32Q60, 55-99.
Keywords and phrases: Complex, manifold, abstract cube, quasi-simplex, multi-
dimensional Euler tour.

1 Generalized complex of multi-ary relations

The topology of multi-ary relations is certainly a part of algebraic topology
[32, 56, 61, 62], but it is that branch of the topology which represent high modern
abstract examinations and purely theoretical researches. The results of this article
deal with investigations made during ten years. They were made in order to obtain
not only practical aspects but also non-trivial applications. So only after we obtained
those results we decided to present them in this article in a brief way. At the
beginning there was the complex of multi-ary relations for which the sequence of
elements of any relation does not admit repetition of elements. This complex is
an abstract cell complex (W), but the complex presented in this article is more
operable.

Defining multi-ary relations over the Cartesian product of a set of elements X
allows to generalize some previous results [58], and it is also more natural to do in
theoretical and applicative terms. The notion of generalized complex of multi-ary
relations over an arbitrary set of elements was presented first in [17]. Then the groups
of homologies over the group of integer numbers were constructed. This complex
generalizes several classical notions like the notion of finite and directed graph. The
directed graph is defined in terms of binary relations [5], but it is without loops. This
fact cannot be ignored as can be seen from applications [7]. The complex defined
in [58] is a finite, discrete structure, without loops. It needs some additional effort
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when it is used in studying and solving some theoretical and practical problems.
This mathematical object has a lot of properties which are related to the subject of
discrete combinatorial geometry [37]. From these considerations, on the one hand,
it would be natural to study the impact of the topology of multi-ary relations over
the research objects where the mentioned situation can be treated, for example,
by using following families of objects: a) the system Q of quasi-groups with n
algebraic operations or the system Q of n groups with n independent elements
and one algebraic operation [64], b) the system of fuzzy sets [47], etc. To be more
precise, it would be interesting to study an abstract, multidimensional, oriented
and without boundaries manifold [15] that is determined from mentioned objects.
On the other hand, by using multi-ary relations there could be modelated a lot of
processes of applicative domains. For example, the water formula H2O could be
treated as an element of a family of three-ary relations {(H, H, O)} which does
not belong to the complex of multi-ary relations, because in the triplet {(H, H, O}
the element H appears two times (see [58]). From the above results the necessity
it results to expand the notion of complex of multi-ary relations by introducing
a notion of complex of multi-ary relations that would be more general. In that
case any chemical formula [25] could be treated as a generalized complex of multi-
ary relations. There are also other facts which deal with the generalized complex.
Anticipating the following results, we repeat that this object, in its abstract form,
leads to the non-trivial applications. The applications appear for example in the
process of transmission and reception of information, in the formation of a finite
database of any dimension, in the cryptography and in graph theory when a class of
graphs is indicated, elements of which could be involved in the 1-dimensional skeleton
of the multidimensional cube from Rn

1 (here Rn
1 is the vectorial n-dimensional space

with norm the ||x|| = |x1| + |x2|+ . . . + |xn|). The last mentioned allows to present
an algorithm of the median calculation (the Torricelli point) of labeled and weighted
graphs, and the algorithm is metric-free (without using any metric) [59,60].

Now, define this object.

Let X = {x1, x2, . . . , xr} be a finite set of elements, that is a subset of
a set M , cardM ≤ ∞. Let X = X1, X2, . . . , Xn+1, . . . , (n ≥ 1) be the
succession of Cartesian products [40–42] of the set X : Xm+1 = Xm · X, 1 ≤ m ≤
n. Any nonempty subset Rm ⊂ Xm is said to be an m-ary relation of elements
from X (the set R1 ⊂ X1 is a subset of elements from X). According to the
mentioned above, an m-ary relation Rm is a family of ordered successions named
sequences. Each sequence consists of m elements of X. Generally speaking, the
sequence (xi1 , xi2, . . . , xim) ∈ Rm could contain some elements from X several
times. For this kind of sequence any subsequence (xj1 , xj2, . . . , xjl

), 1 ≤ l ≤ m,
which preserves the order of elements of (xi1 , xi2 , . . . , xim) is called a hereditary
subsequence.

Now, let us consider a finite family of relations {R1, R2, . . . , Rn+1}.

Definition 1.1. A family of relations {R1, R2, . . . , Rn+1} which satisfies the
conditions:
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1. R1 = X1 = X;

2. Rn+1 6= ∅;

3. any hereditary subsequence (xj1, xj2, . . . , xjl
), 1 ≤ l ≤ m ≤ n + 1, of the

sequence (xi1 , xi2 , . . . , xim) ∈ Rm belongs to the l-ary relation Rl,

is called a generalized complex of multi-ary relations (G-complex) and is
denoted by

Rn+1 = (R1, R2, . . . , Rn+1).

From Definition 1.1 we obtain that the set Rm of a generalized complex Rn+1 is
not empty for each 1 ≤ m ≤ n + 1.

The study of generalized complex of multi-ary relations is interesting because
this notion covers a lot of classical notions like graphs [5, 7, 12], hypergraphs [5,
6, 24, 71], matroids [9, 10, 66], simplicial complexes, etc. Certainly, this complex
could be interpreted as a particular case of the abstract cellular complex [32]
(CW), but these new mathematical structures serve as effective models for solving
a lot of theoretical and applicative problems [28, 29, 43, 46, 50, 53]. Remark that
the object Rn+1 has advantage over the structures mentioned above. Thus, if it is
compared with cellular complex (CW) then it is seen that the Rn+1 is formed from
the elementary ”bricks”, maybe with non-isomorphic deformations, like there are
the abstract quasi-simplexes (the so-named finite-dimensional loops). Consider the
generalized complex of relations R2 = (R1, R2). It is obvious that this complex
(Definition 1.1) represents a directed graph [7,11,12]. This allows us to consider the
generalized complex of relations Rn+1 as an oriented and hereditary hypergraph
(according to C. Berge [6]). The last notion could be rarely found in the bibliography
of speciality, and it represents a structure different from the notion of hypergraph
[5, 6, 45, 71]. Next, we will describe a procedure that allows to obtain the notion of
hypergraph in the form of generalized complex and the so-called cycles of hypergraph
in a natural form. This will be different from the known one, and it will be starting
from the notion of oriented hypergraph [65] transformed into a complex of abstract
simplexes.

Definition 1.2. If there are two G-complexes of multi-ary relations Rm+1
1

=
(R1

1, R2
1, . . . , Rm+1

1
) and Rn+1 = (R1, R2, . . ., Rn+1), 1 ≤ m ≤ n, such that

Rl
1 ⊂ Rl, for all l, 1 ≤ l ≤ m + 1, then Rm+1

1
is called a G-subcomplex of Rn+1.

In case Rm+1

1
= (R1, R2, . . . , Rm+1), then the subcomplex Rm+1

1
is called the

skeleton of Rn+1 and is denoted sk(m+1)Rn+1.

It is easy to see that sk(2)Rn+1 of any G-complex of multi-ary relations
Rn+1, n ≥ 1, is a directed graph [6]. This complex could be represented by the
pair R2 = (X, R2), where X is the set of vertices and R2 is a binary relation, which
can also have elements (x, x), called loops [5,7,45]. Relations of degree more than
two with repetition of elements will be studied later.
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Definition 1.3. The G-complex of multi-ary relations Rn+1 = (R1, R2, . . ., Rn+1)
is said to be connected if for any two elements xi, xj ∈ R1, there is a sequence
xi = xt1 , xt2 , . . . , xts = xj of elements from R1 such that at least one of the pairs
(xtr , xtr+1) and (xtr+1 , xtr ) belongs to relation R2, for any r = 1, 2, . . . , s−1. The
sequence of pairs (xt1 , xt2), (xt2 , xt3), . . . , (xts−1 , xts), is called a linear chain of
dimension one that joins the elements xi and xj . The xi, xj are called extremities
of this chain.

We will denote the chain of dimension one that joins the elements xi and xj by
L1(xi, xj). Later we will pass to the algebraic representation of the chain L1(xi, xj).

Definition 1.4. If Rn1+1 = (R1
1, R2

1, . . . , Rn1+1

1
) and Rn2+1 = (R1

2, R2
2, . . . ,

Rn2+1

2
), n1 ≤ n2, are two G-complexes of multi-ary relations, then

Rn+1 = Rn1+1 ∪Rn2+1 = (R1
1 ∪ R1

2, R2
1 ∪ R2

2, . . . ,

Rn1+1

1
∪ Rn2+1

2
, Rn1+2

2
, ...Rn2+1

2
)

is called the union, and

Rn+1 = Rn1+1 ∩Rn2+1 = (R1
1 ∩ R1

2, R2
1 ∩ R2

2, . . . , Rn1+1

1
∩ Rn2+1

2
).

is called the intersection of these two G-complexes.

According to [40,41] it is easy to verify that both the union and the intersection
of two G-complexes of multi-ary relations is also a G-complex of multi-ary relations.

If in a G-complex of multi-ary relations Rn+1 = (R1, R2, . . . , Rn+1) we have
R1 = ∅, and therefore R2 = R3 = . . . = Rn+1 = ∅, then Rn+1 is called an empty
complex. Two G-complexes of multi-ary relations the intersection of which is an
empty G-complex are called disjoint.

Theorem 1.1. A G-complex of multi-ary relations Rn+1 is connected if and only
if it does not contain two nonempty G-complexes of multi-ary relations Rn1+1 and
Rn2+1 which are disjoint and satisfy the equality:

Rn+1 = Rn1+1 ∪Rn2+1.

Proof. Necessity. Let Rn+1 = (R1, R2, . . . , Rn+1) be a connected G-complex
of multi-ary relations and x ∈ R1 = X be an arbitrary element. We will denote
by R′

x the set of all elements x′ from X for which there exists at least one chain
L1(x, x′). We assert that if an element, for example xij , of an ordered sequence
(xi1 , xi2, . . . , xij , . . . , xim) ∈ Rm, 1 ≤ m ≤ n + 1, is from the set R′

x, then
any other element of this sequence is from R′

x. By this way, we construct the G-
subcomplex of multi-ary relations Rn1+1 = (R1

1, R2
1, . . . , Rn1+1

1
) such that any

sequence of elements (x′
i1

, x′
i2

, . . . , x′
im1

) from Rm1
1

, 1 ≤ m1 ≤ n1 + 1, contains an

element x′ for which there exists the chain L1(x, x′).
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Now we construct the second G-complex of relations Rn2+1 = (R1
2, R2

2, . . .,
Rn2+1

2
) from Rn+1 so that Rm2

2
= Rm2\Rm2

1
, m2 = 1, 2, . . . , n + 1. The next

equalities:
R1

2 = ∅, R2
2 = ∅, . . . , Rm2+1

2
= ∅,

are true, because we obtain a contradiction with the fact that the complex Rn+1 is
connected otherwise. It follows that Rn2+1 is empty.

Because the element x ∈ X was arbitrarily chosen, we obtain that in Rn+1 two
nonempty, disjoint G-complexes it does not exist as it is mentioned in the theorem.

Sufficiency. Let us suppose that Rn+1 does not contain two nonempty, disjoint
G-subcomplexes of multi-ary relations Rn1+1 and Rn2+1 which satisfy the condition
from theorem, and Rn+1 is not connected. In the same way as it is described in first
part of the proof of this theorem, we construct two nonempty, disjoint G-complexes
of multi-ary relations Rn1+1 and Rn2+1 so that Rn+1 = Rn1+1 ∪ Rn2+1. This
contradicts theorem’s condition. �

Now let us fix an arbitrary element x ∈ X. We will denote by X the subset of
all elements x′ ∈ X, including x, for which there exists at least one chain L1(x, x′)
in Rn+1. Next, we construct the sequence of Cartesian products of the set X :

X
1

= X, X
2
, . . . , X

m
, . . ., where X

m+1
= X

m
· X, and form the sets

R
m

= X
m
∩ Rm, m = 1, 2, . . . , n + 1.

Let n1 ≤ n be the maximal index value which satisfies the relation R
n1+1

6= ∅.

Remark 1.1. The sets of relations R
1
, R

2
, . . . , R

n1+1
satisfy conditions I-III from

Definition 1.1 and, thus, this family represents a generalized complex of multi-ary
relations.

Definition 1.5. The G-complex of multi-ary relations Rn1+1

x = (R
1
, R

2
, . . .,

R
n1+1

) is called a connected component of Rn+1complex.

Each element x ∈ R
1

determines in Rn+1 the same connected component. So
the index x can be omitted from the notation Rn1+1

x , and then we will denote the
connected component just Rn1+1. It is obvious that Rn1+1 ⊂ Rn+1, i. e. Rn1+1 is
a G-subcomplex of Rn+1.

Theorem 1.2. If {Rn1+1, Rn2+1, . . . , Rnq+1} represent the family of all connected
and pairwise distinct components of G-complex of Rn+1relations, then the relations:

Rn+1 = Rn1+1 ∪Rn2+1 ∪ . . . ∪ Rnq+1 (1.1)

are true, where Rni+1 ∩Rnj+1 = ∅ for all i 6= j, i, j = 1, 2, . . . , q.

Proof. Considering the construction of a connected component, that contains a given
element x ∈ X, we obtain that is true the inclusion

Rn+1 ⊂ Rn1+1 ∪Rn2+1 ∪ . . . ∪ Rnq+1.
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At the same time, because of the fact that connected components are some G-
subcomplexes of multi-ary relations of the complex Rn+1, we obtain

Rn1+1 ∪Rn2+1 ∪ . . . ∪ Rnq+1 ⊂ Rn+1.

From these two relations we have the equality (1.1).

Now, let us suppose that there exist two connected components Rni+1 and Rnj+1,
i 6= j, so that Rni+1 ∩Rnj+1 6= ∅.

In this case we obtain that for each element x ∈ R
1

i and for each y ∈ R
1

j there
is a chain L1(x, y) in Rn+1. Therefore we have Rni+1 ⊂ Rnj+1, and the reverse
Rnj+1 ⊂ Rni+1. So we obtain that Rni+1 = Rnj+1.This contradicts theorem’s
conditions. It follows that the assumption Rni+1 ∩Rnj+1 6= ∅ is false. �

Definition 1.6. The G-complex of multi-ary relations Rn+1 = (R1, R2, . . ., Rn+1)
is called locally complete if for any m = 1, 2, . . . , n and for any sequence
(xi1 , xi2 , . . . , xim) ∈ Rm, the relation Rm also contains all sequences that corre-
spond to the m! permutations of elements xi1 , xi2, . . . , xim .

Any directed and symmetric graph can be an example of locally complete G-
complex of multi-ary relations [4,45]. We will denote such a graph by R2 = (R1, R2),
where R2 is a binary and symmetric relation defined on the set of elements from R1.
A locally complete G-complex of multi-ary relations is, also, a G-complex constructed
on the family of Cartesian products of the set X, i. e.

Rn+1 = (X = X1, X2, . . . , Xn+1).

Following the goal announced in the title of this article, by analogy to the known
classical bibliography in the combinatorial topology and topological algebra fields
[1, 2, 8, 13, 16, 27, 39, 51, 52, 56, 63, 70], further we will also use other notations and
notions, that are equivalent to those mentioned. These notations and notions will be
used to study the properties of the complex of multi-ary relations, which are needed
to solve practical problems.

Definition 1.7. The sequence (xi0 , xi1, . . . , xim) ∈ Rm+1, which has pairwise
distinct elements, is said to be an abstract simplex of dimension m and is
denoted by Sm

i = (xi0 , xi1 , . . . , xim) ∈ Rm+1, m = dimSm
i . Any sequence of

elements (xj0 , xj1, . . . , xjl
) ∈ Rl+1, which is a hereditary subsequence from Sm

i ,
is called a face of dimension l of a simplex Sm

i , and it will be denoted by Sl
j =

(xj0, xj1, . . . , xjl
), Sl

j ⊂ Sm
i . Sometimes we will use to call the faces of dimension

zero - vertices, and those of dimension one are called edges of simplex Sm
i , 0 ≤

m ≤ n.

If Rn+1 is finite and any sequence from Rm, 1 ≤ m ≤ n + 1, satisfies Definition
1.7, then Rn+1 is a complex of multi-ary relations as in [17,18,44]. Having in mind
the examinations of this particular case of Rn+1, we will remind some additional
aspects, that will be useful in the future.
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A subset formed by m+1 pairwise distinct elements from the set X can generate
several abstract simplexes of dimension m. The maximal number of it coincides with
the number of different permutations of the m + 1 elements. This means that there
are (m + 1)! simplexes. It follows that distinct abstract simplexes of dimension m
that are stretched on m + 1 vertices from X could be imagined as membranes that
strain these vertices.

Further we will denote by Sm the set of all simplexes with dimension m that are
determined by sequences from Rm+1.

By this way the complex of relations Rn+1 = (R1, R2, . . . , Rn+1) can be
represented as follows:

S0 = R1, S1 = R2, . . . , Sn = Rn+1

and
(S0, S1, . . . , Sn) = Kn. (1.2)

We will also keep the name of complex for Kn, where n = dimKn is called the
dimension of Kn. We have sk(m+1)Rn+1=sk(m)Kn.

Let Sm
i ∈ Sm be an abstract simplex of dimension m.

Definition 1.8. The set of all simplexes of the dimension greater or equal to m
from Kn with a common face Sm

i ∈ Sm is called the star of the simplex Sm
i , m =

0, 1, 2, . . . , n, and it is denoted by stSm
i [16,33].

Remark 1.2. The complex of relations Kn is not a simplicial abstract complex [32],
because the same set of vertices can determine more that one abstract simplex.

Depending on what is needed, the complex of multi-ary relations will be repre-
sented in one of the two equivalent forms [57]:

Kn = (R1, R2, . . . , Rn+1),

Kn = (S0, S1, . . . , Sn).

The family of simplexes Sm from Kn will be represented in the following way

Sm = {Sm
1 , Sm

2 , . . . , Sm
αm

}, (1.3)

where 0 ≤ m ≤ n, and αm is the cardinal of this family, αm = card Sm.

Definition 1.9 (see [2,4,32]). For any complex of relations Kn = (S0, S1, . . ., Sn),
we define the function of integer values

χ(Kn) =
n∑

i=0

(−1)iαi, (1.4)

that is called the Euler characteristic of the complex Kn, where αi = cardSi,
0 ≤ i ≤ n.
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Further we will operate as in Definition 1.7.

Definition 1.10. Any sequence (xi0 , xi1, . . . , xim) ∈ Rm+1 of a G-complex of
multi-ary relations Kn = Rn+1 = (R1, R2, . . . , Rn+1) is said to be an abstract
quasi-simplex of dimension m, and it is denoted by Qm = (xi0 , xi1 , . . ., xim).
The family of all quasi-simplexes of dimension m is denoted by Qm, 0 ≤ m ≤ n.

By Definition 1.1, we have that a sequence (xi0 , xi1 , . . . , xim) from the re-
lation Rm+1 could have some repetitions of elements. For example, the sequence
(xij , xij , . . . , xij ), with only one element xij ∈ X. it is possible that the com-
plex Rn+1. Here the element xij is m + 1 times repeated, and this sequence rep-
resents a generalization of loop from graph theory [5]. We will keep the notion
of loop of more dimension. But, at the same time the generalized loops could
have more complicated forms. The problem of loops classification for a sequence
(xi0 , xi1 , . . . , xim) ∈ Rm+1, 1 ≤ m ≤ n, is solved through the notion of isomor-
phism, and it is connected to the subject of another article. This leads us to the
following remark.

Remark 1.3. Any abstract simplex is a quasi-simplex, but not any quasi-simplex
is an abstract simplex. The sequence (xi1 , xi1 , . . . , xim) is not an abstract simplex
because the element xi1 appears in this sequence at least two times.

Further we will denote by Qm, 0 ≤ m ≤ n, the set of all quasi-simplexes with m
dimension that are determined by the elements from Rm+1.

Definition 1.11. A quasi-simplex Ql = (xj0 , xj1 , . . . , xjl
) ∈ Ql which is a hered-

itary subsequence of the quasi-simplex Qm = (xi0 , xi1 , . . . , xim) ∈ Qm is called a
quasi-face of dimension l of the quasi-simplex Qm.

It is obvious that the face of Qm, 1 ≤ m ≤ n, represents a quasi-simplex too
(see Definition 1.10).

It is easy to verify next two assertions, that are mentioned in [58].

Assertion 1.1. If Kn1 and Kn2 are two subcomplexes of multi-ary relations of the
complex Kn then

χ(Kn1 ∪ Kn2) = χ(Kn1) + χ(Kn2) − χ(Kn1 ∩ Kn2).

Theorem 1.3. If the sequence Kn1 , Kn2 , . . . , Knq represent all connected compo-
nents of the Kn then

χ(Kn) =

q
∑

i=1

χ(Kni). (1.5)

We have to mention that multi-ary relations R1, R2, . . . , Rn+1 that represent
the G-complex of multi-ary relations Rn+1 (see Definition 1.1) are families of abstract
quasi-simplexes is of dimension 0, 1, ..., n. We denote them by Q0, Q1, . . . , Qn.
Thus the G-complex of Rn+1 relations can be regarded as a complex of abstract
quasi-simplexes Kn = (Q0, Q1, . . . , Qn).
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2 The orientation of quasi-simplexes and the incidence matrices

Let Kn = (Q0, Q1, . . . , Qn) be a G-complex of relations, and Qm
j ∈ Qm,

j ∈ Λm, be an arbitrary quasi-simplex, represented by the sequence Qm
j =

(xj0, xj1, . . . , xjm), 0 ≤ m ≤ n. We consider Λm = card Qm, m = 0, 1, ..., n.

For the sequence of indexes (j0, j1, . . . , jm) we will denote by t(j0, j1, . . ., jm)
the number of all transpositions [40] of this sequence. We have to mentioned that
if jr > js, where s > r, and if after jr there are some indexes equal to js then the
number of transpositions grows with this number.

Definition 2.1. If the number t(j0, j1, . . . , jm) related to the quasi-simplex Qm
j ∈

Qm is even then the Qm
j is said to be a positively oriented quasi-simplex and it

is denoted by +Qm
j . Otherwise, if t(j0, j1, . . . , jm) is odd then the Qm

j is said to
be a negatively oriented quasi-simplex and it is denoted by −Qm

j . The oriented
quasi-simplex Qm

j ∈ Qm will be denoted by:

Qm
j = [xj0 , xj1 , . . . , xjm].

Now let Qm−1

jk
∈ Qm−1 be a quasi-simplex of dimension m− 1 which is obtained

from the quasi-simplex Qm
j ∈ Qm by the elimination of the vertex xjk

. Thus Qm−1

jk

is a quasi-face of the simplex Qm
j that is opposite to the vertex xjk

. From these

considerations the quasi-simplex Qm−1

jk
can be denoted as follows:

Qm−1

jk
= [xj0 , xj1 , . . . , xjk−1

, xjk+1
, . . . , xjm ].

Definition 2.2. Two quasi-simplexes Qm
j ∈ Qm and Qm−1

i ∈ Qm−1 are called
coherent if:

1. Qm−1

i is a quasi-face of the quasi-simplex Qm
j that is opposite to the vertex

xjk
∈ Qm

j , i.e. Qm−1

i = Qm−1

jk
;

2. the quasi-simplexes Qm
j and Qm−1

i = Qm−1

jk
are equally oriented, i.e. both are

positively oriented or both are negatively oriented.

If the second condition from Definition 2.2 does not hold then quasi-simplexes
Qm

j and Qm−1

i = Qm−1

jk
are called non-coherent. In this case the quasi-simplexes

Qm
i and (−1)Qm−1

jk
are equally oriented.

We have to mention that according to the rule of sign determination of a quasi-
simplex all quasi-simplexes with zero dimension are considered to be positively ori-
ented [1, 13,52,57].

We will not extend the notions of coherence and non-coherence to the quasi-
simplexes whose difference of dimensions is bigger than 1.
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Definition 2.3. The coefficient of ∆-incidence of the quasi-simplex Qm
j ∈ Qm,

0 ≤ m ≤ n, with respect to quasi-simplex Qm−1

i ∈ Qm−1 is the following number

εi
j(m, ∆) =







+1, if Qm
j and Qm−1

i are coherent quasi-simplexes,

−1, if Qm
j and Qm−1

i are non-coherent quasi-simplexes,

0, in the rest,

where i ∈ Λm−1 = card Qm−1, j ∈ Λm = card Qm.

The coefficient of ∆-incidence of quasi-simplexes Qm
j and Qm−1

i in the given

order will be denoted by
[

Qm
j : Qm−1

i

]

= εi
j(m, ∆).

Definition 2.4. The coefficient of ∇-incidence of quasi-simplex Qm
j ∈ Qm, 0 ≤

m ≤ n, with respect to quasi-simplex Qm+1

l ∈ Qm+1 is the following number

εl
j(m, ∇) =







+1, if Qm
j and Qm+1

i are coherent quasi-simplexes,

−1, if Qm
j and Qm+1

i are non-coherent quasi-simplexes,

0, in the rest,

where i ∈ Λm = card Qm, l ∈ Λm+1 = card Qm+1.

The coefficient of ∇-incidence of quasi-simplexes Qm
j and Qm+1

l in the given

order, will be denoted by
[

Qm
j : Qm+1

l

]

= εl
j(m, ∇).

For the ∆-incidence and the ∇-incidence coefficients it is easy to verify the
following relations:

εi
j(m, ∆) = εj

i (m − 1, ∇), where 1 ≤ m ≤ n,

εl
j(m, ∇) = εj

l (m + 1, ∆), where 0 ≤ m ≤ n − 1,

where i ∈ Λm−1 = card Qm−1, j ∈ Λm = card Qm, l ∈ Λl = card Ql.

The concepts of ∆-incidence and ∇-incidence are met in bibliography [1,13,35,56]
and they are dealing with different mathematical objects.

Remark 2.1. The symbols ∆ and ∇ are borrowed from works [14, 36], and in our
opinion they are more convenient for further explanations.

Remark 2.2. Coefficient of incidence
[

Qm
j : Qm−1

i

]

of the quasi-simplexes Qm
j =

[xj0, xj1, . . . , xjm] and Qm−1

i = [xi0 , xi1 , . . . , xim−1 ] for which the sequence
xi0, xi1 , . . . , xim−1 if formed from the elements of Qm

j , but it is not an hereditary
subsequence of succession [xj0 , xj1 , . . . , xjm ], is equal to zero. In this case the quasi-
simplex Qm−1

i is not a quasi-face of the quasi-simplex Qm
j = [xj0, xj1, . . . , xjm].

Definition 2.5. We consider the next two matrices for the G-complex of relations
Kn = (Q0, Q1, . . ., Qn):
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1. Im(∆) = (εi
j(m, ∆)), where i and j are the number of the lines and respectively

of the columns of matrix Im(∆), and i ∈ Λm−1, j ∈ Λm, 1 ≤ m ≤ n. This
matrix is called the matrix of ∆-incidence of dimension m;

2. Im(∇) = (εl
j(m, ∇)), where l and j are the number of the lines and respectively

of the columns of matrix Im(∇), and j ∈ Λm, l ∈ Λm+1, 0 ≤ m ≤ n− 1. This
matrix is called the matrix of ∇-incidence of dimension m.

The fact that the set X from which the G-complex of multi-ary relations is
constructed is a finite set implies that the matrices Im(∆), Im(∇) are also finite
(see Definition 1.1). Without making any significant efforts the G-complex could be
defined over an infinite set X. In these conditions, obviously, the matrices will be
infinite.

Assertion 2.1. For the generalized complex of Kn relations we have that the pairs
of matrices Im(∆), Im−1(∇), 1 ≤ m ≤ n, and Im(∇), Im+1(∆), 0 ≤ m ≤ n − 1,
are conjugated, i.e.:

(Im(∆))∗ = Im−1(∇),

(Im(∇))∗ = Im+1(∆).

3 The homologies of G-complex of multi-ary relations

Suppose a G-complex of multi-ary relations Kn = (Q0, Q1, . . . , Qn) be given
and Z is the additive group of integer numbers. By analogy with Definition 1.8, for
the quasi-simplex Qm

j ∈ Kn we will introduce the notion of quasi-star of Qm
j . It

will be the set of all quasi-simplexes from Kn for which Qm
j is their quasi-face and

it will be denoted by qst (Qm
j ), 0 ≤ m ≤ n. For the quasi-simplex Qn

j ∈ Qn the set
qst (Qn

j ) is empty.

The quasi-simplex Qm
j ∈ Qm contains m + 1 faces of m− 1 dimension, which we

will denote by Qm−1

β0
, Qm−1

β1
, ..., Qm−1

βm
. Let us consider that in the quasi-star qst (Qm

j )
there are some t quasi-simplexes of m + 1 dimension for which Qm

j is a hereditary

face. These quasi-simplexes will be denoted by Qm+1
γ1

, Qm+1
γ2

, ..., Qm+1
γt

.

Definition 3.1. The following sums:

∆Qm
j = εβ0

j (m, ∆)Qm−1

β0
+ εβ1

j (m, ∆)Qm−1

β1
+ . . . + εβm

j (m, ∆)Qm−1

βm
, (3.1)

where 1 ≤ m ≤ n, j ∈ Λm, and

∇Qm
j = εγ1

j (m, ∇)Qm+1
γ1

+ εγ2
j (m, ∇)Qm+1

γ2
+ . . . + εγt

j (m, ∇)Qm+1
γt

, (3.2)

where 0 ≤ m ≤ n− 1, j ∈ Λm, will be called, respectively, the ∆-border (algebraic
border) and ∇-border (co-border) of the quasi-simplex Qm

j ∈ Qm. ∆-border of
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Qm
j will be denoted by ∆Qm

j , and ∇-border of this quasi-simplex will be denoted by
∇Qm

j , 0 ≤ m ≤ n.

We consider ∆Q0
i = 0 and ∇Qn

j = 0 for each quasi-simplex Q0
i ∈ Q0 and for

each quasi-simplex Qn
j ∈ Qn, where i ∈ Λ0 = card X, j ∈ Λn = cardQn.

The formulas (3.1) and (3.2) can be simplified. For example, let the quasi-
simplex Qm

j = (xj0, xj1 , . . . , xjk
, . . . , xjm) be represented by the corresponding in-

dexes: Qm
j = (j0, j1, . . . , jk, . . . , jm), and let its quasi-faces of (m − 1) dimension

Qm−1

jk
of Qm

j be the opposite face to the vertex jk, 0 ≤ k ≤ m. Then, accord-

ing to the definition of coherence of quasi-simplexes Qm
j and (−1)kQm−1

jk
, where

(−1)k = εk
j (m, ∆), the sum (3.1) can be written as follows:

∆Qm
j = (−1)0Qm−1

β0
+ (−1)1Qm−1

β1
+ . . . + (−1)kQm−1

βk
+ . . . + (−1)mQm−1

βm
. (3.1′)

As in [32, 52] it could be proved that ∆∆Qm
j = 0, ∇∇Qm

j = 0, for any quasi-
simplex Qm

j ∈ Qm, 0 ≤ m ≤ n.
Other coefficients of ∆-incidence, which do not occur in the sum (3.1′), are equal

to zero by Definition 2.2.
The advantages of the formulas (3.1) and (3.2) will be applied below. Now let

f : Kn → Z be an unequivocal application of the complex of relations Kn to the
group of integer numbers. For a negatively oriented (see Definition 2.1) simplex
Qm ∈ Qm we agree to write fm(−Qm) = −fm(Qm). Let us denote f(Qm

i ) = pi,
where pi ∈ Z, for any Qm

i ∈ Qm. For simplicity and for keeping in mind the
pro-image of pi, instead of f(Qm

i ) = pi we will write piQ
m
i , 0 ≤ m ≤ n.

Definition 3.2. For the family of quasi-simplexes Qm =
{
Qm

1 , Qm
2 , ..., Qm

αm

}
, 0 ≤

m ≤ n, the finite sum
p1Q

m
1 + p2Q

m
2 + ... + pαmQm

αm
(3.3)

is called the m-dimensional chain of the G-complex of relations Kn and it is
denoted by Lm. The set of all chains Lm will be denoted by Lm, 0 ≤ m ≤ n.

Let Lm
1 =

∑

Qm
i ∈Qm

p1
i Q

m
i and Lm

2 =
∑

Qm
i ∈Qm

p2
i Q

m
i be two m-dimensional chains of

the G-complex Kn.

Definition 3.3. The relation

Lm
1 + Lm

2 =
∑

Qm
i ∈Qm

(p1
i + p2

i )Q
m
i (3.4)

is called the sum of the chains Lm
1 and Lm

2 .

Next theorem is obvious.

Theorem 3.1. The set Lm of all m-dimensional chains of a G-complex of multi-
ary relations Kn with the addition operation defined by the relation (3.4) forms a
commutative group.
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The group of m-dimensional ∆-chains will be denoted by ∆Lm.

Definition 3.4. For a finite m-dimensional chain Lm ∈ Lm, 0 ≤ m ≤ n, the
equality

∆Lm =
∑

Qm
i ∈Qm

pi∆qm
i (3.5)

is called the ∆−algebraic border of the chain Lm.

In case m = 0, according to Definition 3.1, it follows ∆L0 = 0.
From all mentioned above, each chain Lm ∈ Lm will be also called ∆-chain.
In classical literature the terminology mentioned in [32] is also applied.

Remark 3.1. The operation of defining a ∆-algebraic border of the ∆-chain Lm ∈
Lm is a homomorphism [40]:

∆(m) : Lm → Lm−1, 1 ≤ m ≤ n.

It is natural to call this homomorphism a ∆-homomorphism. This is even nec-
essary, since we will use also other homomorphism, which signification is different.
The mentioned ∆-homomorphism can be obtained by applying the respective oper-
ations for creating the ∆-border, for Qm

i (see (3.1′)), Qm
i ∈ Qm, and if we consider

∆Qm
i = Lm−1 ∈ Lm−1, 0 ≤ m ≤ n. We will denote by Im∆(m) the image, and by

Kern∆(m) the kernel of the homomorphism ∆(m) [40].

Theorem 3.2. For each Lm ∈ Lm the following equality holds

∆∆Lm = 0, m = 0, 1, . . . , n.

The proof of this theorem can be done exactly as in [32] applying the known
relation ∆∆Qm

i = 0 (see Definition 3.1).
From the proof of Theorem 3.2 we obtain

Assertion 3.1. For a G-complex of multi-ary relations Kn the next equality holds

Im−1(∆) · Im(∆) = 0, (3.6)

1 ≤ m ≤ n.

Definition 3.5. The chain Lm ∈ Lm with the property ∆Lm = 0 is said to be the
∆-cycle of dimension m of the G-complex Kn, and it is denoted by Zm(∆) = Lm,
0 ≤ m ≤ n.

Let

Lm
1 = p1

1Q
m
1 + p1

2Q
m
2 + . . . + p1

α1
m

Qm
α1

m

and
Lm

2 = p2
1Q

m
1 + p2

2Q
m
2 + . . . + p2

α2
m

Qm
α2

m

be two chains of dimension m, αm = cardQm.
Is obvious
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Theorem 3.3. With respect to the addition of ∆-chains, the set of all ∆-cycles of
dimension m forms a commutative subgroup of the group Lm.

We will denote the subgroup of ∆-cycles of ∆Lm by Zm(∆), 0 ≤ m ≤ n.

Definition 3.6. If there exist two ∆-chains Lm ∈ Lm and Lm+1 ∈ Lm+1 with
properties:

a) Lm = ∆Lm+1;
b) ∆Lm = 0,

then Lm is called ∆-cycle of dimension m ∆-homological with 0. In this case
we will use the notation Lm = Zm(∆) ∼ 0. Two ∆-cycles Zm

1 (∆) and Zm
2 (∆) that

belong to Zm(∆) are said to be ∆-homologous if Zm
1 (∆)−Zm

2 (∆) ∼ 0, 0 ≤ m ≤ n
[1, 13,59,63,70].

The fact that ∆Lm represents a ∆-cycle homological with 0 shows the situ-
ation that in Kn the chain ∆Lm bounds in the m-dimensional skeleton of Kn a
G-subcomplex of the sk(m)Kn.

The following theorem is obvious.

Theorem 3.4. The set of all m-dimensional ∆-cycles that are ∆-homologous with
0, with respect to the additive operation defined in ∆Lm, forms a subgroup of the
group Zm(∆). We denote this group by Zm

0 (∆).

We obtain the existence of the group Zm
0 (∆) from Theorem 3.2. It is obvious

that Zn
0 (∆) ∼ 0, i.e. in a G-complex of relations Kn ∆-chains of dimensions n + 1

do not exist.

Definition 3.7. The factor-group Zm(∆)/Zm
0 (∆) of the G-complex of multi-ary re-

lations Kn is called the group of ∆-homologies (the group of direct homolo-
gies) of dimension m over the group Z, and it is denoted by ∆m(Kn), 0 ≤ m ≤ n.
The ranks of these groups are called Betti numbers. In works [1, 32, 52, 56] these
groups are denoted by Hm(Kn), 0 ≤ m ≤ n.

Obviously we can write it as follows [32]:

∆m(Kn) = Kern∆(m)/Im∆(m), 1 ≤ m ≤ n.

Our goal is to narrow the concept of complex of relations like in [17], but not so
much as it is done in [58, 59]. It is worth to mention that all results could be also
generalized in the case of a more general complex of relations, which is without any
restrictions on dimension (by analogy see [54,55]).

Further applying the group of integer numbers Z, we form the so-called groups of
co-homologies [13, 32] of G-complex of multi-ary relations Kn, with restriction that
the chain Lm ⊂ Lm represents, obviously, a finite sum. From now this chain will be
called ∇-chain (co-chain).

Simplifying the notations, we introduce the notion of ∇-chain (co-chain), which
coincides with the notion of the chain with the respective dimension.
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Definition 3.8. For a ∇-chain Lm ∈ Lm, 0 ≤ m ≤ n, the equality

∇Lm =
∑

Qm
i ∈Qm

pi∇Qm
i

is called the ∇−algebraic border (co-border) of the chain ∇Lm. In case m = n
we consider ∇Ln = 0.

Remark 3.2. The operation of creating a ∇-border of the ∇-chain Lm ∈ Lm is a
homomorphism:

∇(m) : Lm → Lm+1, 0 ≤ m ≤ n − 1.

We will denote by Im∇(m) the image, and by Kern∇(m) the kernel of ∇-
homomorphism ∇(m), 0 ≤ m ≤ n − 1.

Definition 3.9. The ∇-chain Lm ∈ Lm with the property ∇Lm = 0 is said to be
the ∇-cycle of dimension m of the G-complex of Kn relations, and it is denoted by
Zm(∇) = Lm, 0 ≤ m ≤ n.

∇Ln = Zn(∇) is a ∇-cycle of dimension n, according to Definition 3.8. If we
introduce the notion of sum of ∇-chains, we obtain

Theorem 3.5. The set of all ∇-cycles of dimension m with respect to the addition
of ∇-chains forms a commutative subgroup of the group ∇Lm.

This subgroup will be denoted by Zm(∇), 0 ≤ m ≤ n.

Definition 3.10. If there exist two ∆-chains Lm ∈ Lm and Lm−1 ∈ Lm−1 with the
properties:

a) Lm = ∇Lm−1;
b) ∇Lm = 0,

then Lm is said ∇-cycle of dimension m being ∇-homological with 0. In this case
we will use the (usual) notation [32]:

Lm = Zm(∇) ∼ 0.

Two cycles Zm
1 (∇) and Zm

2 (∇) from Zm(∇) are said to be ∇-homologous if

Zm
1 (∇) − Zm

2 (∇) ∼ 0, 1 ≤ m ≤ n.

Is obvious

Theorem 3.6. With respect to the addition defined in ∇Lm, the set of all m-
dimensional ∇-cycles ∇-homological with zero, forms a subgroup of the group Zm(∇)
and will be denoted by Zm

0 (∇).

Definition 3.11. The factor-group Zm(∇)/Zm
0 (∇) of the G-complex of multi-ary

relations Kn is called the group of ∇-homologies (simply co-homologies) of
dimension m over the group Z of integers, and it is denoted by ∇m(Kn), 0 ≤ m ≤ n.
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Remark 3.3. We remind that ∇m(Kn), 0 ≤ m ≤ n, is defined considering the finite
∇-chains of Kn.

Obviously we can, also, write it as follows:

∇m(Kn) = Kern∇(m)/Im∇(m), 0 ≤ m ≤ n.

Let us remember that the existence of the group Zm
0 (∆), 0 ≤ m ≤ n, of a G-

complex of multi-ary relations results from the equality ∆∆Lm = 0, 0 ≤ m ≤ n.
This situation generates the necessity to formulate some additional results.

Theorem 3.7. For each ∇-chain Lm ∈ ∇Lm of the G-complex of multi-ary relations
Kn the next equality holds

∇∇Lm = 0, 0 ≤ m ≤ n.

The proof of Theorem 3.7 is done exactly as in [32], by applying the known
relation ∇∇Qm

i = 0 (see Definition 3.1).

Remark 3.4. For the groups of direct homologies and co-homologies of a G-complex
of multi-ary relations Kn, the procedure of orientation of its quasi-simplexes is an
auxiliary problem and it does not depend on the structure of these groups [13,32,52].

Definition 3.12. A G-complex of multi-ary relations n ≥ 1 is called acyclic if

∆1(Kn) = ∆2(Kn) = . . . = ∆n(Kn) ∼= 0.

In order to formulate the next theorem we need some classical notions (see [13,
52]), and we will prove an auxiliary lemma (we repeat it for our abstract case).

Let Q0 = {Q0
1, Q0

2, . . . , Q0
α0
} be a family of 0-dimensional simplexes (vertices)

of a G-complex of multi-ary relations, and let L0 = p1Q
0
1 + p2Q

0
2 + . . . + pα0Q

0
α0

be
an arbitrary ∆-chain from ∆L0.

Definition 3.13. The operator

I : L0 → Z,

with the property I(L0) = p1 + p2 + . . . + pα0 , is called the index of ∆-chain L0.

It is obvious that for any two arbitrary ∆-chains L0
1, L0

2 ∈ L0 is true the relation

I(L0
1 + L0

2) = I(L0
1) + I(L0

2). (3.7)

Lemma 3.1. If ∆L0 is the group of 0-dimensional ∆-chains of a G-complex of
relations Kn = (Q0, Q1, . . . , Qn), then each chain L0 ∈ ∆L0 is homological with 0
if and only if I(L0) = 0.
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Proof. Let Q1 ∈ Q1 be an arbitrary quasi-simplex, positively oriented and rep-
resented by pair Q1 = (Q0

i , Q0
j), where Q0

i , Q0
j ∈ Q0, i 6= j. In this case

∆(p · Q1) = p∆Q0
j − p∆Q0

i , it follows we have I(∆(p · Q1)) = 0. According to

relation (3.7), for each Z0(∆) ∈ Z0(∆) we obtain I(Z0(∆)) = 0, so the necessary
condition of lemma is true.

Now prove the reverse assertion. From connectedness of the G-complex Kn we
obtain that for each two elements Q0

i , Q0
j ∈ Q0, there exists a sequence of 1-

dimensional quasi-simplexes Q1
i1

, Q1
i2

, . . . , Qi
it
, for which Q1

ik
and Q1

ik+1
, 1 ≤ k ≤

t− 1, are adjacent and for which the origin of Q1
i1

coincides with Q0
i , and extremity

of Q1
i1

coincides with Q0
j . More over, the elements of this sequence can be oriented

in such a way that all of them be positively oriented in the ∆-chain L1 = pQ1
i1

+
pQ1

i2
+ . . . + pQ1

it
, where p ∈ Z is also positive. We observe that ∆L1 = pQ0

j − pQ0
i .

Thus, according to (3.7), pQ0
j ∼ pQ0

i . This leads to the relation L1 ∈ ∆L1, which

means that ∆-chain is homological with pQ0
i . Then, because L1 is homological with

pQ0
i , it results I(L1) = p. By this way we have the relation L1 ∼ I(L1)Q0

i , from
where results that if I(L1) = 0, then L1 ∼ 0. �

We will just remind the next statement because it is classic and it is abstractly
proved.

Theorem 3.8. If G-complex of multi-ary relations Kn = (Q0, Q1, . . . , Qn) is
connected, then ∆0(Kn) is isomorphic with the group of integer numbers Z .

Remark 3.5. If a G-complex of multi-ary relations Kn satisfies equality (1.1), then

∆m(Kn) ∼= ∆m(Kn
1 ) ⊕ ∆m(Kn

2 ) ⊕ . . . ⊕ ∆m(Kn
q ),

where 0 ≤ m ≤ n. If m = 0 then

∆0(Kn) ∼= Z ⊕ Z ⊕ . . . ⊕ Z.
︸ ︷︷ ︸

q times

(3.8)

Definition 3.14. A connected and acyclic G-complex of multi-ary relations Kn is
called an oriented n-tree of multi-ary relations.

The importance of these notions will be showed in further researches, when the
results mentioned in the beginning of first section will be elaborated. For n = 1 the
respective construction represents an oriented, connected graph without cycles. So,
if K1 is connected then this represents an oriented tree [7].

Definition 3.15. If Kn is a locally complete G-complex of multi-ary relations and
it is transformed into an abstract quasi-simplicial complex, according to those men-
tioned in §1, then Kn will be called a symmetric G-complex of multi-ary relations.

If it will be necessary, each element of Qm, 0 ≤ m ≤ n, can be oriented, according
to § 2.

In § 1, the notion of Euler characteristic of complex of multi-ary relations Kn

was introduced (see the relation 1.3).
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The importance of this characteristic is well known [52,60]. Let ρm(∆m(Kn)) be
the rank of the group ∆m(Kn) of Kn.

χ(Kn) =
n∑

m=0

(−1)mαm (3.9)

is the Euler characteristic (see (1.4)), where αm means now the number of quasi-
simplexes of dimension m of G-complex Kn, 0 ≤ m ≤ n.

Then, according to (3.9), we have an analogical result to that obtained by
Poincare and Kolmogorov [13,63].

Theorem 3.9 (Euler-Kolmogorov). For any G-complex of multi-ary relations
Kn = (Q0, Q1, . . ., Qn) the equality holds

χ(Kn) =

n∑

m=0

(−1)mρm(∆m(Kn)).

The proof is done exactly as in works [52,58].
At the end of this section we propose a definition and an important assertion.
Let Kn = (Q0, Q1, . . ., Qn) be a complex. Analyze the complex Kn

d =
(Q0

d, Q1
d, . . ., Qn

d ), where every m-dimensional abstract quasi-simplex Qm
i is con-

sidered to be a cell complex [32] with the dimension n − m, denoted by Qn−m
di

, 0 ≤
m ≤ n, i ∈ Λm. All these complexes with the dimension n − m are denoted by
Qn−m

d , 0 ≤ m ≤ n, and they of course respect the incidences.

Definition 3.16. The abstract complex Kn
d constructed above is called the dual

complex of Kn.

For example, a zero-dimensional simplex, which is incident with n simplexes of
(n − 1) dimension of a n-dimensional simplex, represents a CW with dimension n.
It has the form of a n-dimensional simplex, and it has as cells the set of all faces,
including one improper face (the interior of n-dimensional simplex).

Assertion 3.2. The complex Kn
d is a connected cell-complex (CW).

Let
H0

d(K
n
d ,Z),H1

d(K
n
d ,Z), ...,Hn

d (Kn
d ,Z) (3.10)

be the group succession of the direct homologies of Kn
d . If we examine more carefully

the sequence (3.10) then we have:

Theorem 3.10. For Kn
d complex the following relations are true:

∇0(K
n,Z) ∼= H0

d(K
n
d ,Z),

∇1(K
n,Z) ∼= H1

d(K
d
n,Z), (3.11)

...

∇n(Kn,Z) ∼= Hn
d ,Z).
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According to this theorem we obtain that the Klomogorov-Alexander theorem
[13, 32], which is about the duality of groups of homologies and co-homologies for
topological spaces, is also valid in the case of a generalized complex of multi-ary
relations Kn. Thus, we obtain:

Theorem 3.11. For the complex Kn the following equalities are true:

∆0(Kn,Z) ∼= ∇n(Kn,Z),

∆1(Kn,Z) ∼= ∇n−1(K
n,Z), (3.12)

...

∆n(Kn,Z) ∼= ∇0(K
n,Z).

Remark 3.6. It was possible not to use CW. But in this case it was necessary to
define what represents an abstract n-dimensional polyhedron (the border of which is
an abstract (n − 1)-dimensional sphere). This thing is a niggling question, and we
leave it for the moment without any attention. Further we will be interested only in
the definition of the abstract n-dimensional cube.

4 The complex of abstract cubes

As it was mentioned above any sequence
(
xi1 , xi2 , ..., xim+1

)
∈ Rm+1 that does

not contain repetition of elements could be considered an abstract m-dimensional
simplex, 0 ≤ m ≤ n. Therefore, each complex of multi-ary relations Kn can be also
regarded as a complex of abstract simplexes

Kn =
{
S0, S1, ..., Sn

}
,

where Sm represents the set of all m-dimensional simplexes that are determined by
the elements from Rm+1 and any two simplexes Sl ∈ Sl and Sk ∈ Sk, 0 ≤ l, k ≤ n,
have either an empty intersection or their intersection is a p-dimensional simplex
Sp ∈ Sp, p ≤ min {l, k} . Using abstract simplexes the abstract n-dimensional cube
[15,19] and the abstract complex of cubes are defined.

We will use the inductive definition of the abstract n-dimensional cube and its
vacuum.

Definition 4.1.

1. The abstract 0-dimensional cube and the abstract 1-dimensional cube coincide
with the abstract simplexes of the same dimension. The vacuums of these cubes
coincide with the vacuums of the respective simplexes.

2. Consider two pairs of 0-dimensional cubes S0
1 , S0

2 and S0
3 , S0

4 . The 2-ary
relations of these two pairs of cubes S0

1 , S0
2 and S0

3 , S0
4 determine the existence

of 1-dimensional cubes S1
1 = (S0

1 , S0
2), S1

2 = (S0
3 , S0

4), S1
3 = (S0

1 , S0
3) and
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S1
4 = (S0

2 , S0
4). Form the 2- and 3-ary relations between these pairs of cubes.

These determine a simplicial complex that is formed from the new abstract
simplexes S1

5 = (S0
1 , S0

4), S2
1 = (S0

1 , S0
3 , S0

4), S2
2 = (S0

1 , S0
2 , S0

4) and the
four 1-dimensional simplexes mentioned above S1

1 , S1
2 , S1

3 , S1
4 . The union of

vacuums
0

S2
1 ,

0

S2
2 and

0

S1
5 of new obtained simplexes is called the vacuum of the

2-dimensional abstract cube and it will be denoted:

0

I2 =
0

S2
1 ∪

0

S2
2 ∪

0

S1
5 .

The abstract 2-dimensional cube is denoted by I2, and it is defined by its vac-
uum as follows:

I2 =
4⋃

i=1

S1
i ∪

0

I2.

The complex determined by the mentioned family of simplexes is said to be a
2-dimensional pro-cube. The 2-dimensional pro-cube will be denoted by I2(∆).

3. Suppose that the notion of abstract i-dimensional cube and pro-cube is
known Ii and Ii(∆), 1 ≤ i ≤ n − 1, as well as the notion of cube’s vacuum
with the same dimension is known.

4. We will define the notion of abstract n-dimensional cube by using the notion
of (n − 1)-dimensional cube. Consider 2n copies of (n − 1)-dimensional cube
In−1
1

, In−1
2

, . . ., In−1
2n with the corresponding pro-cubes In−1

1
(∆), In−1

2
(∆), . . .,

In−1

2n (∆). Let us have i-ary relations, 2 ≤ i ≤ n, among the 0-dimensional
cubes that determine some simplexes which form an abstract simplicial com-

plex. The vacuum of the n-dimensional cube, denoted by
0

In, represents
the union of all vacuums of the simplexes that do not intersect the pro-cubes
In−1

j (∆), 1 ≤ j ≤ 2n. The abstract n-dimensional cube is defined by using

its vacuum in the following way: In =
2n⋃

i=1

In−1

i ∪
0

In. The simplicial complex

In(∆) will be called pro-cube of In.

Definition 4.2. [19] An abstract cube Im, which according to Definition 4.1 is used
by the In cube formation, 0 ≤ m ≤ n−1, is called an own face of the n-dimensional
cube In.

Definition 4.3. The family of non-empty and finite abstract cubes In = {Im, 0 ≤
m ≤ n} is said to be an abstract cubic complex with dimension n if the following
properties are true:

1. for ∀Is, It ∈ In, 0 ≤ s, t ≤ n, the relation Is ∩ It ∈ In or Is ∩ It = ∅ is true;

2. each face Ik of any In ∈ In, 0 ≤ k < n, is an element from In;

3. ∃In ∈ In.
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By analogy with the orientation of quasi-simplexes the orientation of a n-
dimensional cube In, that is constructed on a set of vertices X = {x1, x2, . . . , x2m}
is defned. The positively oriented cube is denoted by +In, and the negatively ori-
ented cube is denoted by −In.

Let us consider an unequivocal application h : In → Z, with the property: if
Im
i ∈ In, 0 ≤ m ≤ n is an abstract negative oriented cube, then h(−Im

i ) = −h(Im
i ).

We consider the image h(Im
i ) = gi ∈ Z. For convenience, instead of h(Im

i ) we’ll use
the notation giI

m
i , and instead of h(−Im

i ) we’ll write −giI
m
i .

The following notions allow, by analogy with the elements of the complex of
multi-ary relations, to define the coherence and non-coherence of the abstract cube
Im ∈ In and cubic’s variety.

Definition 4.4. The sum of all m-dimensional cubes of the cubic complex In

Lm = g1I
m
1 + g2I

m
2 + ... + gβm

Im
βm

, 2 ≤ m ≤ n, (4.1)

where βm represents the cardinal of the set of all abstract cubes of dimension m from
In, is called a m-dimensional �-chain of cubes of the In complex.

Definition 4.5. The sum of two �-chains of abstract cubes Lm
1 =

βm∑

i=1

g1
i I

m
i and

Lm
2 =

βm∑

i=1

g2
i I

m
i , is the expression:

Lm
1 + Lm

2 =

βm∑

i=1

(
g1
i + g2

i

)
Im
i . (4.2)

It is easy to verify

Theorem 4.1. With respect to the operation 4.2, the set of all m-dimensional �-
chains, denoted by Lm

�
, 0 ≤ m ≤ n, of cubic complex In forms an abelian group.

We denote by Im the family of all m-dimensional cubes of cubic complex In,
0 ≤ m ≤ n. We have to mention that each cube Im ∈ Im has m pairs of opposite faces
with m − 1 dimension. Let Im−1

ij0
and Im−1

ij1
be opposite faces of an m-dimensional

cube Im
i ∈ In, j ∈ {0, 1, ...,m − 1}.

Definition 4.6. For the m-dimensional cube Im
i ∈ In, 1 ≤ m ≤ n the expression

�Im
i =

m−1∑

j=0

(−1)j
(

Im−1

ij0
− Im−1

ij1

)

is called �-border of Im
i cube.

As has been done in the case of generalized complex of multi-ary relations, the
notion of coherent and non-coherent abstract cubes is defined, as well as the notion
of coefficients of incidence.

By analogy with the classic situation we define cubic homologies.
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Definition 4.7. �-border of the chain Lm ∈ Lm
�

is the following sum

�Lm =

βm∑

i=1

gi�Im
i , gi ∈ Z, 1 ≤ i ≤ βm.

The �-chain Lm, for which �Lm = 0 is called �-cycle of dimension m.

Theorem 4.2. Let Lm ∈ Lm
�

be a �-chain. The following equality is true:

��Lm = 0.

There are two types of �-cycles of cubic complex In :

1. m-dimensional square-cycles which represent a �-border of a �-chain Lm+1;

2. m-dimensional square-cycles which do not represent a �-border of a �-chain
Lm+1.

With respect to the addition for chains, the set of all �-chains of dimension m
of In, 0 ≤ m ≤ n, which verify the B property from above, form an abelian group.
This is denoted by Zm(�) ⊂ Lm

�
, m ∈ {0, 1, ..., n}.

With respect to the same addition, the set of all �-chains of dimension m of the
complex In, 0 ≤ m ≤ n, which verify the A property from above, form an abelian
group. It is denoted Zm

0 (�) ⊂ Lm
�

, m ∈ {0, 1, ..., n}.

Definition 4.8. The factor-group Zm(�)/Zm
0 (�) is said to be the group of �-

homologies of dimension m of the cubic complex In, and it is denoted by
�

m(In,Z), 0 ≤ m ≤ n.

The following conditions are true

�
0 (In, Z) ∼= Z

�
1 (In, Z) ∼= �

2 (In, Z) ∼= . . . ∼= �
n (In, Z) ∼= 0,

means that the complex of abstract cubes ℑn is connected and acyclic. For such a
complex an analogue result to the Helly theorem [14] can be formulated.

Let ℑn be a family of n-dimensional cubic complexes that are connected and
acyclic.

Hypothesis. If for any two complexes I1,I2 ∈ ℑn the condition

I1 ∩ I2 ∈ ℑn

is true, then the intersection of all cubic complexes from ℑn is not empty and it
represents an abstract n-dimensional cubic complex.
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5 Applicative aspects

As it was mentioned in the beginning, the results presented in this article
were obtained long ago but they weren’t presented for the publication because the
authors were aware of the possible applicative ideas. And only, when those ideas
took shape, and the results were obtained (the articles are being prepared for the
publications), we decided to present the main theoretical ”trunk”, giving in a brief
form three nontrivial applicative aspects.

5.1 Application in the hypergraphs theory

Hypergraphs represent some discrete mathematical structures that, accord-
ing to those mentioned above, can be regarded as particular cases of G-complex of
multi-ary relations and which are used in solving many theoretical and applicative
problems.

The notion of hypergraph in Berge sense [6] is known: a hypergraph is the pair
H = (X; E), where X is a labeled set of vertices, and E is a set of edges that contains
at least two vertices. For this hypergraph H, a succession of edges e1, e2, ..., ep, with
the property ei∩ei+1 6= ∅, 1 ≤ i ≤ p, p⊕1 = 1(mod:p), is called a cycle. This notion
of cycle is not operable. Having the mentioned ”trunk” we asked ourselves: would
it be possible to define in a more natural way the notion of cycle for a hypergraph?
The time proved that it is possible.

According to the definition, both the set of vertices X and the set of edges E,
of a hypergraph H can be finite or infinite; more over - the number of vertices that
forms an edge e ∈ E can be infinite [3]. For simplicity, let consider now only the
case where X and E are finite sets.

Let E = {e1, e2, ..., em} be a set of edges of a hypergraph. For every edge
ei = (xi1 , xi2 , ..., xiqi

), 1 ≤ i ≤ m, we construct in accordance with those mentioned
in §1, a generalized complex of multi-ary relations Rqi

1
on the set of vertices Xi =

{
xi1 , xi2 , ..., xiqi

}
. The union Rq1 ∪ Rq2 ∪ ... ∪ Rqm is a G-complex of multi-ary

relations Rq, with dimension q = max
1≤i≤m

{qi}, constructed on the set of vertices

X = {x1, x2, ..., xn}.

From G-complex Rq, in accordance with those described in §2, we obtain the
simplicial-abstract complex Kq−1 and the group succession of direct homologies.

Each element of such group, i.e. a r-dimensional ∆-cycle, 0 ≤ r ≤ q − 1 is a
cycle in Berge sense. But, if in hypergraph a cycle in Berge sense exists, then the
hypergraph contains only one 1-dimensional ∆-cycle. We believe that ∆-cycles are
more natural: they offer more detailed information about H. But if we introduce
also the co-homologies, then we obtain much more information about the hypergraph
H, which possibly will lead to other practical aspects.

We have to mention that those described above could be also extended to infinite
hypergraphs, where the edges are determined by an arbitrary number of vertices.
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5.2 Median calculation

The median applications are well-known in solving some practical problems. If

(X, d) is a finite metric space and f(x) =
n∑

i=1

d(x, xi)p(xi) is a definite function on

the set X = {x1, x2, ..., xn} with the elements weight p(xi) > 0, 1 ≤ i ≤ n, then
the point x∗ ∈ X which minimizes the function f(x) is called a median.

Median calculation of a metric space by examining the corresponding function
could become quite difficult, what will lead to an inefficient solving of this prob-
lem. In the works [20–22, 60] for some special complexes efficient algorithms of
median calculation are exposed, without using the metric. The ideas described in
the mentioned works can be used at the median calculation of an abstract complex of
n-dimensional cubes, which is a particular case of the complex of multi-ary relations.

From the complex of abstract cubes

In =
{
Qp

λ : 0 ≤ p ≤ n, λ ∈ Λ, dim Λ < ∞
}

,

defined above, we will require that for homology groups of this complex over the
group of Z integers, the relations hold

�
0(In, Z) ∼= Z,�1(In, Z) ∼= ... ∼= �

n(In, Z) ∼= 0.

The median problem formulated on the 1-dimensional skeleton of the In is solv-
ing efficiently, without using metric. 1-Dimensional skeleton sk(1)In is a graph
which we will denote by H = (X, : U). The median of this graph H is calculated on
sk(1)Im, where Im is an unitary cube of the normed space Rm

1 , and m is determined
by In. For x ∈ sk(1)In the norm is ‖ x ‖=| x1 | + | x2 | +...+ | xm |. The median
of H = (X, : U) coincides with the median calculated on sk(1)Im. Our hypothesis
is: a metric graph, wider than the one mentioned, for which the median would be
calculated without using metric, does not exist.

5.3 Posthumous problem and the generalization of Euler border

Let a sequence be formed from k elements 0 and 1. We formulate the problem:
if we have a disk with a big enough border, how many sequences of k length is possible
to place on this border so that none of them would be repeated (Posthumous [7]).
The problem is solved with a strongly oriented graph, which represents an Euler tour,
obtaining 2k sequences which represent a generalized complex of 4-ary relations.
This situation is applied in the communication systems which are operating with
two elements: 0 and 1.

Next we expose our generalizations about an Euler tour, formed from p-
dimensional and concordant cubes, 1 ≤ p ≤ n [13].

In the works [19, 23] it is mentioned that an n-dimensional cubic tour V n
1 (�),

which is concordantly oriented, has an Euler tour of any dimension m, 1 ≤ m ≤
n. We will remark that such property isomorphicly possesses each n-dimensional
manyfold that is oriented and without borders [13, 15, 68]. In this situation the
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Posthumous problem is positively solved, no matter how big the length k of the
sequence will be. The exception is only the abstract sphere.

Let V n
1 (�)1 and V n

1 (�)2 be two abstract n-dimensional isomorphic cubic tours,
that are non-concordant oriented. We eliminate the interior intIn

1 and intIn
2 of

the cubes In
1 , In

2 and stick together their isomorphic and coherent borders. Thus
a manifold of the second level V n

2 (�) is obtained. This manifold is concordantly
oriented, and it has an n-dimensional Euler tour E1 ∪ E2 \ (intIn

1 ∪ intIn
2 ). If k1 is

the length of the tour E1 (the number of cubes), and k2 is the length of E2, then
the Euler tour in V n

2 (�) will have the length k1 + k2 − 2 [15].
Using the same idea of sticking together the manifold of second level V n

2 (�) with
a new manifold of first level V n

1 (�), we obtain a manyfold of third level V n
2 (�), for

which also an Euler tour exists. Thus, in an inductive way we can obtain a manifold
V n

p (�) of p level which has an Euler tour. The Posthumous problem is solved with
the same classic algorithm [7], by obtaining an n-dimensional circular tour (Euler
tour) which covers the whole manifold V n

p (�). From here two applicative aspects
result.

1. It is possible to construct a virtual device of a compact shape of a manifold
V n

p (�) which would be covered by an Euler tour and which can be made mobile
En

p so that each n-dimensional cube would contain a package of information that
does not repeat. For this tour En

p a timer would also exist to stop the tour at the
necessary cube. This situation will give the possibility to store as more information
as possible by the increase of k and p.

2. The idea exposed in 1), in V 2
p (�) case allows us to generalize the constructed

device according to the classical problem of Posthumous for the transmission and
reception of information with Euler bidimensional tour with the binary elements 0
and 1, however big the length is, depending on the p increase, having in tangency
other manifold V n

p (�). The 2-dimensional cube of V 2
p (�) can be done in three-

dimensional package. So on such a manifold any volume of knowledge can be stored.

The practical importance of this problem is well known and can be applied in
different problems of transmission and reception of information. The application
from cryptography, for example, would have the following issue: to determine a
word where every arrangement from k letters of the alphabet appears just once.

The device from 2 represents an invention with possible practical applications
and would be accomplished by engineers.
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