
BULETINUL ACADEMIEI DE ŞTIINŢE
A REPUBLICII MOLDOVA. MATEMATICA
Number 2(63), 2010, Pages 3–19
ISSN 1024–7696

Properties of final unrefinable chains

of groups topologies

V. I.Arnautov

Abstract. Let G be a nilpotent group and (M, <) be the lattice of all group topolo-
gies or the lattice of all group topologies in each of which the group G possesses a
basis of neighborhood of unit consisting of subgroups. If τ and τ ′ are group topologies
from M such that τ = τ0 ≺M τ1 ≺M . . . ≺M τn = τ ′, then k ≤ n for any chain
τ = τ ′

0 < τ ′

1 < . . . < τ ′

k = τ ′ of topologies from M.
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1 Introduction

After the problem of the existence of non discrete Hausdorff topologies in infinite
Abelian groups and some infinite rings was solved (see for example, [1, p. 351–390]),
and the existence of a lange number of group topologies in infinite Abelian groups,
was proved it was an interesting to study the lattice of all group topologies and
lattices of all ring topologies and their sublattices.

So in work [7] it was proved that the lattice of all group topologies of an Abelian
group is modular.

As properties of finite unrefinable chains in any modular lattice were investi-
gated well (see, for example, Theorem 3.10), then for any Abelian groups in any
sublattice of the lattice of all group topologies the properties of unrefinable chains
are investigated well enough.

As the lattice of all group topologies is non modular even for nilpotent groups
(see [2]) it is natural to study properties of finite unrefinable chains of group
topologies.

The present work is devoted to the study of properties of finite unrefinable chains
of group topologies for nilpotent groups.

The basic results of work are Theorem 4.6 and Corollary 4.7 in which some
properties of a unrefenable chains of group topologies are proved. These results give
the positive answer to the question 14.5 (б) from [8].
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2 Notations

In this work if another will be not stipulated we shall use the following notations:

2.1. N is the set of all natural numbers.

2.2. G(·) or simply G is a group.

2.3. If G is a group, A and B ⊆ G then we shall put:
< A > is the subgroup of the group G which is generated by the set A and

[A,B] = {a · b · a−1 · b−1|a ∈ A, b ∈ B}.

2.4. By induction, for any natural number k we shall define a normal subgroup
G[k] of the group G as follows:

Put G[0] = G and take as G[k+1] a subgroup generated by the set [G[k], G], i.e.
G[k+1] =< [G[k], G] >.

By induction on number i it is easily checked that G[i] is a normal subgroup of
the group G.

2.5. If τ1 and τ2 are topologies on a set X, then we shall consider, that τ1 ≤ τ2,
if τ1 ⊆ τ2.

2.6. If I is some normal subgroup of a group G it is easy to notice then the set
{I} satisfies conditions 3.6.1 - 3.6.5 (see below Remark 3.6) and hence it sets on the
group G some group topology for which this set is a basis of neighborhoods of unit.

We shall denote this topology by τ(I).

2.7. Let (G, τ) be a topological group and I be some normal subgroup of the
group G. If Ω is some basis of neighborhoods of unit in the topological group (G, τ),
then it is easy to notice that the set {V

⋂
I|V ∈ Ω} satisfies conditions 3.6.1 – 3.6.5

(see below Remark 3.6 ) and hence it sets on the group G some group topology for
which this set is a basis of neighborhoods of unit.

We shall denote this topology by τI .

2.8. Let (G, τ) be a topological group and I is some normal subgroup of the
group G. If Ω is some basis of neighborhoods of unit in the topological group (G, τ)
then it is easy to notice that the set {V · I|V ∈ Ω} satisfies conditions 3.6.1 – 3.6.5
(see below Remark 3.6 ) and hence it sets on the group G some group topology for
which this set is a basis of neighborhoods of unit.

This topology we shall designate by τ · I.

2.9. If (X,<) is a partially ordered set, S ⊆ X and a, b ∈ X, then:
- We consider that a = infXS if a ≤ x for any element x ∈ S and if d ∈ X is an

element such that d ≤ x for all x ∈ S, then d ≤ a;
- We consider that b = supXS if b ≥ x for any element x ∈ S and if d ∈ X is an

element such that d ≥ x for all x ∈ S, then d ≥ b.
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3 Definitions and auxiliary results

Results of this section have been received by the author of present article together
with I. V.Vdovichenko. As by the moment of preparation of present article they are
not published, then for completeness of the statement we adduce them.

3.1. Definition (see [3, 5, 6]). A partially ordered set (X, ¡) is called:
- A lattice if for any two elements a, b ∈ X there exist infX{a, b} and supX{a, b};
- A full lattice if for any nonempty subset S ⊆ X there exist infXS and supXS.

3.2. Remark. If (G, τ) is a topological group, then from one definitions of
right and left uniform structures in (G, τ) (see [4, p. 224, Definition 1]) the following
statement easily follows:

In a topological group (G, τ) right and left uniform structures coincide if and
only if for any neighborhood V0 of unit there exists a neighborhood V1 of unit such
that g · V1 · g

−1 ⊆ V0 for any element g ∈ G.

3.3. Definition (see [1, 4]). A topological group (G, τ) is called precompact
if for any neighborhood V of unit in (G, τ) there exists a finite subset S ⊆ G such
that G = S · V .

3.4. Remark. As G = G−1 and (S ·V )−1 = V −1 ·S−1 then a topological group
(G, τ) is precompact if and only if for any neighborhood V of unit in (G, τ) there
exist a finite subset S ⊆ G such that G = V · S.

3.5. Proposition. If the topological group (G, τ) is precompact then in (G, τ)
the right and left uniform structures coincide.

Proof. Let V0 be a neighborhood of unit in the topological group (G, τ) and V1

be a neighborhood of unit in topological group (G, τ) such that V1 · V1 · V
−1
1 ⊆ V0.

There is a finite subset S in G such that V1 ·S = G and there exists a neighborhood
V2 of unit in (G, τ) such that V2 ⊆ V1 and g · V2 · g

−1 ⊆ V1 for any g ∈ S.
If g ∈ G then g = v · h for some v ∈ V1 and h ∈ S. Then

g · V2 · g
−1 = (v · h) · V2 · (v · h)−1 = v · (h · V2 · h

−1) · v−1 ⊆ V1 · V1 · V
−1
1 ⊆ V0.

The proposition is completely proved.

3.6. Remark (see [4, p. 203, Proposition 1]). Let G be a group and Ω be a set
of subsets of the group G such that the following conditions are true:

3.6.1. e ∈ V for any V ∈ Ω;

3.6.2. For any V and U from Ω there exists such W ∈ Ω that W ⊆ V
⋂

U ;

3.6.3. For any V ∈ Ω there exists such U ∈ Ω that U−1 ⊆ V ;

3.6.4. For any V ∈ Ω there exists such U ∈ Ω that U · U ⊆ V ;

3.6.5. For any V ∈ Ω and any element g ∈ G there exists such U ∈ Ω that
g · U · g−1 ⊆ V .



6 V. I.ARNAUTOV

Then on the group G there exists the unique group topology τ such that Ω is a
basis of neighborhoods of unit in the topological group (G, τ).

3.7. Proposition. For any group G the following statements are true:

3.7.1. The set M of all group topologies on the group G with order which was
defined in 2.5, is a full lattice;

3.7.2. The set G of all group topologies on the group G in each of which the
topological group possesses a basis of neighborhoods of unit consisting of subgroups
with order which has been defined in 2.5, is a full lattice;

3.7.3. The set N of all group topologies on the group G in each of which the
topological group possesses a basis of neighborhoods of unit consisting of normal
subgroups with order which has been defined in 2.5, is a full lattice;

3.7.4. The set S of all group topologies on the group G in each of which right
and left uniform structures coincide with order which is defined in 2.5, is a full
lattice;

3.7.5. The set C of all group topologies on the group G in each of which the
topological group is a precompact group with order which is defined in 2.5, is a full
lattice.

Proof.

3.7.1. In the beginning we shall show that there exists supMS for any nonempty
subset S ⊆ M.

For each group topology τ ∈ S we shall choose some basis Ωτ of neighborhoods of
unit in the topological group (G, τ) and also we shall consider the set Ω =

⋃
τ∈S

Ωτ . If

Ω̃ is the set of all finite subsets of the set Ω, then for every ∆ ∈ Ω̃ take W̃∆ =
⋂

V ∈∆
V .

Show that the set Θ = {W̃∆|∆ ∈ Ω̃} satisfies conditions 3.6.1 – 3.6.5 of Remark 3.6.

As e ∈ V for any V ∈ Ω then e ∈ W∆ for any ∆ ∈ Ω̃, i.e. the condition 3.6.1 is
executed.

Let ∆1 ∈ Ω̃ and ∆2 ∈ Ω̃. If ∆ = ∆1
⋃

∆2, then ∆ ∈ Ω̃, and W̃∆ = W̃∆1

⋂
W̃∆2 ,

i.e. the condition 3.6.2 is executed.

Let ∆ = {V1, . . . , Vs} ∈ Ω̃. As (G, τ) is a topological group for any τ ∈ M then for
any 1 ≤ i ≤ s there exists Ui ∈ Ω such that U−1

i ⊆ Vi. Then ∆′ = {U1, . . . , Us} ∈ Ω̃,
and

W̃−1
∆′ = (

s⋂

i=1

Ui)
−1 ⊆

s⋂

i=1

U−1
i ⊆

s⋂

i=1

Vi = W̃∆,

i.e. the condition 3.6.3 is executed.

Let ∆ = {V1, . . . , Vs} ∈ Ω̃. As (G, τ) is a topological group for any τ ∈ M then for
any 1 ≤ i ≤ s there exists Ui ∈ Ω such that Ui·Ui ⊆ Vi. Then ∆′ = {U1, . . . , Us} ∈ Ω̃,
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and

W̃∆′ · W̃∆′ = (

s⋂

i=1

Ui) · (
s⋂

i=1

Ui) ⊆
s⋂

i=1

(Ui · Ui) ⊆
s⋂

i=1

Vi = W̃∆,

i.e. the condition 3.6.4 is executed.

Let ∆ = {V1, . . . , Vs} ∈ Ω̃ and g ∈ G. As (G, τ) is a topological group then for
any τ ∈ M for any 1 ≤ i ≤ s there exists Ui ∈ Ω such that g · Ui · g

−1 ⊆ Vi. Then
∆′ = {U1, . . . , Us} ∈ Ω̃, and

g · W̃∆′ · g−1 = g · (
s⋂

i=1

Ui) · g
−1 ⊆

s⋂

i=1

(g · Ui · g
−1) ⊆

s⋂

i=1

Vi = W̃∆,

i.e. the condition 3.6.5 is executed.

According to Remark 3.6, on the group G there exists a group topology τ∗ ∈ M
in which the set Θ = {W̃∆|∆ ∈ Ω̃} is a basis of neighborhoods of unit.

As Ωτ ⊆ Θ for any topology τ ∈ S then τ ≤ τ∗ for any topology τ ∈ S.

Let now τ ′ ∈ M be a group topology on group G such that τ ≤ τ ′ for any
topology τ ∈ S.

Then any subset V ∈ Ω is a neighborhood of unit in the topological group (G, τ ′).

If W̃∆ ∈ Θ, then W̃∆ is the intersection of finite number of sets from Ω, and hence,
it is a neighborhood of unit in the topological group (G, τ ′).

Hence τ∗ ≤ τ ′.

So, we have proved that τ∗ = supMS.

Now show that in M there exists infMS for any nonempty subsets S ⊆ M.

Consider the set S ′ = {τ ′ ∈ M|τ ′ ≤ τ for all τ ∈ S}. As the set S ′ contains the
anti-discrete topology then S ′ 6= ∅. Then, as it was proved above, in M there exists
τ̃ = supMS ′.

Show that τ̃ = infMS.

If τ ∈ S, then τ ′ ≤ τ for all τ ′ ∈ S ′. Then (see 2.9) τ̃ = supMS′ ≤ τ for
all τ ∈ S.

Moreover, if τ ′′ ≤ τ for all τ ∈ S, then τ ′′ ∈ S ′, and hence, τ ′′ ≤ supMS ′ = τ̃ .
Then τ̃ = infMS.

The statement 3.7.1 is proved.

3.7.2. Let ∅ 6= S ⊆ G and τ∗ = supMS (see 3.7.1).

In the proof of the statement 3.7.1 it has been shown that the set Θ is a basis of
neighborhoods of unit in the topological group (G, τ∗). As the intersection of any

number of subgroups of the group G is a subgroup, then any of subsets W̃∆ is a
subgroup, and hence, τ∗ ∈ G.

As G ⊆ M, then τ∗ = supGS.

So, we have proved that there exists supGS

Now show that in G there exists infGS for any nonempty subset S ⊆ G.
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If S ′ = {τ ′ ∈ G|τ ′ ≤ τ for all τ ∈ S} then as in the proof of the statement 3.7.1
is proved that supGS

′ = infGS.
The statement 3.7.2 is proved.

The proof of the statement 3.7.3 is analogues to proofs of the statement 3.7.2.

3.7.4. Let ∅ 6= S ⊆ S and τ∗ = supMS (see 3.7.1). We shall show that τ∗ ∈ S.

In the proof of the statement 3.7.1 it has been proved that the set Θ = {W̃∆|∆ ∈ Ω̃}
is a basis of neighborhoods of unit in the topological group (G, τ∗).

Let ∆ = {V1, . . . , Vs} ∈ Ω̃. As for any topology τ ∈ S in topological group (G, τ)
left and right uniform structures coincide, then (see Remark 3.2) for any number
1 ≤ i ≤ s there exists Ui ∈ Ω such that g · Ui · g−1 ⊆ Vi for all g ∈ G. Then
∆′ = {U1, . . . , Us} ∈ Ω̃, and

g · W∆′ · g−1 = g · (
s⋂

i=1

Ui) · g
−1 ⊆

s⋂

i=1

(g · Ui · g
−1) ⊆

s⋂

i=1

Vi = W∆

for any g ∈ G, i.e. τ∗ ∈ S.
As S ⊆ M, then τ∗ = supSS.
So, we have proved that there exists supSS.

Now show that in S there exists infSS for any nonempty subsets S ⊆ S.
If S ′ = {τ ′ ∈ S|τ ′ ≤ τ for all τ ∈ S} then, as in the proof of the statement 3.7.1,

is proved that supSS
′ = infSS.

The statement 3.7.4 is proved.

3.7.5. Let ∅ 6= S ⊆ C and τ∗ = supMS (see 3.7.1).
It is easy to notice that in the proof of Proposition 4.4.11 in [1] the require-

ment of commutative of the group is not essential, and hence, this proof with little
modification can be applied for proofs of that the topological group (G, τ∗) is a
pre-compact, i.e. that τ∗ ∈ C.

As C ⊆ M, then τ∗ = supCS.

Now show that in C there exists infCS for any nonempty subsets S ⊆ C.
Consider the set S ′ = {τ ′ ∈ C|τ ′ ≤ τ for all τ ∈ S}. As in the proof of the

statement 3.7.1, it is proved that supCS
′ = infCS.

The statement 3.7.5 is proved, and hence, the theorem is completely proved.

3.8. Definition. Let A be any lattice and a, b ∈ A. If a < b and between
elements a and b there exist no other elements in the lattice A then we shall say
that the element b covers the element a in the lattice A (see [3], p. 15), also we shall
write a ≺A b.

Notice, that if A is a sublattice of a lattice (B, <) and a, b ∈ A, then a ≺A b does
not follows that a ≺B b, but from that a ≺B b follows that a ≺A b.

3.9. Definition. As it is usual (see [3], [6]), a lattice A l is called a modular
lattice1 if in it the following condition is true:

1Such lattices sometimes are called Dedekind.
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If a, b, c ∈ A and a ≤ c, then supA{a, infA{b, c}} = infA{supA{a, b}, c}.

It is easy to notice that any sublattice of a modular lattice is a modular lattice.

3.10. Theorem. Let A be a modular lattice and a, b ∈ A. Then the following
statements are true:

3.10.1. If a = a1 ≺A a2 ≺A . . . ≺A an = b (i.e. this chain is a unrefinable chain
of the lattice A) and a = b1 < b2 < . . . < ak = b, then k ≤ n, and k = n if and only
if a = b1 ≺A b2 ≺A . . . ≺A ak = b (see [6], pp. 191 and 192);

3.10.2. If a, b, c ∈ A and a ≺A b, then supA{a, c} �A supA{b, c} and
infA{a, c} �A infA{b, c} (see [5], p. 213, theorem 4).

3.11. Proposition. Let G be a group, τ1 and τ2 be group topologies on the
group G, Ω1 and Ω2 be some basis of neighborhoods of unit in topological groups
(G, τ1) and (G, τ2), accordingly. Then the following statements are equivalent:

3.11.1. For any neighborhoods of unit V1 ∈ Ω1 and U1 ∈ Ω2 there exist V2 ∈ Ω1

and U2 ∈ Ω2 such that V2 · U2 ⊆ U1 · V1;

3.11.2. For any neighborhoods of unit V1 ∈ Ω1 and U1 ∈ Ω2 there exist V2 ∈ Ω1

and U2 ∈ Ω2 such that U2 · V2 ⊆ V1 · U1;

3.11.3. The set Ω3 = {U · V |V ∈ Ω1, U ∈ Ω2} is a basis of neighborhoods of
unit in the topological group (G, τ3), where τ3 = infM{τ1, τ2} in the lattice M of
all group topologies on the group G.

Proof. In the beginning, we shall prove , that 2.11.1 ⇒ 3.11.2
Let V0 ∈ Ω1 and U0 ∈ Ω2. There exist V1 ∈ Ω1 and U1 ∈ Ω2 such that V −1

1 ⊆ V0

and U−1
1 ⊆ U0. As the statement 3.11.1 is executed then there exist V2 ∈ Ω1 and

U2 ∈ Ω2 such that V2 · U2 ⊆ U1 · V1 and also there exist V3 ∈ Ω1 and U3 ∈ Ω2 such
that V −1

3 ⊆ V2 and U−1
3 ⊆ U2.

As (a · b)−1 = b−1 · a−1 for any a, b ∈ G then

U3 · V3 = ((U3)
−1)−1 · (V −1

3 )−1 = ((V −1
3 ) · (U−1

3 ))−1 ⊆

⊆ (V2 · U2)
−1 ⊆ (U1 · V1)

−1 = V −1
1 · U−1

1 ⊆ V0 · U0,

i.e. the statement 3.11.2 is executed.

The further proof of the theorem can be found in ([7], the proof of the
Theorem 3.2).

3.12. Proposition. Let G be a group, τ1 and τ2 be group topologies on G,
Ω1 and Ω2 be some basis of neighborhoods of unit in topological groups (G, τ1)
and (G, τ2), accordingly. If for any neighborhood of unit V1 ∈ Ω1 there exist such
V2 ∈ Ω1 and U2 ∈ Ω2 that g ·V2 · g−1 ⊆ V1, for any g ∈ U2, then for group topologies
τ1 and τ2 the statement 3.11.2 is true, and hence, each of statements 3.11.1 – 3.11.3
is true.
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Proof. Let V1 ∈ Ω1 and U1 ∈ Ω2. There exist V2 ∈ Ω1 and U2 ∈ Ω2 such that
V2 ⊆ V1, U2 ⊆ U1 and g·V2 ·g

−1 ⊆ V1 for any g ∈ U2. Then g·V2 = g·V2 ·g
−1 ·g ⊆ V1 ·g

for any g ∈ U2, and hence, U2 · V2 ⊆ V1 · U2 ⊆ V1 · U1, i.e. the statement 3.11.2 is
true, and hence each of statements 3.11.1 – 3.11.3 is true.

The proposition is completely proved.

3.13. Corollary. Let G be a group and τ1 be a group topology such that in the
topological group (G, τ1) the right and left uniform structures coincide. Then for
any group topology τ2 the pair of topologies τ1 and τ2 satisfies each of statements
3.11.1 – 3.11.3.

Really, for any topology τ2 the set U = G is a neighborhood of unit in the
topological group (G, τ2), and according to Remark 3.2, for any neighborhood V1 of
unit in the topological group (G, τ1) there exists a neighborhood V2 in the topological
group (G, τ1) such that g · V2 · g−1 ⊆ V1 for any g ∈ G. Then, from the previous
proposition, the truths the corollary follows.

3.14. Proposition. For any group G the following statements are true:

3.14.1. The lattice N of all group topologies on the group G in each of which
the topological group possesses a basis of neighborhood of unit consisting of normal
subgroups is a sublattice of the lattice M of all group topologies on the group G;

3.14.2. The lattice S of all group topologies on the group G in each of which
right and left uniform structures coincide is a sublattice of the lattice M of all group
topologies on the group G

3.14.3. The lattice C of all group topologies on the group G in each of which
topological group is a precompact group is a sublattice of the lattice M of all group
topologies on the group G.

Proof.
3.14.1. Let τ1 and τ2 ∈ N, Ω1 and Ω2 be some basis of neighborhoods of

unit in topological groups (G, τ1) and (G, τ2), accordingly, consisting from normal
subgroups.

As the intersection of any number of normal subgroups is a normal sub-
group then from the proof of the statement 3.7.1 follows, that topological group
(G, supM{τ1, τ2}) possesses of basis of neighborhoods of unit, which will consist
from normal subgroups, i.e. supM{τ1, τ2} ∈ N.

Moreover, according to the statement 3.11.3, the set {U · V |U ∈ Ω1, V ∈ Ω2}
is a basis of neighborhoods of unit in the topological group (G, infM{τ1, τ2}). As
product of two normal subgroups is a normal subgroup, then infM{τ1, τ2} ∈ N.

The statement 3.14.1 is proved.

3.14.2. Let τ1, τ2 ∈ S and Ω1 and Ω2 be some basis of neighborhoods of
unit in topological groups (G, τ1) and (G, τ2), accordingly. Then (see 3.7.1) the set
Ω3 = {U

⋂
V |U ∈ Ω1, V ∈ Ω2} is a basis of neighborhoods of unit in the topological

group (G, supM{τ1, τ2}).



PROPERTIES OF FINAL UNREFINABLE CHAINS OF GROUPS TOPOLOGIES 11

If U
⋂

V ∈ Ω3, then there exist such U1 ∈ Ω1 and V1 ∈ Ω2 that g · U1 · g
−1 ⊆ U

and g · V1 · g
−1 ⊆ V for any g ∈ G. Then U1

⋂
V1 ∈ Ω3 and

g · (U1

⋂
V1) · g

−1 ⊆ (g · U1 · g
−1)

⋂
(g · V1 · g

−1) ⊆ U
⋂

V

for any g ∈ G, i.e. supM{τ1, τ2} ∈ S.
Moreover, from Corollary 3.13 and the statement 3.11.3, it follows that the set

Ω4 = {U ·V |U ∈ Ω1, V ∈ Ω2} is a basis of neighborhoods of unit in the topological
group (G, infM{τ1, τ2}).

If U · V ∈ Ω4 then there exist such U1 ∈ Ω1 and V1 ∈ Ω2 that g · U1 · g
−1 ⊆ U

and g · V1 · g
−1 ⊆ V for any g ∈ G. Then U1 · V1 ∈ Ω4 and

g · (U1 · V1) · g
−1 = (g · U1 · g

−1) · (g · V1 · g
−1) ⊆ U · V

for any g ∈ G, i.e. infM{τ1, τ2} ∈ S.
The statement 3.14.2 is proved.

3.14.3. If τ1 and τ2 ∈ C then in the proof of the statement 3.7.5, it has been
proved that supM{τ1, τ2} ∈ C.

Moreover, from Definition 3.3 it follows that every group topology which
is weaker than some precompact topology itself is a precompact topology then
infM{τ1, τ2} is a precompact topology, i.e. infM{τ1, τ2} ∈ C.

The proposition 3.14 is completely proved.

4 The basic results

4.1. Proposition. Let:
– G be a group;
– M be the lattice of all group topologies on the group G;
– τ1 and τ2 be such group topologies that topological groups (G, τ1) and (G, τ2)

possess basis of neighborhoods of unit consisting of subgroups.
If for any neighborhood V0 of unit in the topological group (G, τ1) there exist

neighborhoods V1 and U1 of units in topological groups (G, τ1) and (G, τ2), ac-
cordingly, such that g · V1 · g−1 ⊆ V0 for any g ∈ U1, then the topological group
(G, infM{τ1, τ2}) possesses a basis of neighborhoods of unit, consisting of subgroups.

Proof. Let Ω1 and Ω2 be basis of neighborhoods of units in topological groups
(G, τ1) and (G, τ2), accordingly, consisting of subgroups.

From Proposition 3.12 and the statement 3.11.3 it follows that the set
Ω3 = {V ·U | V ∈ Ω1, U ∈ Ω2} is a basis of neighborhoods of unit in the topological
group (G, infM{τ1, τ2}).

For any V ∈ Ω1 and U ∈ Ω2 we shall consider the subgroup W (V,U) which is
generated by the set V · U , i.e. W (V,U) =< V · U >, and let
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Ω̃ = {W (V,U) | V ∈ Ω1, U ∈ Ω2}. As V · U ⊆ W (V,U), then any set W (V,U) is
a neighborhood of unit in the topological group (G, infM{τ1, τ2}), i.e. Ω̃ consists of
neighborhoods of unit of the topological group (G, infM{τ1, τ2}).

If now V0 ·U0 ∈ Ω3 then there exist such V1 ∈ Ω1 and U1 ∈ Ω2, that g·V1 ·g
−1 ⊆ V0

for any g ∈ U1.

As Ω3 is a basis of neighborhoods of unit in the topological group (G, infM{τ1, τ2})
then there exist such V1 ∈ Ω1 and U1 ∈ Ω2 that V2 ⊆ V1, U2 ⊆ U1 and
(V2 · U2)

−1 ⊆ V1 · U1.

Show that < V2 · U2 >⊆ V0 · V0.

Assume the contrary, i.e. that < V2 · U2 >* V0 · V0. Then there exist such
integers k1, . . . , kn from the set {1,−1} and elements b1, b2, . . . , bn from V2 ·U2 that
b = bk1

1 · bk2
2 · . . . · bkn

n /∈ V0 · U0.

As V2 ·U2 ⊆ V1 ·U1 and (V2 ·U2)
−1 ⊆ V1 ·U1, then bki

i ∈ V1 ·U1 for any 1 ≤ i ≤ n,

and hence, bki

i = vi · ui, where vi ∈ V1 and ui ∈ U1 for all 1 ≤ i ≤ n. Then
b = (v1 · u1) · . . . · (vn · un).

For every 1 ≤ s ≤ n− 1 by induction we shall define element gs, we put g1 = u1

and gs+1 = gk ·uk+1. As U1 is a subgroup, then gs ∈ U1 for any 1 ≤ s ≤ n−1. Then
gs · vs+1 · g

−1
s ∈ V1 ⊆ V0, and as V0 is a subgroup, then b = (v1 · u1) · . . . · (vn · un) =

v1(·u1 · v2 · g
−1
1 ) · (g1 · u2 · v3 · g

−1
2 ) · . . . · (gn−2 · un−1 · vn−1 · g

−1
n−1) · gn−1 · un =

v1(·g1 · v2 · g
−1
1 ) · (g2 · v3 · g

−1
2 ) · . . . · (gn−1 · vn−1 · g

−1
n−1) · gn ∈ V0 · U0.

We have obtained a contradiction with the choice of element b. Hence, < V2 ·U2 >⊆
V0 · U0 and hence, in the topological group (G, infM{τ1, τ2}) the set {< V · U >|
V ∈ Ω1, U ∈ Ω2} is a basis of neighborhoods of unit consisting from subgroups.

The proposition is completely proved.

4.2. Proposition. If G is a group and A is a sublattice of the lattice M of all
group topologies on the group G such that for any two group topologies from A one
of statements 3.11.1 – 3.11.4 is true, then the lattice A is modular.

Proof. Let τ1, τ2, τ3 ∈ A be such group topologies that τ1 ≤ τ3 and Ω1, Ω2,Ω3

be basis of neighborhoods of unit in topological groups (G, τ1), (G, τ2) and (G, τ3),
accordingly. Then, from the proof of the statement 3.11.3 it follows that sets:

Ω4 = {W · V |V ∈ Ω2, W ∈ Ω3};
Ω5 = {U

⋂
V |U ∈ Ω1, V ∈ Ω2};

Ω6 = {U
⋂

(W · V )|U ∈ Ω1, V ∈ Ω2, W ∈ Ω3};
Ω7 = {W · (V

⋂
U)|U ∈ Ω1, V ∈ Ω2, W ∈ Ω3}

are basis of neighborhoods of unit, accordingly, in topological groups:

(G, infM{τ3, τ2});
(G, supM{τ1, τ2});
(G, supM{τ1, infM{τ3, τ2}});
(G, infM{τ3, supM{τ1, τ2}}).



PROPERTIES OF FINAL UNREFINABLE CHAINS OF GROUPS TOPOLOGIES 13

If U
⋂

(W · V ) ∈ Ω6, then there exists such U1 ∈ Ω1 that U1 · U1 ⊆ U , and as
τ1 ≤ τ3 then there exists such W1 ∈ Ω3 that W1 ⊆ U1

⋂
W . Then W1 ·(V

⋂
U1) ∈ Ω7

and

W1 · (V
⋂

U1) ⊆ (W1 · U1)
⋂

(W1 · V ) ⊆ (U1 · U1)
⋂

(W · V ) ⊆ U
⋂

(W · V ),

and hence, supM{τ1, infM{τ3, τ2}} ≤ infM{τ3, supM{τ1, τ2}}.

Let now W · (V
⋂

U) ∈ Ω7. There exists such U1 ∈ Ω1 that U1 · U1 ⊆ U , and
as τ1 ≤ τ3 then there exists such W1 ∈ Ω3 that W1 ⊆ W and W−1

1 ⊆ U1. Then
U1

⋂
(W1 · V ) ∈ Ω6. If u ∈ U1

⋂
(W1 · V ) then u = w · v, where w ∈ W1 and

v ∈ V . Then v = w−1 · u ∈ W−1 · U1 ⊆ U1 · U1 ⊆ U , and hence, v ∈ V
⋂

U , i.e.
u = w · v ∈ W · (V

⋂
U).

From the arbitrariness of the element u it follows that U1
⋂

(W1·V ) ⊆ W ·(V
⋂

U),
and hence, infM{τ3, supM{τ1, τ2}} ≤ supM{τ1, infM{τ3, τ2}}.

Then infM{τ3, supM{τ1, τ2} = supM{τ1, infM{τ3, τ2}}.
As A is a sublattice of the lattice M, then

infA{τ3, supA{τ1, τ2}} = infM{τ3, supM{τ1, τ2}} =

= supM{τ1, infM{τ3, τ2}} = supA{τ1, infA{τ3, τ2}},

i.e. the lattice A is a modular lattice.

The theorem is completely proved.

4.3. Corollary. For any group G the following lattices are modular:

- The lattice N of all group topologies on the group G in which the topological
group possesses a basis of neighborhoods of unit consisting of normal subgroups;

- The lattice S of all group topologies on the group G in which right and left
uniform structures coincide;

- The lattice C of all group topologies on the group G in which the topological
group is precompact.

4.4. Theorem. Let G be a group and A be a sublattice of the lattice M of all
group topologies on G or it be a sublattice of the lattices G of all group topologies
on G in which G possesses a basis of neighborhoods of unit consisting of subgroups.
If τ(G[i]) ∈ A (them definition of τ(G[i]) see 2.4 and 2.6) for any i ∈ N and τ0 and τ1

are such group topologies from A that τ0 ≺A τ1 (the definition of ≺ see in 3.8) and
(τ0)G[k]

= (τ1)G[k]
(see 2.7) for some natural number k, then the following statements

are true:

4.4.1. If n = min{k|(τ0)G[k]
= (τ1)G[k]

} then τ0 = infA{τ1, (τ0)G[n−1]
};

4.4.2. For any neighborhood V of unit in the topological group (G, τ1) there
exist such neighborhoods V1 and W1 in topological groups (G, τ1) and (G, (τ0)G[n−1])
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(definition of number n see in the formulation of the statement 4.4.1), accordingly,
that g · V1 · g

−1 ⊆ V for any element g ∈ W1;

4.4.3. If τ is a group topology from A such that τ0 ≤ τ , then for any neighbor-
hood V of unit in the topological group (G, τ1) there exist such neighborhoods V1 and
U1 of unit in topological groups (G, τ1) and (G, τ), accordingly, that g ·V1 · g

−1 ⊆ V
for any element g ∈ U1;

4.4.4. If τ is a group topology from A such that τ0 ≤ τ , then τ �A supA{τ, τ1};

4.4.5. If τ is a group topology from A then supA{τ, τ0} �A supA{τ, τ1}.

Proof.

4.4.1. In the beginning we shall show that (τ)G[i]
∈ A.

From 2.6 and proofs of statements 3.7.1 and 3.7.2 it follows that

τG[i]
= supM{τ, τ(G[i])} = supA{τ, τ(G[i])} ∈ A.

If A is a sublattice of the lattice M of all group topologies on G, then

τG[i]
= supMτ, τ(G[i])} = supAτ, τ(G[i])} ∈ A.

If A is a sublattice of the lattice G of all group topologies on G in which group
G possesses a basis of neighborhoods of unit consisting of subgroups, then

τG[i]
= supG{τ, τ(G[i])} = supA{τ, τ(G[i])} ∈ A.

So, we have proved that in both cases τG[i]
∈ A for any τ ∈ A and i ∈ N.

As V
⋂

G[n−1] ⊆ V for any neighborhood V of unit of the topological group
(G, τ0) then τ0 ≤ (τ0)G[n−1]

, and hence, τ0 ≤ infA{τ1, (τ0)G[n−1]
}.

From definition of the number n it follows that (τ0)G[n−1]
< (τ1)G[n−1]

.

Then

(infA{τ1, (τ0)G[n−1]
})G[n−1]

≤ (τ0)G[n−1]
< (τ1)G[n−1]

,

and hence, infA{τ1, (τ0)G[n−1]
} < τ1.

So, we have received that τ0 ≤ infA{τ1, (τ0)G[n−1]
} < τ1.

As τ0 ≺A τ1, then τ0 = infA{τ1, (τ0)G[n−1]
}.

The statement 4.4.1 is proved.

4.4.2. Let V be a neighborhood of unit in the topological group (G, τ1) and V0

be such neighborhood of unit in the topological group (G, τ1) that V0 ·V0 ⊆ V . From
definition of the numbers n it follows, that there exists such neighborhood U of unit
in topological group (G, τ0) that U

⋂
G[n] ⊆ V0.

There exist such neighborhoods U1 of unit in the topological group (G, τ0) and
V0 in the topological group (G, τ1) that U−1

1 · U1 · U1 · U
−1
1 ⊆ U and V1 ⊆ V0

⋂
U1.

Then W1 = U1
⋂

G[n−1] will be a neighborhood of unit in the topological group
(G, (τ0)G[n−1]

).
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As g−1 ·a · g ·a−1 ∈ [Gn−1, G] ⊆ G[n] and g−1 ·a · g ·a−1 ∈ U−1
1 ·U1 ·U1 ·U

−1
1 ⊆ U

for any elements g ∈ V1 and a ∈ W1, then

a · g · a−1 = g · (g−1 · a · g · a−1) ∈ V1 · (U
⋂

G[n]) ⊆ V0 · V0 ⊆ V

for any elements g ∈ V1 and a ∈ W1, i.e. a · V1 · a
−1 ⊆ V for any element a ∈ W1.

The statement 4.4.2 is proved.

4.4.3. Let V be a neighborhood of unit in the topological group (G, τ1) and V0

be such neighborhood of unit in the topological group (G, τ1) that V0 ·V0 ·V
−1
0 ⊆ V .

According to the statement 4.4.2 there exist such neighborhoods V1 and W1 of unit
in topological groups (G, τ1) and (G, (τ0)G[n−1]), accordingly, that V1 ⊆ V0 and

g · V1 · g
−1 ⊆ V for any element g ∈ W1.

If A is a sublattice of the lattice M of all group topologies on G, then from
Proposition 3.12 and statement 3.11.3 it follows that the set U = V1 · W1 is a
neighborhood of unit in the topological group (G, infM{τ1, (τ0)G[n−1]}), and as

infM{τ1, (τ0)G[n−1]} = infA|{τ1, (τ0)G[n−1]} then U = V1 · W1 is a neighborhood

of unit in the topological group (G, infA{τ1, (τ0)G[n−1]}) in this case.
If A is a sublattice of the lattice G of all group topologies on G in which G pos-

sesses a basis of neighborhoods of unit consisting of subgroups, then from Corollary
4.3 and Proposition 4.1 it follows that the topological group (G, infM{τ1, (τ0)G[n−1]})
possesses a basis of neighborhoods of unit consisting of subgroups, and
hence, infM{τ1, (τ0)G[n−1]} ∈ G. As G ⊆ M, then infM{τ1, (τ0)G[n−1]} =

infG{τ1, (τ0)G[n−1]}, and as A is a sublattice of the lattice G, then

infM{τ1, (τ0)G[n−1]} = infG{τ1, (τ0)G[n−1]} = infA{τ1, (τ0)G[n−1]}.

and hence also in this case U = V1 ·W1 is a neighborhood of unit in the topological
group (G, infA{τ1, (τ0)G[n−1]}).

So, we have proved that in both cases the set U = V1 · W1 is a neighborhood of
unit in the topological group (G, infA{τ1, (τ0)G[n−1]}).

As (see definition of number n) (τ1)G[n−1] 6= (τ0)G[n−1] then

(τ1)G[n−1] > (τ0)G[n−1] = ((τ0)G[n−1])G[n−1] ≥ (infA{τ1, (τ0)G[n−1]})G[n−1])G[n−1].

Then τ1 > infA{τ1, (τ0)G[n−1]} ≥ τ0. As τ0 ≺A τ1 then infA{τ1, (τ0)G[n−1]} = τ0,

and hence, U = V1 · W1 is a neighborhood of unit in the topological group (G, τ0).
As τ0 ≤ τ then U = V1 · W1 is a neighborhood of unit in the topological group

(G, τ) too.

If now b ∈ U = V1 · W1 then there exist such elements v ∈ V1 and w ∈ W1 that
b = v · w. Then

b · a · b−1 = v · w · a · w−1 · v−1 ∈ V1 · (w · V1 · w
−1) · V −1

1 ⊆ V0 · V0 · V
−1
0 ⊆ V.

The statement 4.4.3 is proved.
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4.4.4. Assume the contrary, i.e. that supA{τ, τ1} < τ ′ < τ for some group
topology τ ′ ∈ A.

Consider the set A′ = {τ0, τ1, τ, τ
′, supA{τ, τ1}}. We shall check that A′ is a

sublattice of the lattice A.

Let τ2, τ3 ∈ A′.

The following two cases are possible:

- These topology are comparable among themselves;

- These topology are not comparable among themselves.

Let topologies τ2 and τ3 be comparable among themselves, and let τ2 ≤ τ3. Then
infA{τ2, τ3} = τ2 ∈ A′ and supA{τ2, τ3} = τ3 ∈ A′.

Let now topologies τ2 and τ3 be not comparable among themselves. As τ0 < τ1 <
supA{τ, τ1} and τ0 < τ < τ ′ < supA{τ, τ1}, then either τ2 = τ1 and τ3 ∈ {τ, τ ′}, or
τ3 = τ1 and τ2 ∈ {τ, τ ′}.

We assume, for definiteness, that τ2 = τ1, and τ3 ∈ {τ, τ ′}.

As supA{τ, τ1} < τ ′ < τ , then supA{τ, τ1} ≤ supA{τ
′, τ1} ≤ supA{τ, τ1}. Then

supA{τ
′, τ1} = supA{τ, τ1}, and hence, supA{τ2, τ3} = supA{τ, τ1} ∈ A′.

Moreover, as τ2 and τ3 are not comparable, then τ0 ≤ infA{τ2, τ3} < τ2 = τ1,
and as τ0 ≺A τ1 then infA{τ2, τ3} = τ0 ∈ A′.

So, we have proved that A′ is a sublattice of the lattice A, and hence, A′ is a
sublattice of the lattice M for the case when A is a sublattice of the lattice M.

Now show that A′ is a sublattice of the lattice M also for the case when A is a
sublattice of the lattice G.

In the proof of the statement 3.7.2 it has been proved that supMS = supGS, for
any subset S ⊆ G, and as A is a sublattice of the lattice G then

supA′{τ2, τ3} = supA{τ2, τ3} = supG{τ2, τ3} = supM{τ2, τ3}.

Moreover:

If topologies τ2 and τ3 are comparable among themselves and τ2 ≤ τ3, then
infA{τ2, τ3} = τ2 = infM{τ2, τ3}.

If topologies τ2 and τ3 are not comparable among themselves as it was been
proved above, τ2 = τ1, and τ3 ∈ {τ, τ ′}. As τ0 < τ3, then from the statement 4.4.3
and Proposition 4.1 it follows that infM{τ2, τ3} ∈ G, and hence, infM{τ2, τ3} =
infG{τ2, τ3} = infA′{τ2, τ3}.

So, we have proved that A′ is a sublattice of the lattice M in both cases.

Now show that (A′, <) is a modular lattice.

For this purpose, as it agrees with Proposition 4.2 we need to check that for any
two topologies τ2, τ3 ∈ A′ the statement 3.11.1 is true.

So, let τ2, τ3 ∈ A′.

If these topologies are comparable among themselves and τ2 ≤ τ3, then for any
neighborhoods U0 and V0 of unit in topological groups (G, τ2) and (G, τ3), accord-
ingly, there exist such neighborhoods U1 and V1 in topological groups (G, τ2) and
(G, τ3), accordingly, that U1 · U1 ⊆ U0 and V1 ⊆ U1. Then V1 · U1 ⊆ U1 · U1 ⊆ U0 ⊆
U0 · V0, i.e. in this case the statement 3.11.1 is true.
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If topologies τ2 and τ3 are not comparable between themselves, then one of them
is equal to τ1, and the second belongs to the set {τ, τ ′}.

We admit, for definiteness, that τ2 = τ1 and τ3 ∈ {τ, τ ′}. Then τ3 > τ0, and for
the pair of topologies τ2 and τ3 applying both the statement 4.4.3 and Proposition
3.12, we shall receive, that in this case for topologies τ2 and τ3 the statement 3.11.1
is true.

So, we have received that for any pair topologies from A′ the statement 3.11.1 is
true, and, according to Proposition 4.2, the lattice A′ is modular. Then

τ ′ = infA′{supA′{τ1, τ}, τ
′} = supA′{τ, inf{τ1, τ

′}} = supA′{τ, τ0} = τ.

We have obtained the contradiction with the choice of the topology τ ′.
The statement 4.4.4 is proved.

4.4.5. Let τ be a group topology from A.
As τ0 ≤ sup{τ, τ0}, then taking into account the statement 4.4.4, we receive that

supA{τ, τ1} = supA{supA{τ, τ0}, τ1} �A supA{supA{τ, τ0}, τ0} = supA{τ, τ0}.

The theorem is completely proved.

4.5. Corollary. Let G be a nilpotent group, A be a sublattice of the lattice M

of all group topologies, or it be a sublattice of the lattice G of all group topologies
in each of which the group G possesses a basis of neighborhoods of unit consisting
of subgroups. If τ(G[i]) ∈ A for any i ∈ N, τ0 and τ1 are such group topologies from
A, that τ0 ≺A τ1 then the following statements are true:

4.5.1. If n = min{k| (τ0)G[k]
= (τ1)G[k]

}, then τ0 = infA{τ1, (τ0)G[n−1]
};

4.5.2. If τ is a group topology on the group G such that τ0 ≤ τ , then for
any neighborhood V of unit in topological group (G, τ1) there exist neighborhoods
V1 and U1 of unit in topological groups (G, τ1) and (G, τ), accordingly, such that
g · V1 · g

−1 ⊆ V for any element g ∈ U1;

4.5.3. If τ is a group topology from A such that τ0 ≤ τ then supA{τ, τ1} �A τ ;

4.5.4. If τ is a group topology from A, then supA{τ, τ1} �A supA{τ, τ0}.

Really, as G is a nilpotent group, then G[k] = {e} for some natural number k.
Then (τ0)G[k]

= {e} = (τ1)G[k]
. Then from Theorem 4.4 the truth of the present

corollary follows.

4.6. Theorem. Let:
– G be a group;
– A be a sublattice of the lattice M of all group topologies, or it be a sublattice

of the lattice G of all group topologies, in each of which the group G possesses a
basis of neighborhoods of unit consisting of subgroups;

– τ(G[i]) ∈ A for all i ∈ N;
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– τ0 ≺A τ1 ≺A . . . ≺A τn (i.e. this chain is a unrefinable chain of group topologies
in A);

– τ ′
0 < τ ′

1 < . . . < τ ′
m is a chain of group topologies from A such that τ0 = τ ′

0

and τ ′
m = τn.

If (τ0)G[k]
= (τn)G[k]

for some k ∈ N, then m ≤ n, and m = n if only if
τ ′
0 ≺A τ ′

1 ≺A . . . ≺A τ ′
m.

Proof. In the beginning we shall prove that n ≤ m.
Assume the contrary, i.e. that m > n, and let n be least of the natural numbers

for which there exist such chains of topologies.
As τ0 ≺A τ1 then n > 1, and hence, m > 2.
Then τ1 � τ ′

1, for otherwise the chain τ1 ≺A τ2 ≺A . . . ≺A τn has length n − 1,
and the chain τ1 ≤ τ ′

1 < τ ′
1 < . . . < τ ′

m = τn has length not less than m− 1 > n− 1,
and it contradicts the choice of number n.

Moreover, as τ0 ≺A τ1 and τ0 = τ ′
0 < τ ′

1 then τ ′
1 ≮ τ1, and hence, topologies τ1

and τ ′
1 are not comparable.

For each integer 0 ≤ j ≤ n by induction we shall define a topology τ ′′
j ∈ A as

follows:
Put τ ′′

0 = τ ′
1 and τ ′′

i+1 = supA{τi+1, τ
′′
i }.

As τi ≤ τ ′′
i ≤ τn for any 0 ≤ i ≤ n then τ ′′

n = τn. Then, according to the
statement 4.4.5, τ ′′

i+1 = supA{τi+1, τ
′′
i } �A supA{τi, τ

′′
i } = τ ′′

i for any 0 ≤ i ≤ n−1.
If τ ′′

s = τ ′′
s+1 for some integer 0 ≤ s < n − 1 then the chain

τ ′
1 = τ ′′

0 �A . . . �A τ ′′
s �A τ ′′

s+2 �A . . . �A τ ′′
n = τn = τ ′

m

has length which does not surpass number n − 1, and the chain τ ′
1 < . . . < τ ′

m has
length m − 1.

This contradicts the choice of number n.
If s = n − 1, then τ ′′

n−1 = τn = τ ′
m and hence the chain

τ ′
1 = τ ′′

0 �A . . . �A τ ′′
s �A τ ′′

s+2 �A . . . �A τ ′′
n−1 = τn = τ ′

m

has length which does not surpass number n − 1, and the chain τ ′
1 < . . . < τ ′

m has
length m − 1.

This contradicts the choice of number n in this case, too.
Hence, τ ′′

j 6= τ ′′
j+1 for any 0 ≤ j ≤ n − 1.

As topologies τ1 and τ ′
1 are not comparable, then τ1 < τ ′′

1 , and hence, we have
received the chain τ1 ≺A τ2 ≺A . . . ≺A τn which has length n − 1 and the chain
τ1 < τ ′′

1 ≺A . . . ≺A τ ′′
n which has length n.

This contradicts the choice of number n. Hence, m ≤ n.

Let now m = n and assume that τ ′
l ⊀A τ ′

l+1 for some number 0 ≤ l ≤ m − 1.
Then there is such topology τ ′′ ∈ A that τ ′

l < τ ′′ < τ ′
l+1.

Then the chain of topologies τ ′
0 < . . . < τ ′

l < τ ′′ < τ ′
l+1 < . . . < τ ′

m has length
m + 1 > n.

We have received the contradiction with earlier proved.



PROPERTIES OF FINAL UNREFINABLE CHAINS OF GROUPS TOPOLOGIES 19

The theorem is completely proved.

4.7. Corollary. Let:
– G be a nilpotent group;
– A be a sublattice of the lattice M of all group topologies or it be a sublattice

of the lattice G of all group topologies in each of which the group G possesses basis
of neighborhoods of unit consisting of subgroups;

– τ(G[i]) ∈ A for all i ∈ N;
τ0 ≺A τ1 ≺A . . . ≺A τn is unrefinable chain of group topologies in A:
τ ′
0 < τ ′

1 < . . . < τ ′
m is some chain of topologies from A.

If τ0 = τ ′
0 and τ ′

m = τn, then m ≤ n, and m = n if and only if
τ ′
0 ≺A τ ′

1 ≺A . . . ≺A τ ′
m.

Really, as G is a nilpotent group, then G[k] = {e} for some natural number k,
and hence, (τ0)G[k]

= e} = (τ1)G[k]
. Then from Theorem 4.6 the truth fidelity of the

present corollary follows.
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