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On subsemimodules of semimodules
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Abstract. P. J. Allen [1] introduced the notion of a Q-ideal and a construction pro-
cess was presented by which one can build the quotient structure of a semiring modulo
a Q-ideal. Here we introduce the notion of QM -subsemimodule N of a semimodule M
over a semiring R and construct the factor semimodule M/N . It is shown that this
notion inherits most of the essential properties of the factor modules over a ring.
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1 Introduction

Just as the study of rings inevitably involves the study of modules over them,
so the study of semirings inevitably involves the study of semimodules over them.
Since semirings (resp. semimodules) are just ”rings (resp. modules) without sub-
traction”, to extend the properties of factor module and submodule from the cat-
egory of modules to the category of semimodules has stimulated several authors
to show that many, but not all, of the results in the theory of modules are also
valid for semimodules. Consequently, semiring theory has emerged as a potential
area of interdisciplinary research and semimodule theory is of recent interest [4, 5].
So semimodules constitute a fairly natural generalization of modules, with broad
applications in the mathematical foundations of computer science [7]. The main
part of this paper is devoted to stating and proving analogues to several well-known
theorems in the theory of factor modules and prime submodules.

For the sake of completeness, we state some definitions and notations used
throughout. By a commutative semiring we mean an algebraic system R = (R,+, .)
such that (R,+) and (R, .) are commutative semigroups, connected by a(b + c) =
ab+ac for all a, b, c ∈ R, and there exists 0 ∈ R such that r+0 = r and r.0 = 0.r = 0
for all r ∈ R. Throughout this paper let R be a commutative semiring. A semiring
R is said to be semidomain whenever a, b ∈ R with ab = 0 implies that either a = 0
or b = 0. A semifield is a semiring in which non-zero elements form a group under
multiplication. A (left) semimodule M over a semiring R is a commutative additive
semigroup which has a zero element, together with a mapping from R × M into
M (sending (r,m) to rm) such that (r + s)m = rm + sm, r(m + p) = rm + rp),
r(sm) = (rs)m and 0m = r0M = 0M for all m, p ∈ M and r, s ∈ R. Let M be a
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semimodule over the semiring R, and let N be a subset of M . We say that N is a
subsemimodule of M , or an R-subsemimodule of M , percisely when N is itself an
R-semimodule with respect to the operations for M (so 0M ∈ N). It is easy to see
that if r ∈ R, then rM = {rm : m ∈ M} is a subsemimodule of M . The semiring R
is considered to be also a semimodule over itself. In this case, the subsemimodules
of R are called ideals of R.

Let M be a semimodule over a semiring R. A subtractive subsemimodule
(= k-subsemimodule) N is a subsemimodule of M such that if x, x + y ∈ N , then
y ∈ N (so {0M} is a k-subsemimodule of M). A prime subsemimodule of M is a
proper subsemimodule P of M in which x ∈ P or rM ⊆ P whenever rx ∈ P . We
define k-ideals and prime ideals of a semiring R in a similar fashion.

2 Factor semimodules

Allen in [1] has presented the notion of a Q-ideal I in the semiring R and con-
structed the quotient semiring R/I = {q + I : q ∈ Q}. Similarly, our aim here is to
construct factor semimodules.

Definition 1. A subsemimodule N of a semimodule M over a semiring R is called
a partitioning subsemimodule (= QM -subsemimodule) if there exists a non-empty
subset QM of M such that

(1) RQM ⊆ QM , where RQM = {rq : r ∈ R, q ∈ QM};
(2) M = ∪{q + N : q ∈ QM};
(3) If q1, q2 ∈ QM then (q1 + N) ∩ (q2 + N) 6= ∅ if and only if q1 = q2.
It is easy to see that if M = QM , then {0} is a QM -subsemimodule of M .

Remark 1. (The construction of factor semimodules.) Let M be a semimodule over
a semiring R, and let N be a QM -subsemimodule of M . We put M/N = {q+N : q ∈
QM}. Then M/N forms a commutative additive semigroup which has zero element
under the binary operation ⊕ defined as follows: (q1 +N)⊕ (q2+N) = q3 +N where
q3 ∈ QM is the unique element such that q1 + q2 + N ⊆ q3 + N . By the definition
of QM -subsemimodule, there exists a unique q0 ∈ QM such that 0M + N ⊆ q0 + N .
Then q0 + N is a zero element of M/N . But, for every q ∈ Q from (1) one obtains
0M = 0Rq ∈ Q; hence q0 = 0M .

Now let r ∈ R and suppose that q1 + N, q2 + N ∈ M/N are such that q1 + N =
q2 + N in M/N . Then q1 = q2, we must have rq1 + N = rq2 + N by Definition 1.
Hence we can unambiguously define a mapping from R ×M/N into M/N (sending
(r, q1 + N) to rq1 + N) and it is routine to check that this turns the commutative
semigroup M/N into an R-semimodule. We call this R-semimodule the residue class
semimodule or factor semimodule of M modulo N . The following example shows
that the theory of Q-subsemimodules as developed in this paper is not superfluous.
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Example 1. Let R = {0, 1, ..., n} and define x+y = max{x, y} and xy = min{x, y}
for each x, y ∈ R. R together with the two defined operations forms a semiring.
Define a + b = max{a, b} for each a, b ∈ M , where M is the set of all nonneg-
ative integers. Then (M,+) is a commutative additive semigroup with the zero
element 0. Define a mapping from R × M into M (sending (r,m) to max{r,m})
and it is clear that M is an R-semimodule. One can easily show that N = R is an
R-subsemimodule of M with N 6= 0, 0 + N = N and k + N = {k} for each n < k.
Thus N is a QM -subsemimodule of M when QM = {0} ∪ {k ∈ M : n < k}. There-
fore, M/N is a semimodule over R.

Let M and N be semimodules over the semiring R. A mapping f : M → N
is said to be a homomorphism of R-semimodules if f(a + b) = f(a) + f(b) and
f(ra) = rf(a) for all a, b ∈ M and r ∈ R. In this case, the kernel of f , denoted
by Ker(f), is the set {x ∈ M : f(x) = 0}. The proof of the following lemma is
straightforward.

Lemma 1. Assume that M and N are semimodules over the semiring R and let
f : M → N be a homomorphism of R-semimodules. Then Ker(f) is a k-subsemi-
module of M .

Remark 2. Let R be a semiring. If N is a QM -subsemimodule of an R-semimodule
M , then N is a k-subsemimodule of M .

Proof. Let a, a + b ∈ N . Then b = q + z for some q ∈ QM and z ∈ N , so a + b ∈
(q + N) ∩ (0M + N), so q = 0M ; hence b ∈ N , as required.

Theorem 1. Let M be a semimodule over a semiring R, N a QM -subsemimodule of
M and L a k-subsemimodule of M with N ⊆ L. Then L/N = {q +N : q ∈ L∩QM}
is a k-subsemimodule of M/N .

Proof. Since 0M + N = N ⊆ L, we must have 0M + N ∈ L/N . Suppose that
q̄1 = q1 + N , q̄2 = q2 + N ∈ L/N where q1, q2 ∈ L ∩ QM . There is a unique element
q3 ∈ QM with q̄1 ⊕ q̄2 = q3 +N and q1 + q2 +N ⊆ q3 +N , so q1 + q2 +a = q3 + b ∈ L
for some a, b ∈ N ; thus q3 ∈ QM ∩ L since L is a k-subsemimodule. Therefore,
q̄1 ⊕ q̄2 ∈ L/N . Now it is enough to show that if r ∈ R and a + N ∈ L/N (where
a ∈ L∩QM ), then r(a + N) = ra + N ∈ L/N . Since by Definition 1, ra ∈ L ∩QM ,
we must have r(a + N) ∈ L/N . Thus L/N is a subsemimodule of M/N .

Finally, assume that t + N ∈ L/N and (t + N)⊕ (s + N) = u + N ∈ L/N where
t, u ∈ L ∩ QM , s ∈ QM and t + s + N ⊆ u + N . Then t + s + e = u + f ∈ L for
some e, f ∈ N ; hence s ∈ L ∩ QM since L is a k-subsemimodule of M . Therefore,
s + N ∈ L/N , as needed.

Theorem 2. Let M be a semimodule over a semiring R, N a QM -subsemimodule
of M and L a k-subsemimodule of M/N . Then L = T/N for some k-subsemimodule
T of M .
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Proof. Set T = {m ∈ M : m ∈ q + N ∈ L for some q ∈ QM}. We show that T is a
k-subsemimodule of M and L = T/N . We split the proof into three cases. of steps.

1) Clearly, N ⊆ T .

2) T is a subsemimodule of M . For if x and y are in T , then there are elements
q1, q2 ∈ QM such that q1 + N, q2 + N ∈ L, x = q1 + c and y = q2 + d for some
c, d ∈ N , so (q1 + N)⊕ (q2 + N) = q3 + N ∈ L where q3 ∈ QM is the unique element
such that q1 + q2 + N ⊆ q3 + N ∈ L; hence x + y ∈ q1 + q2 + N ⊆ q3 + N ∈ L.
Thus, x+ y ∈ T . It suffices to show that if x ∈ T and t ∈ R, then tx ∈ T . There are
elements q4 ∈ QM and u ∈ N such that x = q4 + u and t(q4 + N) = tq4 + N ∈ L, so
tq4 ∈ T ; hence tx = tq4 + tu ∈ T .

3) T is a k-subsemimodule of M . Let a, a+b ∈ T . Then there are elements q1, q2

and q3 of QM such that a ∈ q1 + N , a + b ∈ q2 + N and b ∈ q3 + N , so a = q1 + c,
a+b = q2+d and b = q3+e for some c, d, e ∈ N ; hence a+b ∈ (q1+q3+N)∩(q2+N).
There is a unique element q4 ∈ QM such that (q1 + N) ⊕ (q3 + N) = q4 + N where
q1+q3+N ⊆ q4+N , so a+b ∈ (q2+N)∩(q4+N); hence q2 = q4. Therefore, q3+N ∈ L
since L is a k-subsemimodule; hence b ∈ T . Therefore, T is a k-subsemimodule of
M . Finally, it is easy to see that L = T/N = {q + N : q ∈ QM ∩ T}.

Lemma 2. Let M be a semimodule over a semiring R. Then the following hold:

(i) If N and T are k-subsemimodules of M , then N +T = {a+b : a ∈ N, b ∈ T}
is a k-subsemimodule of M .

(ii) An intersection of a family of k-subsemimodules of M is a k-subsemimodule
of M .

(iii) If I is an ideal of R, then the set IM consisting of all finite sums of
elements rimi with ri ∈ R and mi ∈ M is a subsemimodule of M .

Proof. The proof is completely straightforward.

Theorem 3. Assume that N is a QM -subsemimodule of a semimodule M over
a semiring R and let T be a k-subsemimodule of M . Then (N + T )/N is a
k-subsemimodule of M/N .

Proof. By Remark 2 and Lemma 2, we must have N + T is a k-subsemimodule of
M ; hence (N + T )/N is a k-subsemimodule of M/N by Theorem 1.

Theorem 4. Assume that N is a QM -subsemimodule of a semimodule M over a
semiring R and let T,L be k-subsemimodules of M containing N . Then T/N = L/N
if and only if T = L.

Proof. Let a ∈ T . Then a ∈ q1 + N for some q1 ∈ QM , so there is an element
c ∈ N ⊆ T such that a = q1 + c; hence T k-subsemimodule gives q1 ∈ T . Thus
q1 + N ∈ T/N = L/N by Theorem 1, so q1 + N = q2 + N for some q2 ∈ QM ∩L. It
follows that q1 ∈ L. Therefore, a ∈ L, and so T ⊆ L. Similarly, L ⊆ T , and we have
equality.
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Let R be a semiring with identity 1, M an R-semimodule and N an
R-subsemimodule of M . N is a maximal (resp. k-maximal) subsemimodule of
M if M 6= N and there is no subsemimodule (resp. k-subsemimodule) T of M such
that N * T * M . Also, we say that M is simple if it has only two k-subsemimodules
{0M} and M .

Theorem 5. Assume that N is a QM -subsemimodule of a semimodule M over a
semiring R. Then N is a k-maximal subsemimodule of M if and only if M/N is a
simple R-semimodule.

Proof. First, suppose that N is a k-maximal subsemimodule of M and let L be a
k-subsemimodule of M/N such that L 6= 0M/N and M/N 6= L. Then by Theorem
1 and Theorem 4, there is a k-subsemimodule T of M such that N * T * M
which is a contradiction. Next, if M/N is simple, then by a similar argument N is
a k-maximal subsemimodule.

If M is a semimodule over a semiring R, then M is Noetherian (resp. Artinian) if
any non-empty set of k-subsemimodules of M has maximal member (resp. minimal
member) with respect to set inclusion. This definition is equivalent to the ascending
chain condition (resp. descending chain condition) on k-subsemimodules of M .

Theorem 6. Let M be a semimodule over a semiring R, and let N be a QM -
subsemimodule of M . Then the following hold:

(i) The R-semimodule M is Noetherian if and only if both N and M/N are
Noetherian.

(ii) The R-semimodule M is Artinian if and only if both N and M/N are
Artinian.

Proof. (i) First, suppose that M is Noetherian. Since every k-subsemimodule of N is
a k-subsemimodule of M it is clear from the definition of Noetherian R-semimodule
that N is Noetherian. By Theorem 2, an ascending chain of k-subsemimodules of
M/N must have the form

T1/N ⊆ T2/N ⊆ ... ⊆ Tn/N ⊆ Tn+1/N ⊆ ...

where

T1 ⊆ T2 ⊆ ... ⊆ Tn ⊆ Tn+1 ⊆ ...

is an ascending chain of k-subsemimodules of M all of which contain N by Theorem
4. Since the latter chain eventually becomes stationary, so must the former by
Theorem 4. Conversely, assume that both N and M/N are Noetherian. Let

T1 ⊆ T2 ⊆ ... ⊆ Tn ⊆ Tn+1 ⊆ ...

be an ascending chain of k-subsemimodules of M . The Remark 2 and Lemma 2 give

T1 ∩ N ⊆ T2 ∩ N ⊆ ... ⊆ Tn ∩ N ⊆ Tn+1 ∩ N ⊆ ...
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is an ascending chain of k-subsemimodules of N , and so there is a positive integer s
such that Ts ∩ N = Ts+i ∩ N for all positive integers i. By Theorem 3,

(T1 + N)/N ⊆ (T2 + N)/N ⊆ ... ⊆ (Tn + N)/N ⊆ (Tn+1 + N)/N ⊆ ...

is a chain of k-subsemimodules of M/N . Thus there exists a positive integer t such
that (Tt +N)/N = (Tt+i +N)/N for all positive integer i, so that N +Tt = N +Tt+i

for all i by Theorem 4. Let u = max{s, t}. We show that, for each positive integer
i, Tu = Tu+i. Since the inclusion Tu ⊆ Tu+i is trivial, we will prove the reverse
inclusion. Let x ∈ Tu+i. Since x ∈ N + Tu+i = N + Tu, we must have x = a + b for
some a ∈ N and b ∈ Tu ⊆ Tu+i. Hence a ∈ Tu+i since it is a k-subsemimodule of
M . It follows that a ∈ N ∩ Tu+i = N ∩ Tu; hence both a and b belong to Tu and
x ∈ Tu, as needed.

(ii) This can be proved in a very similar manner to the way in which (i) was
proved above, and we omit it.

3 Prime subsemimodules

In this section we generalize some of the basic results from prime submodules of
a module to prime subsemimodules of a semimodule.

Lemma 3. Let R be a semiring, M an R-semimodule and N,L subsemimodules of
M such that N is a k-subsemimodule, and let m ∈ M . Then the following hold:

(i) (N :R L) = {r ∈ R : rL ⊆ N} is a k-ideal of R.

(ii) (0 :R M) = {r ∈ R : rM = 0} and {r ∈ R : rm ∈ N} are k-ideals of R.

Proof. Clearly, (N :R L) is an ideal of R. Let a, a + b ∈ (N :R L); we show that
b ∈ (N :R L). It suffices to show that bc ∈ N for every c ∈ L. By assumption,
ac+ bc, ac ∈ N , so bc ∈ N since N is a k-subsemimodule, and the proof is complete.
(ii) follows from (i).

Lemma 4. Let R be a semiring with identity, M an R-semimodule and N a prime
subsemimodules of M . Then (N :R M) is a prime ideal of R.

Proof. Since N is a proper subsemimodule, we must have (N :R M) 6= R. Let
ab ∈ (N :R M). We may assume that there exists m ∈ M such that bm /∈ N . As
abm ∈ N , N prime gives aM ⊆ N , as needed.

Theorem 7. Let R be a semiring with identity, M an R-semimodule and N an
R-subsemimodule of M . Then the following assertions are equivalent.

(i) N is a prime subsemimodule of M .

(ii) If whenever IT ⊆ N with I an ideal of R and T a subsemimodule of M
implies that I ⊆ (N :R M) or T ⊆ N .
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Proof. (i) → (ii). Assume that N is prime in M and let IT ⊆ N with x ∈ T − N .
We show that I ⊆ (N :R M). Let c ∈ I. Then N prime and cx ∈ N gives
c ∈ (N :R M).

(ii) → (i). Suppose that ay ∈ N where a ∈ R and y ∈ M . Set I = Ra and
T = Ry. Then IT ⊆ N . By assumption, either y ∈ N or a ∈ (N :R M). So N is
prime.

Lemma 5. Let N be a QM -subsemimodule of a semimodule M over a semiring R,
and let T be a k-subsemimodule of M with N ⊆ T . Then (T :R M) = (T/N :R
M/N).

Proof. Assume that r ∈ (T :R M) and let q1 + N ∈ M/N where q1 ∈ QM . Since
r(q1 + N) = rq1 + N and rq1 ∈ rM ⊆ N , we must have rq1 ∈ T ∩ QM ; hence
r(q1 + N) ∈ T/N . It follows that (N :R M) ⊆ (T/N :R M/N). For the reverse
inclusion, assume that a(M/N) ⊆ T/N and let x ∈ M . There are elements q2 ∈ QM

and y ∈ N such that x = q2+y, so ax = aq2+ay ∈ aq2+N = a(q2+N) ∈ a(M/N) ⊆
T/N ; hence ax ∈ T . Thus, a ∈ (N :R M), and the proof is complete.

Theorem 8. Assume that N is a QM -subsemimodule of a semimodule M over a
semiring R with identity and let T be a k-subsemimodule of M with N ⊆ T . Then T
is a prime R-subsemimodule of M if and only if T/N is a prime R-subsemimodule
of M/N .

Proof. First, suppose that T is a prime subsemimodule of M . By Theorem 4,
T/N 6= M/N . To see that T/N is a prime subsemimodule of M/N , let r(q1 + N) =
rq1 + N ∈ T/N where q1 ∈ QM . It follows from Theorem 1 that rq1 ∈ T , so Lemma
5 and T prime gives either q1 + N ∈ T/N or r ∈ (T/N :R M/N). Thus T/N is a
prime R-subsemimodule of M/N . The proof of the reverse implication is similar.

Let M be a semimodule over a semiring R with identity. M is called a cancellative
semimodule if whenever rm = sm for elements m ∈ M and r, s ∈ R, then r = s. A
semiring R is called a cancellative semiring if it is a cancellative semimodule over
itself.

Proposition 1. Let R be a semiring with identity, M a cancellative R-semimodule
and N a proper QM -subsemimodule of M . Then I = (N :R M) is a Q-ideal of R.

Proof. Suppose that Q = (R − I) ∪ {0}; we show that I is a Q-ideal of R. It is
easy to see that R = ∪{q + I : q ∈ Q}. Let (r + I) ∩ (s + I) 6= ∅ where r, s ∈ Q.
Then there are elements a, b ∈ I with r + a = s + b. We may assume that r 6= 0.
There exists m = q1 + n ∈ M such that rm /∈ N for some q1 ∈ QM and n ∈ N ,
so rq1 + rn + aq1 + an ∈ (rq1 + N) ∩ (sq1 + N); hence rq1 = sq1 since N is a
QM -subsemimodule. Since M is cancellative, we must have r = s. Thus I is a
Q-ideal of R.

In [3, Theorem 2.6], it is shown that if I is a proper Q-ideal of a semiring R, then
I is prime if and only if R/I is a semidomain. Now by Lemma 4 and Proposition 1
we have the following theorem:
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Theorem 9. Let R be a semiring with identity, M a cancellative R-semimodule and
N a prime QM -subsemimodule of M . Then R/(N :R M) is a semidomain

Remark 3. (Change of semirings) Assume that I is a Q-ideal of a semiring R and let
M be an R-semimodule. We show now how M can be given a natural structure as a
semimodule over R/I. Let q1, q2 ∈ Q such that q1+I = q2+I, and let m ∈ M . Then
q1 = q2, and q1m = q2m. Hence we can unambiguously define a mapping R/I × M
into M (sending (q1 + I,m) to q1m) and it is routine to check that this turns the
commutative additive semigroup with a zero element M into an R/I-semimodule.
It should be noted that a subset of M is an R-subsemimodule if and only if it is an
R/I-subsemimodule.

Lemma 6. Let I be a Q-ideal of a semiring R, M an R-semimodule and N an
R-subsemimodule of M . Then (N :R M) = (N :R/I M).

Proof. The proof is straightforward by Remark 3.

Theorem 10. Let R be a semiring with identity, M a cancellative R-semimodule
and N a prime QM -subsemimodule of M with P = (N :R M). Then there is a one-
to-one correspondence between prime subsemimodules of R/P -semimodule M/N and
prime k-subsemimodules of M containing N .

Proof. Let T be a prime k-subsemimodule of M containing N . It then follows from
Theorem 4, Proposition 1 and Remark 3 that T/N is a proper R/P -susemimodule
of M/N . Let (a + P )(q1 + N) = aq1 + N ∈ T/N where q1 ∈ QM and a ∈ Q =
(R − P ) ∪ {0}. We may assume that a 6= 0. There exists q2 ∈ QM ∩ T such
that aq1 = q2 ∈ T . Then T prime gives either q1 ∈ N (so q1 + N ∈ T/N) or
(a + P ) ∈ (T/N :R/P M/N) by Lemma 5 and Lemma 6. Thus, T/N is a prime
subsemimodule of M/N . To show that T is a prime subsemimodule of M , suppose
that rm ∈ T where r ∈ R and m ∈ M . We may assume that r 6= 0. There are
elements s ∈ Q, q ∈ QM , p ∈ P and n ∈ N such that r = s + p and m = q + n,
so rm = sq + sn + pq + pn ∈ T ; hence sq ∈ T ∩ QM since T is a k-subsemimodule.
Therefore, (s+P )(q+N) = sq+N ∈ T/N . So T/N prime gives either q+N ∈ T/N
(so m ∈ T ) or (s+P ) ∈ (T/N :R/P M/N) (so r ∈ (T :R M) by Lemma 5 and Lemma
6), and the proof is complete.

Let M be a semimodule over a semiring R with identity. M is called a M -
cancellative semimodule if whenever rm = rn for elements m,n ∈ M and r ∈ R,
then n = m. A semiring R is called a R-cancellative semiring if it is a R-cancellative
semimodule over itself. We say that a subsemimodule N of M is pure if aN = N∩aM
for every a ∈ R.

Theorem 11. Let R be a semiring with identity, M a M -cancellative R-semimodule
and N a proper subsemimodule of M . Then N is a pure subsemimodule of M if and
only if it is a prime subsemimodule of M with (N :R M) = 0
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Proof. First, assume that N is pure in M and let rm ∈ N with r /∈ (N :R M) where
r ∈ R and m ∈ M . Then rm ∈ rM ∩ N = rN , so rm = rn for some n ∈ N ;
hence m = n ∈ N since M is M -cancellative. Thus N is prime. Next, suppose that
a ∈ (N :R M) with a 6= 0. Since N 6= M , there is an element x ∈ M − N with
ax ∈ N ∩ aM = aN , so there exists y ∈ N such that ax = ay; hence x = y which is
a contradiction. Thus (N :R M) = 0.

Conversely, assume that N is prime in M . It suffices to show that aM ∩N ⊆ aN
for every a ∈ R. Let az ∈ aM ∩N where z ∈ M . We may assume that a 6= 0. Then
N prime gives z ∈ N , which is required.

If R is a semiring (not necessarily a semidomain) and M is an R-semimodule, the
subset T (M) of M is defined by T (M) = {m ∈ M : rm = 0 for some 0 6= r ∈ M}.
It is clear that if R is a semidomain, then T (M) is a subsemimodule of M .

Proposition 2. Let M be a semimodule over a semidomain R with identity
such that T (M) 6= M . Then T (M) is a prime subsemimodule of M with
(T (M) :R M) = 0.

Proof. Let am ∈ T (M) with a /∈ (T (M) :R M) where a ∈ R and m ∈ M . Then
abm = 0 for some non-zero element b of R. If am = 0, then m ∈ T (M). So we may
assume that am 6= 0. Therefore, ab 6= 0; hence m ∈ T (M). Thus T (M) is prime. So
by Lemma 4, P = (N :R M) is a prime ideal of R; we show that P = 0. Let c ∈ P
with c 6= 0. By assumption, there exists x ∈ M − N with cx ∈ T (M); thus cdx = 0
for some non-zero element d of R which is a contradiction. Thus P = 0.

Theorem 12. Let M be a non-zero cancellative semimodule over a cancellative
semiring R with identity. Then the following hold:

(i) R is a semifield if and only if every proper ideal of R is a prime ideal.

(ii) R is a semifield if and only if every proper subsemimodule of M is a prime
subsemimodule and T (M) 6= M .

Proof. (i) It is enough to show that if every proper ideal of R is prime, then R is a
semifield. Let a be a non-zero element of R. By assumption Ra2 6= 0 is a prime ideal
of R, so a2 ∈ Ra2 gives a1R = a(ra) for some r ∈ R, and since R is a cancellative
semiring, we can cancel a, showing that a is an unit. Thus R is a semifield.

(ii) It suffices to show that if every proper subsemimodule of M is prime, then R
is a semifield. Let a ∈ M − T (M), so (0 :R a) = 0. Note that since {0} is a Q-ideal
of R with Q = R, we must have R ∼= Ra ∼= R/{0} as R-semimodules. In view of the
assumption, it is easy to see that every proper subsemimodule of the R-semimodule
Ra is a prime subsemimodule; hence R is a semifield by (i).

Let M be a semimodule over a semiring R. We say that M is a torsion-free
R-semimodule whenever r ∈ R and m ∈ M with rm = 0 implies that either m = 0
or r = 0.
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Theorem 13. Let R be a semiring with identity, M an R-semimodule and N a QM -
subsemimodule of M with P = (N :R M). Then N is a prime subsemimodule of M
if and only if P is a prime ideal of R and M/N is a torsion-free R/P -semimodule.

Proof. First, suppose that N is a prime subsemimodule of M . Then by Lemma 4, P
is a prime ideal of R and M/N is an R/P -semimodule by Proposition 1 and Remark
3. Let (p+P )(q+N) = pq+N = 0M +N where q ∈ QM and p ∈ Q = (R−P )∪{0},
so pq ∈ N . Therefore, N prime gives either p ∈ P or q ∈ N . If p = 0, then p + P is
the zero in R/P (otherwise, q + N is the zero in M/N). Thus M/N is torsion-free
semimodule as an R/P -semimodule.

Conversely, since P is a prime ideal of R, we must have N 6= M . To see that
N is prime, assume that am ∈ N where a ∈ R and m ∈ M . There are elements
s ∈ Q, a ∈ P , q ∈ QM and n ∈ N such that a = s + a and m = q + n, so
am = sq + sn + aq + an ∈ N ; hence sq ∈ N since N is a k-subsemimodule by
Remark 2. It follows that (s+P )(q +N) = sq +N = q0 +N ; thus either s+P is the
zero in R/P (so a ∈ P ) or q + N is the zero in M/N (so m ∈ N), as required.

Let M be a semimodule over a semiring R. We say that an element r ∈ R is a
zero-divisor on M if rm = 0 for some 0 6= m ∈ M .

Lemma 7. Let M be a simple semimodule over a semiring R with identity. Then
every zero-divisor on M is an annihilator of M .

Proof. Let r be an arbitrary zero-divisor on M . Then there exists 0 6= m ∈ M
such that rm = 0. Since M is simple, we must have rM = r(Rm) = (Rr)m =
R(rm) = 0.

Theorem 14. Let R be a semiring with identity, M an R-semimodule and N a
QM -subsemimodule of M . If N is a k-maximal subsemimodule of M , then it is a
prime subsemimodule of M .

Proof. Let ax ∈ N where a ∈ R and x ∈ M − N . There are elements q1 ∈ QM and
n ∈ N such that m = q1 + n, so q1 + N 6= 0M + N ; hence rq1 ∈ N . Therefore,
r(q1+N) = 0M +N . It then follows from Lemma 7 that r is a zero-divisor on simple
semimodule M/N . Let ry ∈ rM where y ∈ M , so y = q2 + a for some q2 ∈ QM ,
a ∈ N . Then Lemma 7 gives r(q2 +N) = rq2 +N = 0M +N ; thus ry = rq2+ra ∈ N
since N is a k-subsemimodule by Remark 2 which is required.

References

[1] Allen P. J. A fundamental theorem of homomorphisms for simirings. Proc. Amer. Math. Soc,
1969, 21, 412–416.

[2] Ebrahimi Atani S. The ideal theory in quotients of commutative semirings. Glasnik Matema-
ticki, 2007, 42, 301–308.



30 ON SUBSEMIMODULES OF SEMIMODULES

[3] Ebrahimi Atani R., Ebrahimi Atani S. Ideal theory in commutative semirings. Buletinul
Acad. Sci. Rep. Moldova, ser. Math., 2008, No. 2(57), 14–23.

[4] Golan J. S. The theory of semirings with applications in mathematics and theoretical com-

puter Science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman
Scientific and Technical, Harlow UK, 1992.

[5] Hebisch U., Weinert U. J. Halbringe – Algebraische Theorie und Anwendungen in der Infor-

matik, Teubner, Stuttgart 1993.

[6] Lu C. P. Prime submodules of modules. Comment. Univ. St. Pauli 1984, 33, 61–69.

[7] Maze G., Monico C., Rosenthal J. Public key cryptography on semigroup actions, arXiv:cs.
CR/0501017v2 28 Jan 2005.

Reza Ebrahimi Atani

Department of Computer Engineering
Faculty of Engineering
University of Guilan, P.O. Box 3756
Rasht, Iran
E-mail: rebrahimi@guilan.ac.ir

Shahabaddin Ebrahimi Atani

Department of Mathematics
Faculty of Science
University of Guilan, P.O. Box 1914
Rasht, Iran
E-mail: ebrahimi@guilan.ac.ir

Received October 20, 2008


