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Invariant transformations of loop transversals. 1.

The case of isomorphism

Eugene Kuznetsov, Serghei Botnari

Abstract. One special class of invariant transformations of loop transversals in
groups is investigated. Transformations from this class correspond to arbitrary iso-
morphisms of transversal operations corresponding to the loop transversals mentioned
above. Isomorphisms of loop transversal operations with the same unit 1 are investi-
gated.
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1 Introduction

The notion of a transversal in a group to its own subgroup is well-known and has
been studied during the last 70 years (since R. Baer’s work [1]). Loop transversals
(transversals whose transversal operations are loops) in some fixed groups to their
own subgroups present special interest. Loop transversal may not exist in a given
group G to its subgroup H (for example, if G = S6, H = St12(S6)), but we will
study such questions further. Let a group G and its proper subgroup H be set, and
some loop transversal T0 = {ti}i∈E in G to H is given and fixed. How to describe all
other loop transversals in G to H? In other words, what kind of transformations are
admissible over loop transversal T0 so that the obtained sets were loop transversals
too? And how to describe the set of all such admissible transformations?

Generally speaking, such transformations are known, but not for transversals,
only for operations – they are isomorphisms, isotopies, parastrophies (of a certain
kind), isostrophies (of a certain kind) and crossed isotopies (of a certain kind). But
firstly, they are transformations of operations (transversal operations, in particular)
instead of transversals; and secondly, only isomorphisms, isotopies and isostrophies
are well studied, but such a general transformation as crossed isotopy practically
was not investigated.

These investigations are necessary and very important, since there is a number
of important and known problems reduced to research of the set of all loop transver-
sals in some given group G to its subgroup H. For example, when G = Sn and
H = St1(Sn), we obtain the set of all loops of some fixed order n. The calculation of
their quantity for given natural number n is a well-known open problem (enumera-
tion problem). Other known problem – about G-loops – also can be considered in
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terms of loop transversals transformations. In the present work we will investigate
what transformations of loop transversals correspond to the first well-known trans-
formation of transversal operations – to an isomorphism. We will limit ourselves
only to those transformations which keep property to be loop transversals.

Let us begin with some necessary definitions and preliminary statements.

2 Necessary definitions and statements

2.1 Quasigroups, loops and transversals in groups

Definition 1. A system < E, · > is called a left (right) quasigroup if the equation
(a · x = b) (the equation (y · a = b)) has exactly one solution in the set E for any
fixed a, b ∈ E. If for some element e ∈ E we have

e · x = x · e = x ∀x ∈ E,

then a left (right) quasigroup < E, ·, e > is called a left (right) loop (the element
e ∈ E is called a unit). A left quasigroup < E, · > that is simultaneously a right
quasigroup is called simply a quasigroup. Similarly, left loop which is simultane-
ously a right loop is called a loop.

Definition 2. Let G be a group and H be its subgroup. Let {Hi}i∈E be the
set of all left (right) cosets in G to H, and we assume H1 = H. A set T =
{ti}i∈E of representativities of the left (right) cosets (by one from each coset Hi and
t1 = e ∈ H) is called a left (right) transversal in G to H. If a left transversal T

is simultaneously a right one, it is called a two-side transversal.

On any left transversal T in a group G to its subgroup H it is possible to define
the following operation (transversal operation) :

x
(T )
· y = z

def
⇐⇒ txty = tzh, h ∈ H,

and similarly for a right transversal:

x
(T )
· y = z

def
⇐⇒ txty = htz, h ∈ H.

Further we will do all researches only for the left transversals in G to H; for right
transversals everything is similar.

Definition 3. If a system < E,
(T )
· , 1 > is a loop, then such left transversal

T = {tx}x∈E is called a loop transversal.

The following statements are known (see [1, 6]):

Lemma 1. A system < E,
(T )
· , 1 > is a left loop with the two-sided unit 1.
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Proof. See Lemma 1 in [6].

Lemma 2. The following conditions are equivalent:

1. The set T = {tx}x∈E is a loop transversal in G to H;

2. The set T = {tx}x∈E is a left transversal in G to πHπ−1
⇋ Hπ, ∀π ∈ G;

3. The set πTπ−1
⇋ T π is a left transversal in G to H, ∀π ∈ G.

Proof. See [1].

Use further the following permutation representation Ĝ of a group G by the left
cosets of its subgroup H (see [5, 6]):

ĝ(x) = y
def
⇐⇒ gtxH = tyH.

For simplicity we consider

CoreG(H) = ∩
g∈G

gHg−1 = {e};

then this representation is exact (see Lemma 6 in [6]), and we have Ĝ ∼= G. Notice
that Ĥ = St1(Ĝ).

Lemma 3 (see [6]). Let T = {tx}x∈E be a left transversal in G to H. Then the
following statements are true:

1. ĥ(1) = 1 ∀hǫH;

2. ∀x, y ∈ E :

t̂x(y) = x
(T )
· y = L̂x(y), t̂1(x) = t̂x(1) = x,

t̂−1
x (y) = x

(T )

�y = L̂−1
x (y), t̂−1

x (1) = x
(T )

�1, t̂−1
x (x) = 1,

where ”
(T )

�” - is a left division for the operation < E,
(T )
· , 1 > (i.e. x

(T )

�y = z

⇐⇒ x
(T )
· z = y).

Proof. See Lemma 4 in [6].

Remark 1. The operation ”
(T )

�” is named a left division here – as an inverse opera-

tion to the left multiplication (multiplication at the left) ”
(T )
· ”. Sometimes in the

literature this operation may be named a right division.

Remark 2. As we can see from Lemma 3, item 2), the elements of a left transversal

T in G to H can be represented trought its transversal operation < E,
(T )
· , 1 > as

left translations {Lx}x∈E . The similar holds for a right transversal.
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At last, remind how any two left transversals T and P in a group G to its
subgroup H are connected .

Lemma 4 (see [6]). Let T = {tx}x∈E and P = {px}x∈E- be left transversals in G

to H. Then there is a set of elements {h(x)}x∈E from H such that:

1. px = txh(x) ∀x ∈ E;

2. x
(P )
· y = x

(T )
· ĥ(x)(y).

Proof. See Lemma 7 in [6].

This set {h(x)}x∈E is called (see [8]) a derivation set for transversal T (and for

transversal operation < E,
(T )
· , 1 >).

Remind also the definitions of a left multiplicative group and of a left inner
permutation group of a loop.

Definition 4. Let < E, ·, e > be a loop. Then a group

LM(< E, ·, e >)
def
= < La | a ∈ E >,

generated by all left translations La of loop < E, ·, e >, is called a left multiplica-
tive group of the loop < E, ·, e >. Its subgroup

LI(< E, ·, e >)
def
= < la,b | la,b = L−1

a·bLaLb, : a, b ∈ E >

generated by all permutations la,b, is called a left inner permutation group of
the loop < E, ·, e >.

2.2 Morphisms of quasigroups and loops

Definition 5 (see [2]). A mapping Φ = (α, β, γ) ( α, β, γ are permutations on a
set E) of the operation < E, · > on the operation < E, ◦ > is called an isotopy if

γ(x · y) = α(x) ◦ β(y) ∀x, y ∈ E.

If Φ = (γ, γ, γ), then such an isotopy is called an isomorphism. If Φ = (α, β, id),
then such an isotopy is called a principal isotopy.

Definition 6 (see [3]). A mapping Φ = (α,B, γ), where α, γ are permutations on
E and B = B(x, y) is a right invertible operation on E (B(x, y) = ϕx(y), ϕx is a
permutation on E ∀x ∈ E), is called a right crossed isotopy (RC-isotopy) of
operations < E, · > and < E, ◦ > if

γ(x ◦ y) = α(x) ·B(x, y) ∀x, y ∈ E.
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A left crossed isotopy (LC-isotopy) is defined similarly.

It is obvious that any isotopy is both RC-isotopy and LC-isotopy simultaneously.

Definition 7 (see [2]). The operations A(x, y) and B(x, y) on a set E are called
orthogonal, if a system {

A(x, y) = a

B(x, y) = b

has an unique solution in a set E × E for any fixed pair (a, b) ∈ E × E.

It is easy to show (see [4]) that the orthogonality of operations A and B is
equivalent to the fact: the following mapping

Θ =

(
(1, 1) ... (x, y) ...

(A(1, 1), B(1, 1)) ... (A(x, y), B(x, y)) ...

)

is a permutation on the set E × E. The following is true.

Lemma 5. Let < E, ·, e > be a left loop. Then RC-isotop < E, ◦, e
′

> of the left
loop < E, ·, e > (by RC-isotopy T = (α,B, γ)) is a loop⇐⇒ the operations (·)(α,id,id)

and B−1 are orthogonal.

Proof. See in [3, 8].

2.3 Communication between transformations of transversals,

morphisms of transversal operations and transformations

of derivation sets

Let G be some fixed group and H be its proper subgroup. Consider fur-
ther the permutation representation Ĝ of the group G (note that Ĝ ∼= G,
Ĥ ∼= St1(Ĝ)).

According to Lemma 4, any two left transversals T = {tx}x∈E and P = {px}x∈E

in G to H are connected with the help of some RC-isotopy (id,B, id) of their

transversal operations < E,
(T )
· , 1 > and < E,

(P )
· , 1 > (where B(x, y) = ĥ(x)(y)).

It means that if we fix any ”good” left transversal T0 in G to H (for example, a
group transversal if it exists), then we will receive all other left transversals in G

to H from T0 by the help of RC-isotopy. Moreover, any loop transversal P in G

to H may be received from T0 with the help of such RC-isotopy (id,B, id) (where

B(x, y) = ĥ(x)(y)) that the operations < E,
(T0)
· , 1 > and B−1(x, y) = ĥ−1

(x)(y) are

ortogonal (according to Lemma 5).

Remark 3. If we consider the case G = Sn and H = St1(Sn), as it is described
above, it is possible to express all loops of order n as the RC-isotopies (id,B, id)

of some loop (group) < E,
(T0)
· , 1 > of order n, and the operation < E,

(T0)
· , 1 > is

orthogonal to the operation B−1(x, y) = ĥ−1
(x)(y).
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Further we will investigate only such special cases of RC-isotopy of a fixed loop
transversal T0 in G to H, which give as a result a loop transversal in G to H again.
The research will be done by the following scheme:

< E,
(T0)
· , 1 >

Φ
←→< E,

(P )
· , 1 >

l

T0 = {tx}x∈E
Φ∗

−→ P = {px}x∈E

l

px = txh
(Φ)
(x) , {h

(Φ)
(x) }x∈E is a derivation set, corresponding to transformation Φ

l

Θ(Φ) =

(
−−− (x, y) −−−

−−− (x
(T0)
· y, (ĥ

(Φ)
(x) )−1(y)) −−−

)

,

where Θ(Φ) - is a permutation on a set E×E, corresponding to orthogonal operations

< E,
(T0)
· , 1 > and B−1(x, y) = ĥ−1

(x)(y).

Let us begin our investigation from an elementary invariant transformation on
a set of loop transversals in G to H - from the transformation corresponding to
isomorphism of transversal operations.

3 The transformations which correspond to isomorphisms

of the transversal operations of loop transversals

Let T = {tx}x∈E and P = {px}x∈E be two loop transversals in a group G to its

subgroup H, and < E,
(T )
· , 1 > and < E,

(P )
· , 1 > are its transversal operations. Fix

one of transversals, for example, T = {tx}x∈E . Consider the following group:

MG(T )
def
= < α | α ∈ St1(SE), LM(< E,

(T )
· , 1 >) ⊆ αĜα−1 >,

it is generated by all permutations α ∈ St1(SE) which satisfy the condition

LM(< E,
(T )
· , 1 >) ⊆ αĜα−1.

Lemma 6. The following propositions are true:

1. NSt1(SE)(Ĝ) ⊆MG(T ) ⊆ St1(SE),

2. MG(T ) is maximal among subgroups M ⊆ St1(SE) which satisfy the following
property:

LM(< E,
(T )
· , 1 >) =

⋂

α∈M

(αĜα−1).
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Proof. 1. By definition MG(T ) ⊆ St1(SE). Let α ∈ NSt1(SE)(Ĝ), then

{
α ∈ St1(SE)

αĜα−1 = Ĝ
.

The following property is always fulfilled for any left transversal T in G to H,

LM(< E,
(T )
· , 1 >) ⊆ Ĝ,

so

LM(< E,
(T )
· , 1 >) ⊆ Ĝ = αĜα−1.

Since α ∈ St1(SE) then α ∈MG(T ), and

NSt1(SE)(Ĝ) ⊆MG(T ).

2. It obviously follows from the definition of the group MG(T ).

Remark 4. Both bounds in the inclusion in item 1 of previous Lemma are reached:

a) Let LM(< E,
(T )
· , 1 >) = Ĝ, then

MG(T ) = < α | α ∈ St1(SE), Ĝ ⊆ αĜα−1 > = NSt1(SE)(Ĝ).

b) Let Ĝ = SE, Ĥ = St1(SE), then

MG(T ) = < α | α ∈ St1(SE), LM(< E,
(T )
· , 1 >) ⊆ αSEα−1 > =

= < α | α ∈ St1(SE) > = St1(SE).

Lemma 7. Let loops < E,
(T )
· , 1 > and < E,

(P )
· , 1 > be isomorphic, and ϕ : E → E

be this isomorphism (note that ϕ(1) = 1). Then

1. P̂ = h−1
0 T̂ h0 for some h0 ∈ H∗ = MG(T );

2. ϕ ≡ h0 and LI(< E,
(T )
· , 1 >) ⊆ h0Ĥh−1

0 .

Proof. 1. Let conditions of Lemma hold. We have:

ϕ(x
(P )
· y) = ϕ(x)

(T )
· ϕ(y)∀x, y ∈ E.

According to Lemma 3,

t̂x = Lx, where Lx(y) = x
(T )
· y,

p̂x = Lx, where Lx(y) = x
(P )
· y.
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Since ϕ is a permutation on a set E and ϕ(1) = 1, then ϕ ∈ St1(SE). Further we
have

ϕLx(y) = Lϕ(x)ϕ(y)∀x, y ∈ E,

Lx(y) = ϕ−1Lϕ(x)ϕ(y)∀x, y ∈ E,

Lx = ϕ−1Lϕ(x)ϕ∀x ∈ E. (1)

It means that P̂ = ϕ−1T̂ϕ and ϕ ∈ St1(SE). Therefore we receive P̂ = h−1
0 T̂ h0 for

some h0 ∈ St1(SE) and ϕ ≡ h0.
Moreover, since

LM(< E,
(T )
· , 1 >) =< La | a ∈ E >,

then from (1) it follows that

ϕ−1(LM(< E,
(T )
· , 1 >))ϕ = ϕ−1 < La | a ∈ E > ϕ =

= < ϕ−1Laϕ | a ∈ E > = < Lb | b ∈ E > =

= LM(< E,
(P )
· , 1 >) ⊆ Ĝ,

and h0 = ϕ ∈MG(T ).
2. Let α ∈MG(T ), then we have

{
α ∈ St1(SE),

La ∈ αĜα−1 ∀a ∈ E.
{

α ∈ St1(SE),

α−1Laα ⇌ ga
′ ∈ Ĝ ∀a ∈ E.

a
′

= ga
′ (1) = α−1Laα(1) = α−1(1).

Then ∀a, b ∈ E

α−1l
(T )
a,b α = α−1L−1

a
(T )
· b

LaLbα =

= (α−1L−1

a
(T )
· b

α) · (α−1Laα) · (α−1Lbα) =

= g−1

α−1(a
(T )
· b)

gα−1(a)gα−1(b).

Assuming a = α(u) and b = α(v) (i.e. u = α−1(a) and v = α−1(b)), we obtain

α−1l
(T )
α(u),α(v)α = g−1

α−1(α(u)
(T )
· α(v))

gugv.

Since α is an isomorphism of operations (
(T )
· ) and (

(P )
· ), then

α(u
(P )
· v) = α(u)

(T )
· α(v),
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and therefore

α−1l
(T )
α(u),α(v)α = g−1

u
(P )
· v

gugv = l(P )
u,v ∈ LI(< E,

(P )
· , 1 >) ⊆ Ĥ.

It means that

α−1LI( < E,
(P )
· , 1 >)α ⊆ Ĥ,

LI( < E,
(T )
· , 1 >) ⊆ αĤα−1.

Lemma 8. Let T = {tx}x∈E be a fixed loop transversal in G to H and h0 ∈
NSt1(SE)(H). Define the set of permutations:

px
′

def
= h−1

0 txh0 ∀x ∈ E.

Then

1. P = {px
′}x′

∈E is a loop transversal in G to H;

2. The transversal operations < E,
(P )
· , 1 > and < E,

(T )
· , 1 > are isomorphic, and

the isomorphism is set up by the mapping ϕ(x) = h0(x).

Proof. 1. Let the conditions of Lemma hold. At first we can see that P = {px
′}x′

∈E

is a left transversal in G to H. It follows from Lemma 2 and the following calculation

x
′

= p̂x
′ (1) = h−1

0 t̂xh0(1) = h−1
0 .

Any transversal conjugated with the transversal T will be conjugated with the
transversal P . According to Lemma 2, the transversal P = {px

′}x′
∈E is a loop

transversal in G to H.

2. Consider the transversal operation < E,
(P )
· , 1 > which corresponds to the

transversal P . We have

x
(P )
· y = z ⇐⇒ pxpy = pzh, h ∈ H, ∀x, y ∈ E. (2)

Since
h−1

0 txh0 = px
′ = p

h−1
0 (x),

then after replacing x→ h0(u) we have

pu = h−1
0 th0(u)h0 ∀u ∈ E.

From (2) we obtain

pxpy = pzh, h ∈ H, (where z = x
(P )
· y),
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h−1
0 th0(x)h0 · h

−1
0 th0(y)h0 = h−1

0 t
h0(x

(P )
· y)

h0 · h, h ∈ H,

th0(x)th0(y) = t
h0(x

(P )
· y)
· (h0hh−1

0 ).

Since h0 ∈ NSt1(SE)(Ĥ) then (h0hh−1
0 ) = h

′

∈ Ĥ. Therefore we obtain

h0(x)
(T )
· h0(y) = h0(x

(P )
· y) ∀x, y ∈ E,

i.e. ϕ = h0 is an isomorphism of the operations < E,
(P )
· , 1 > and < E,

(T )
· , 1 >.

It means that conjugated loop transversals in G to H correspond to isomorphic
loop transversal operations and vice versa.

Further according to the scheme from Section 2, we will find out the form of
derivation sets {h(x)}x∈E which correspond to isomorphic transformations.

Lemma 9. Let T = {tx}x∈E and P = {px}x∈E be two loop transversals in G

to H which correspond to isomorphic transversal operations. Let px = txh(x) and
{h(x)}x∈E be a derivation set. Then

h(x) = t−1
x h−1

0 th0(x)h0, ∀x ∈ E

for some h0 ∈MG(T ).

Proof. Let conditions of Lemma hold. According to Lemma 7 ∀x ∈ E:

px = h−1
0 th0(x)h0,

for some h0 ∈MG(T ). From the other hand

px = txh(x) ∀x ∈ E.

Therefore we have

txh(x) = h−1
0 th0(x)h0 ∀x ∈ E,

h(x) = t−1
x h−1

0 th0(x)h0 ∀x ∈ E,

as it had to be shown.

At last according to the scheme from Section 2 we will express the form of
permutations Θ which correspond to isomorphic transformations of transversals.

Lemma 10. Let T = {tx}x∈E and P = {px}x∈E be loop transversals in G to H,

and its transversal operations < E,
(P )
· , 1 > and < E,

(T )
· , 1 > are isomorphic. A

permutation Θ on E × E corresponds to ortogonal operations ”
(T )
· ” and B−1(x, y)

(see in Section 2 ), can be expressed in the following form (for some h0 ∈MG(T )):
∀x, y ∈ E

Θ =

(
... (x, y) ...

... (x
(T )
· y, h−1

0 (h0(x)
(T )

\ h0(x
(T )
· y))) ...

)

.
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Proof. According to the previous lemma we have: it is true for some h0 ∈MG(T ) :

h(x) = t−1
x h−1

0 th0(x)h0 ∀x ∈ E.

Then
h−1

(x) = h−1
0 t−1

h0(x)h0tx ∀x ∈ E.

According to the definition, the permutation Θ can be expressed in the following
form

Θ =

(
... (x, y) ...

... (x
(T )
· y, h−1

(x)(y)) ...

)

.

We have ∀x ∈ E:

h−1
(x)(y) = h−1

0 t̂−1
h0(x)h0t̂x(y) = h−1

0 t̂−1
h0(x)h0(x

(T )
· y) =

= h−1
0 (h0(x)

(T )

\ h0(x
(T )
· y)),

and finally we obtain

Θ =

(
... (x, y) ...

... (x
(T )
· y, h−1

0 (h0(x)
(T )

\ h0(x
(T )
· y))) ...

)

.

Remark 5. A permutation h0 = id, the derivation set {h(x)} = id ∀x ∈ E and the
permutation

Θ0 =

(
... (x, y) ...

... (x
(T )
· y, y) ...

)

correspond to the trivial isomorphism ϕ = id.

Consider the product (composition) Θ−1
0 Θ as a composition of two permutations

from SE×E. We have

Θ−1
0 Θ =

(
... (x

(T )
· y, y) ...

... (x, y) ...

)

◦

(
... (x, y) ...

... (x
(T )
· y, h−1

(x)(y)) ...

)

=

=



 ... (x
(T )
· y, y) ...

... (x
(T )
· y, h−1

0 (h0(x)
(T )

\ h0(x
(T )
· y))) ...



 =

x
(T )
· y=z
=

(
... (z, y) ...

... (z, h−1
0 (h0(z

(T )

�y)
(T )

�h0(z))) ...

)
⇌ Θ∗.

As a corollary we received two interesting particular cases:

Θ−1
0 Θ(z, z) = (z, h−1

0 (h0(1)
q

1

(T )

�h0(z))) = (z, h−1
0 (h0(z))) = (z, z) ∀z ∈ E.
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Θ−1
0 Θ(z, 1) = (z, h−1

0 (h0(z)
(T )

�h0(z))) = (z, h−1
0 (1)) = (z, 1) ∀z ∈ E,

i.e. Θ∗ ∈ St(a, a), (a, 1)(SE×E) ∀a ∈ E.
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