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On preradicals associated to principal
functors of module categories. III

A. I.Kashu

Abstract. The classes of modules and preradicals associated to the functor
HomR(-, U) are studied, continuing the investigations of parts I and II. The pro-
perties of classes of modules and of associated preradicals are shown, as well as the
relations between preradicals. A similarity with the case of functor T = U ⊗S - is
explained.
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Introduction

The preradicals associated to the functors H = HomR(U, -) and T = U⊗S - are
studied in parts I and II of this paper [1, 2], observing some duality between these
cases. Now we will investigate the similar question for the contravariant functor
H ′ = HU = HomR(-, U) : R-Mod→ Ab, where RU ∈ R-Mod. Preradicals of R-Mod
defined by RU and H ′ are revealed, the properties of these preradicals and the rela-
tions between them are specified, the conditions of coincidence of some preradicals
are shown. The correlation between the cases of functors T and H ′ is grounded,
which explains the similarity of situations for these types of functors.

For Morita contexts and adjoint situations some facts are proved in [3]. For
general theory of radicals and torsions the books [4–7] can be used.

1 Preradicals defined by functor H ′

Let RU be an arbitrary left R-module. We consider the contravariant functor

H ′ = HU = HomR(-, U) : R-Mod→ Ab.

Further, we denote by

Cog (RU) = {M ∈ R-Mod | ∃ mono 0→M
i
→ U (A)}

the class of modules of R-Mod, cogenerated by RU . The following statement is
obvious.
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Proposition 1.1. The class of modules Cog (RU) is pretorsionfree (i.e. is closed

under submodules and direct products), therefore it defines a radical rU in R-Mod

such that P(rU)
def
== Cog (RU). For every module M ∈ R-Mod we have:

rU(M) = ∩{Ker f | f : M → U}

(the reject of U in M). �

For the functor H ′ = HomR(-, U) we denote:

Ker H ′ = {M ∈ R-Mod |H ′(M) = 0}.

Using the operator of Hom-orthogonality [1] we have:

Ker H ′ = {RU}
↑

.

Proposition 1.2. KerH is a torsionfree class (i.e. it is closed under homomorphic

images, direct sums and extensions), thus it defines an idempotent radical rU such

that R(r U)
def
== Ker H ′ and the respective torsionfree class is:

P(r U) = (Ker H ′)
↓

= {RU}
↑↓

. �

Since P(r U) = {RU}
↑↓

is the least torsionfree class containing RU (or: containing
Cog (RU) = P(rU)), we obtain

Proposition 1.3. For every module RU we have rU ≥ r U and r U is the greatest

idempotent radical contained in the radical rU . �

To establish when the relation rU = r U is true we need

Definition 1. The module RU will be called weakly injective if the functor
H ′ = HomR(-, U) preserves the short exact sequences of the form:

0→ rU(M)
i
−→
⊆

M
π
−−→
nat

M /rU(M)→ 0, M ∈ R-Mod,

i.e. every morphism f : rU(M) → U can be extended to a morphism g :
M → U (gi = f):

rU(M)

f
""FF

FF
FF

FF
F

i

⊆

// M

g
��~

~
~

~

U

Fig. 1.
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Proposition 1.4. For the module RU the following conditions are equivalent :
1) rU = rU ;
2) radical rU is idempotent ;

3) Cog (RU) = (KerH ′)
↓

(= {RU}
↑↓

);
4) RU is weakly injective.

Proof. 1) ⇐⇒ 2) ⇐⇒ 3) follow from Proposition 1.3.
2) ⇒ 4). If rU is idempotent, then rU

(

rU(M)
)

= rU(M) for every
M ∈ R-Mod, therefore rU(M) ∈ R(rU) = R(rU) = Ker H ′. This means that
HomR

(

rU(M), U
)

= 0, thus RU is weakly projective (f = 0⇒ g = 0).
4) ⇒ 2). Let RU be weakly projective module. For any f : rU(M) → U by

definition there exists such g : M → U that g i = f . Now from the definition of
rU(M) it follows rU(M) ⊆ Ker g, so g i = 0 and f = 0. Thus rU(M) ⊆ Ker f for
every f : rU(M)→ U , i.e. rU(M) ⊆ rU

(

rU(M)
)

and rU is idempotent.

The stronger condition on rU is the requirement that the radical rU is a torsion.
The question when rU is a torsion was studied earlier, see for example [6, 8]. The
necessary and sufficient condition on RU is to be pseudo-injective, which is equivalent
to the relation E(RU) ∈ Cog (RU), where E(RU) is the injective envelope of RU . Now
we will indicate another form of this condition.

Definition 2. Module RU is called upper hereditary if the class of modules {RU}
↑

is hereditary (i.e. from HomR(M,U) = 0 it follows HomR(N,U) = 0 for every
submodule N ⊆M).

From the above statements and definitions follows

Proposition 1.5. For module RU the following conditions are equivalent :
1) radical rU is a torsion;
2) rU = rU and the class Ker H ′ = R(rU) is hereditary ;
3) rU = rU and the class Cog (RU) is stable;
4) RU is weakly injective and upper hereditary. �

If the module RU is injective, then it is obvious that rU is a torsion.

2 Preradicals defined by the ideal I = (0 : RU) and relations
with (rU , rU )

For a fixed module RU we apply the radical rU to RR and obtain the ideal of R:

I = rU(RR) = ∩{Ker f | f : RR→ RU}.

From the isomorphism HomR(M,U) ∼= RU we have that every morphism
f : RR → RU is of the form fu : RR → RU , where u ∈ U and fu(r) = r u for every
r ∈ R. It is obvious that

Ker fu = (0 : u) = {r ∈ R | r u = 0},
therefore



58 A. I.KASHU

I =
⋂

{Ker f | f : RR → RU} =
⋂

u∈U

(0 : u) = (0 : RU),

i.e. I is the annihilator of module RU .

As in the previous cases we consider the classes of modules and preradicals
defined in R-Mod by the ideal I ⊳ R. We denote:

IT = {M ∈ R-Mod | IM = M};

IF = {M ∈ R-Mod |m ∈M, Im = 0⇒ m = 0};

A(I) = {M ∈ R-Mod | IM = 0};

rI is the idempotent radical defined by IT : R(rI)
def
== IT;

rI is the torsion defined by IF : P(rI)
def
== IF;

r(I) is the cohereditary radical defined by A(I) : P(r(I))
def
== A(I);

r(I) is the pretorsion defined by A(I) : R(r(I))
def
== A(I).

The relations between these classes (and respective preradicals) are indicated in
part I [1]. In particular, we have:

IT = A(I)
↑

, IF = A(I)
↓

;

rI ≤ r(I) and rI is the greatest idempotent radical contained in r(I);

rI ≥ r(I) and rI is the least idempotent radical containing r(I);

rI = r(I) ⇔ rI = r(I) ⇔ I = I2.
Further we will study the relations between the classes of modules defined by the
ideal I ⊳ R and classes associated to preradicals rU and rU .

Proposition 2.1. Cog (RU) ⊆ A(I) (i.e. P(rU) ⊆ P(r(I)), so rU ≥ r(I)).

Proof. From the definition of I we have U ∈ A(I). Class Cog (RU) is the least class
containing RU and closed under submodules and direct products. Since the class
A(I) also possesses these properties, we have Cog (RU) ⊆ A(I).

Proposition 2.2. {RU}
↑

=
(

Cog (RU)
) ↑

.

Proof. (⊇) From RU ∈ Cog (RU) it follows {RU}
↑

⊇
(

Cog (RU)
) ↑

.

(⊆) Let M ∈ {RU}
↑

, i.e. HomR(M,U) = 0. If N ∈ Cog (RU), then we have a

monomorphism 0→ N
ϕ
→ UA, and every non-zero morphism 0 6= f : M → N leads

to non-zero morphism

M
f
−→ N

ϕ
−→ UA πα−→ Uα = U,

a contradiction. Thus HomR(M,N) = 0 for every N ∈ Cog (RU), i.e.

M ∈
(

Cog (RU)
) ↑

.

Proposition 2.3. IT ⊆ Ker H ′ (i.e. R(rI) ⊆ R(rU), so rI ≤ rU).
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Proof. Since Cog (RU) ⊆ A(I) (Proposition 2.1), we have
(

Cog (RU)
) ↑

⊇ A(I)
↑

and
by Proposition 2.2 we obtain:

IT = A(I)
↑

⊆
(

Cog (RU)
) ↑

= {RU}
↑

= Ker H ′.

Totalizing we can give a review of relations between the studied classes of
modules:

IT ⊆ Ker H ′, where IT = A(I)
↑

= R(rI) and

Ker H ′ = {RU}
↑

=
(

Cog (RU)
) ↑

= R(rU);

Cog (RU) ⊆ A(I), where Cog (RU) = P(rU) and A(I) = R(r(I)) = P(r(I));

Cog (RU) ⊆
(

Cog (RU)
)↑↓

= {RU}
↑↓

= P(rU) ⊆ IT
↓

= A(I)
↑↓

= P(rI);

Cog (RU) ⊆ A(I) ⊆ IT
↓

= A(I)
↑↓

= P(rI);

IF = A(I)
↓

= P(rI);

Cog (RU) ⊆ A(I) ⊆ A(I)
↓↑

= IF
↑

= R(rI).

For the corresponding preradicals in particular we have the following situation:

�
�

�
�

�
�

�
�

���

rI

rU

r(I)

rU

q

q

q

q

?

�
�

�
�

�
�

�
�

���

?

Fig. 2.

where r1 ← r2 means r1 ≤ r2. The conditions when rU = rU or rI = r(I) are
mentioned above. Further we give some remarks on coincidence of other preradicals
of Figure 2.

Definition 3. The module RU will be called Ann-accessible if from
HomR(M,U) = 0 it follows HomR (M,X) = 0 for every RX with IX = 0, where
I = (0 : RU).

If RU is Ann-accessible, then {RU}
↑
⊆ A(I)

↑
, and the inverse inclusion is always

true:
A(I)

↑
= IT ⊆ Ker H ′ = {RU}

↑
.

Thus we have IT = Ker H ′, i.e. R(rI) = R(rU), which means that rI = rU .



60 A. I.KASHU

From these considerations follows

Proposition 2.4. The following conditions are equivalent :
1) rI = rU ;

2) Ker H ′ = IT;

3) IT
↓

= {RU}
↑↓

;

4) RU is Ann-accessible. �

The following particular case is worth noting.

Corollary 2.5. Let RU be a faithful module: I = (0 : RU) = 0. The relation rI = rU

is true if and only if RU is a cogenerator of R-Mod.

Proof. If I = 0, then A(I) = R-Mod, so A(I)
↑

= 0 and we have IT = A(I)
↑

=
R(rI) = 0, i.e. rI = 0. Thus rI = rU if and only if rU = 0.

(⇒) If rI = rU , then Ker H ′ = IT = 0, so the relation HomR(M,U) = 0 implies
M = 0. In particular, for every simple module P 6= 0 we have HomR(P,U) 6= 0.
Therefore RU contains isomorphically every simple module, thus RU is a cogenerator
of R-Mod.

(⇐) If Cog (RU) = R-Mod, then Cog (RU) = A(I) and
(

Cog (RU)
) ↑

=

A(I)
↑

= 0, i.e. Ker H ′ = IT = 0 and this means that rI = rU = 0.

The relation r(I) = rU is true if and only if P(r(I)) = P(rU), i.e. A(I) = Cog (RU),
what is reduced to the inclusion A(I) ⊆ Cog (RU).

The coincidence of all preradicals of Figure 2 is a strong condition can be ex-
pressed as follows.

Proposition 2.6. The following conditions are equivalent :
1) rI = rU (i.e. rI = rU = r(I) = rU ;
2) r(I) = rU and I = I2;
3) RU is Ann-accessible and weakly injective. �

The general situation on relations between the classes of modules in the case of
functor H ′ = HomR(-, U) is illustrated in Figure 3.

3 Comparing the situations for functors T and H ′

Analizing the cases of functors T and H ′ one can observe an evident resemblance
of the obtained situations on classes of modules and associated preradicals. Further
we give an explanation of this similarity.

Let US be a fixed right S-module which defines the functor

T = T U = U⊗S - : S-Mod→ Ab

and associated preradicals tU and tU with the respective classes of modules (see
Part II, [2]). We will show that all classes of modules and all preradicals constructed
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Fig. 3.
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by US in category S-Mod can be obtained with the help of an associated module

SU∗ by the contravariant functor

H ′ = HomS(-, U∗) : S-Mod→ Ab

as in this part of work.

We fix an arbitrary cogenerator C of category Ab of abelian groups (in particular,
we can consider that C = Q/Z). We denote

SU∗ = HomZ (ZUS, C)

and consider the contravariant functor

H ′ = HomS (-, U∗) : S-Mod→ Ab.

The purpose of the following statements is to prove that the functors T = U⊗S- and
H ′ = HomS(-, U∗) define the same classes of modules, therefore they have the same
associated preradicals.

For that we need some preliminary considerations. The fixed module US can be
regarded as a bimodule ZUS, so it defines the adjoint functors:

H = HU = HomZ(U, -) : Ab→ S-Mod,

T = T U = U⊗S - : S-Mod→ Ab,

(where T is the left adjoint of H), with associated natural transformations Φ : TH →
1Ab and Ψ : 1S-Mod → HT , which satisfy the relations:

ΦT (M) · T (ΨM) = 1T (M), H(ΦN) ·ΨH(N) = 1H(N) (1)

for every M ∈ S-Mod and N ∈ Ab.

In particular, the morphism ΨM : SM → HomZ(U,U⊗S M) is defined by the
rule:

[ΨM(m)](u)
def
== u⊗S m, m ∈M, u ∈ U.

Therefore, for every M ∈ S-Mod we have:

Ker ΨM = {m ∈M |U⊗S m = 0},

and ΨM is a monomorphism if and only if U⊗S m = 0 implies m = 0. From the
definition of the class F(US) we have

Proposition 3.1. F(US) = {M ∈ S-Mod |ΨM is a monomorphism}. �

This permits us to prove the following essential relation.

Proposition 3.2. F(US) = Cog(SU∗).
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Proof. (⊆) Let M ∈ F(US), i.e. from U⊗S m = 0 in U⊗S M it follows m = 0.
By Proposition 3.1 ΨM is a monomorphism. Since C is a cogenerator of Ab and
U⊗S M ∈ Ab, there exists a monomorphism of the form:

0→ U⊗S M
i
−→

∏

α∈A

Cα, Cα = C.

Applying the functor H = HomZ(U, -), which preserves monomorphisms and direct
products, we obtain the exact sequence:

0→ HT (SM)
H(i)
−−−→ H

(

∏

α∈A

Cα

)

∼=
∏

α∈A

H(Cα) =
∏

α∈A

U∗
α, U∗

α = U∗.

Combining H(i) with the monomorphism ΨM we obtain the monomorphism:

M
ΨM−−→ HT (SM)

H(i)
−−−→ H

(

∏

α∈A

Cα

)

∼=
∏

α∈A

U∗
α,

which shows that M ∈ Cog (SU∗).
(⊇) Let M ∈ Cog (SU∗). Then rU

∗(SM) = ∩{Ker f | f : M → U∗} = 0. For
every morphism f : SM → SU∗ we have the following commutative diagram:

M
f

//

ΨM

��

U∗ def
== H(C)

ΨH(C)

��

HT (M)
HT (f)

// HTH(C)

Fig. 4.

From the relation H(ΦC) · ΨH(C) = 1H(C) (see (1)) it follows that ΨH(C) is
a monomorphism. If m ∈ Ker ΨM then from the diagram it is obvious that
ΨH(C)

(

f(m)
)

= 0 and, since ΨH(C) is a monomorphism, it follows that f(m) = 0 for
all f : M → U∗. Therefore m ∈ ∩{Ker f | f : M → U∗} = 0 and Ker ΨM = 0, i.e.
M ∈ F(US) by Proposition 3.1.

Corollary 3.3. tU = rU
∗ and tU = rU

∗ .

Proof. By definitions F(US) = P(tU) and Cog (SU∗) = P(rU
∗), therefore by Propo-

sition 3.2 we have P(tU) = P(rU
∗), so tU = rU

∗ . But then the “nearest” idempotent
radicals also coincide: tU = rU

∗ .

From the above results it follows that all constructions effected in S-Mod by the
module US and the functor T = U ⊗S - coincide with the respective constructions
by the module SU∗ and the functor H ′ = HomS(-, U∗). For example, the following
classes of S-Mod coincide:

F(US) = Cog (SU∗), Ker T = Ker H ′, A(J) = A(I),
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(Ker T )
↓

= {SU∗}
↑↓

, JT = IT, JF = IF, etc.

These facts completely explain the similarity of the situations for the functors T
and H ′.

From the conditions of coincidence of “near” preradicals (tU = tU , Part II, Propo-
sition 1.6; rU = rU , Part III, Proposition 1.4) now follows

Corollary 3.4. US is a weakly flat module if and only if SU∗ is weakly injective. �
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