
BULETINUL ACADEMIEI DE ŞTIINŢE
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About rings of continuous functions

in the expanded field of numbers
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Abstract. In the present article the generalized rings C∞(X) of all continuous
functions on the expanded straight line are studied. The conditions under which
C∞(X) is a ring or a linear space are determined.
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Spaces of continuous maps on the expanded straight line play a leading role in
the theory of topological semifields. In works [1–5] some applications of such maps
have been specified. All spaces are assumed to be Tychonoff. Terminology is as
in [7]. By [A] or [A]X we denote the closure of a set A in a space X, |Y | is the
cardinality of a set Y , βX is the Stone-Čech compactification of the space X, on
N = {0, 1, ...} we consider only the discrete topology.

Let R be the field of real or complex numbers. By R∞ we denote the one-point
compactification of space R and R∞ = R∪{∞}. We consider that ∞+∞ = b+∞ =
∞, 0 · ∞ = 0, ∞ ·∞ = ∞, c · ∞ = ∞ · c = ∞ for all b ∈ R, c ∈ R \ {0}.

Let C∞(X) be the family of all continuous maps of spaceX in R∞ in the topology
of pointwise convergence and such that the set H(f) = f−1(∞) is nowhere dense in
X for all f ∈ C∞(X). We suppose that C(X) = {f ∈ C∞(X) : H(f) = ∅}.

Let f, g ∈ C∞(X). We say that the sum f + g is defined if there exits a function
h ∈ C∞(X) such that h(x) = f(x)+g(x) for all x ∈ X \(H(f)∪H(g)). The product
f · g is defined if there exists a function h ∈ C∞(X) such that h(x) = f(x) · g(x) for
all x ∈ X \ (H(f) ∪H(g)).

For a map ψ : C∞(X) → C∞(Y ) we consider the conditions:
a) if f, g ∈ C∞(X), then the sum f + g exists if and only if the sum ψ(f)+ψ(g)

exists and then ψ(f + g) = ψ(f) + ψ(g);
b) ψ(b · f) = b · y(f) for any b ∈ R, f ∈ C∞(X);
c) if f, g ∈ C∞(X), then the product f · g exists if and only if ψ(f) · ψ(g) exists

and the product ψ(f · g) = ψ(f) · ψ(g).
A one-to-one map ψ : C∞(X) → C∞(Y ) is called
– additive if the condition a) is satisfied;
– linear if the conditions a) and b) are satisfied;
– multiplicative if the condition b) is satisfied;
– an isomorphism if the conditions a), b) and c) are satisfied.
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Theorem 1. If ψ : C∞(X) → C∞(Y ) is a linear homeomorphism, then
ψ(C(X)) = C(Y ).

Proof. Let f ∈ C∞(X). We put fn = 2−n · f and OX(x) = 0 for all x ∈ X. The
limit lim

n→∞

fn = OX exists in X only if f ∈ C(X). If the limit lim
n→∞

fn = OX exists,

then the limit lim
n→∞

ψ(fn) = 2−n · ψ(f) = OY exists, too. Therefore, if f ∈ C(X),

then ψ(f) ∈ C(Y ) and ψ(C(X)) ⊆ C(Y ). Since ψ−1 is a linear homeomorphism,
we have ψ(C(X)) = C(Y ). �

Theorem 2. If ϕ : C∞C(X) → C∞(Y ) is an additive and multiplicative home-
omorphism and R is the field of real numbers, then ϕ is an isomorphism and
ϕ(C(X)) = C(Y ).

Proof. We have f = 1X only if g · f = g for all g ∈ C∞(X). Therefore ϕ(1X ) = 1Y .
Let λX = λ · 1X for any λ ∈ R. Then ϕ(nX) = nY and ϕ((1/n)X ) = (1/n)Y for all
n ∈ N and n ≥ 1. Hence ϕ(λX) = λY for all rational numbers λ ∈ R . Theorem 1
complete the proof. �

Theorem 1 implies

Corollary 1. If the homeomorphism ϕ : C∞(X) → C∞(Y ) is an isomorphism, then
the spaces X and Y are homeomorphic.

A space X is called χ-sequential if for every nowhere dense closed set F there
exist a point x0 ∈ F and a sequence {xn ∈ X\F : n = 1, 2, ...} for which x0 = lim xn.
Each sequential space is χ-sequential.

The product of any number of metrizable compact spaces is χ-sequential. Let
X =

∏

{Xa : a ∈ A}, where {Xa : a ∈ A} is a set of metrizable compact spaces. We
fix nowhere dense in X set F and a point x = {xa : a ∈ A} ∈ F . Let Y = {y = {ya :
a ∈ A} : |a : xa 6= ya}| ≤ χ0}. Then x ∈ Y ∩ F and Y is dense in X. The space Y
is sequential. Therefore there is a sequence {xn ∈ Y \ F}, converging to x.

Proposition 1. If f ∈ C(X), then f + g exists for g ∈ C∞(X) and the maps
u : R∞ → R∞ and v : C(X) × C∞(X) → C∞(X), where u(x, y) = x + y and
v(f, g) = f + g, are continuous.

Proof. It is enough to prove the continuity of the map u(x, y) = x+ y. If x, y ∈ R,
then the function u is continuous at a point (x, y). Let x0 ∈ R. For ∞ we consider the
neighborhoods U(n,∞) = R∞ \ {x ∈ R : |x| ≤ n}. Let Ox0 = {x ∈ X : |x− x0| < 1
and m > n+ |x0|+ 1}. Since |x+ y| ≥ |x| − |y| we have Ox0 +U(m,∞) ⊂ U(n,∞).
Therefore the map u is continuous. The assertion is proved. �

Proposition 2. Let X be a χ-sequential space. Then for any function f ∈ C∞(X)\
C(X) there exists such a function g ∈ C∞(X) that the sum f + g is not defined.

Proof. We have H(f) 6= ∅. Then there exist a point x0 ∈ H(f) and a se-
quence {xn ∈ X \H(f) : n = 1, 2, ...} such that lim xn = x0, |f(x1)| ≥ 1 and
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|f(xn+1)| > |f(xn)| + 4. Let Un = {x ∈ R : |x− f(xn)| < 1}. Then the sys-
tem

{

f−1Un : n = 1, 2, ...
}

is open and locally finite at x ∈ X \ H(f). For any
n = 1, 2, ... we fix a continuous function gn : X → [0; 1] ⊂ R, where gn(xn) = 1 and
X \f−1Un ⊂ g−1

n (0). Let g = −f+
∑

{(−1)n · gn : n = 1, 2, ...}. Then H(g) = H(f)
and |f(x) + g(x)| ≤ 1 for any x ∈ X \H(f). By construction, f(x2n) + g(x2n) = 1
and f(x2n+1) + g(x2n+1) = −1. Therefore the limit lim(f(xn) + g(xn)) does not
exist, therefore, the sum f + g does not exist. �

Corollary 2. Let X and Y be χ-sequential spaces and ψ : C∞(X) → C∞(Y ) is a
one-to-one additive map. Then ψ/(C(X)) = C(Y ).

Proof. By virtue of Proposition 1, f ∈ C(X) if and only if the sum f + g is defined
for any g ∈ C∞(X). This fact follows from Proposition 2. Therefore the conditions
and ψ(f) ∈ C(Y ) are equivalent. �

Proposition 3. Let X be a χ-sequential space. Then for each function f ∈ C∞(X)\
C(X) there exists such a function g ∈ C∞(X) that the product f · g is not defined.

Proof. We have that H(f) 6= ∅. We choose a point x0 ∈ H(f) and a sequence
{xn ∈ X \H(f) : n = 1, 2, ...} such that lim

n→∞

xn = x0 and |f(xn+1)| > |f(xn)|+4 >

4 + 22n. Let Un = {t ∈ R : |t− f(xn)| < 1}. For any n ∈ N we fix a continuous
function hn : X → [0; 1] such that hn(xn) = 1 and X \ f−1Un ⊂ h−1

n (0). Let
g2n = 2−2n · h2n, and g2n−1 = (f(x2n−1))

−1 · h2n−1 for all n = 1, 2, .... The function
g =

∑

{gn |n = 1, 2, ...} is continuous on X and g ∈ C(X). We will prove that f · g
does not exist. We notice that |f(x2n) · g(x2n)| = 2−2n · |f(x2n)| > 2−2n · 24n = 22n

and |f(x2n−1) · g(x2n−1)| = |f(x2n−1)| · |f(x2n−1)| = 1. Then lim
n→∞

f(x) · g(xn) does

not exist. The assertion is proved. �

Proposition 4. For each space X there is a unique operator of extension
w : C∞(X) → C∞(βX) which is linear, multiplicative and regular, i. e. ‖ω(f)‖ =
‖f‖ for all f ∈ C∞(X).

Proof. The space R∞ is compact. Therefore for each continuous map f : X → R∞

there exists a unique continuous map w(f) : βX → R∞ such that f = w(f)|X. If
the function is bounded, then the function w(f) also is bounded and ‖ω(f)‖ = ‖f‖.
Let f, g ∈ C∞(X). If ϕ = f + g, then w(ϕ) = w(f) + w(g). If ϕ = f · g then
w(ϕ) = w(f) · w(g). Since ω(λf) = λ · ω(f), the proof is complete. �

A set H ⊂ X is functionally closed if f−1(0) = H for some function f ∈ C(X).
The complement to functionally closed sets are called the functionally open sets.

A space X is χ-normal if the set [U ] is functionally closed for any open
in X set U .

A space X is extremely disconnected if the closure [U ] is open for any
open set U .

Proposition 5. Let X be an extremally disconnected space. Then:
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1) there exists a regular, linear and multiplicative extension operator
w : C∞(X) → C∞(βX);

2) for any two functions f, g ∈ C∞(X) the sum f + g and the product f · g are
defined;

3) C∞(X) is a ring and a vector space.

Proof. Let f, g ∈ C∞(X) and Y = X \ (H(f) ∪H(g)). Then the set Y is open in X.
Let U be an open in Y set. Then the set U is open in X and the set [U ]βX is open in
βX. We have βY = βX. Let f1 = f |Y, g1 = g|Y . Then f1, f1 + g1, f1 · g1 ∈ C(Y )
and by virtue of Proposition 4, there exist continuous extensions w(f), w(f + g),
w(f · g) on βX. The proof is complete. �

Lemma 1. Let U and V be open subsets of a space X, U ∩ V 6= ∅, [U ] ∪ [V ] = X
and F = [U ] ∩ [V ] is a non-empty functionally closed set. Then there exist such
functions f, g ∈ C∞(X) and h ∈ C(X) that the sum f + g and the product f · h do
not exist.

Proof. Clearly, [U ] and [V ] are functionally closed sets. Therefore there exist such
continuous functions ϕ1, ϕ2 : X → [0; 1] that ϕ−1

1
(0) = [U ] and ϕ−1

2
(0) = [V ]. We

suppose that ϕ = ϕ1 + ϕ2 and h = ϕ1 − ϕ2. Then ϕ−1(0) = h−1(0) = F , the map
f = 1/ϕ : X → R∞ is continuous and H(f) = F .

The product f ·h does not exist, since (f · g)(x) = 1 if x ∈ V , and (f · g)(x) = −1
if x ∈ U . The map g : X → R∞, where g(x) = 1 − f(x) if x ∈ [U ], and g(x) =
−1−f(x) if x ∈ V , is continuous. The sum f+g does not exist, since (f + g)(x) = 1
if x ∈ U , and (f + g)(x) = −1 if x ∈ V . The proof is complete. �

Proposition 6. For a χ-normal space X the following statements are equivalent:
– the space X is extremally disconnected;
– for any functions f, g ∈ C∞ there exists the sum f + g;
– for any functions f, g ∈ C∞ there exists the product f · g.

Proof. Implications 1 → 2 and 1 → 3 follow from Proposition 5. Suppose that the
space X is not extremally disconnected. Then there exists an open in X set U such
that the set [U ] is not open. We put V = X \ [U ]. We can consider that U = X \ [V ].
Then F = [U ]∩[V ] is a nonempty functionally closed set. Therefore the implications
2 → 1 follow from Lemma 1. The proof is complete. �

Example 1. We consider the discrete sum X = Y ⊕ βN , where Y is an infinite
metrizable compact space. The space X is χ-normal and compact. However, the
space X is not extremally disconnected. Therefore not for all pairs of functions
f, g ∈ C∞(X) the functions f + g or f · g are defined. If f ∈ C∞(X) and on Y ⊂ X
the function f is bounded, then the sum f + g and the product f · g exist for all
g ∈ C∞(X). This fact follows from Proposition 5. If the function is not bounded
on Y , i.e. H(f) ∩ Y 6= ∅, then the sum f + g and product f · ϕ are not defined for
some g, ϕ ∈ C∞(X). Therefore C∞(X) is not a ring.

Lemma 2. Let g ∈ C(X) and the set g−1(0) is open. Then the product g · f exists
for all f ∈ C∞(X).
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Proof. The set U = g−1(0) is open-and-closed in X. Let f ∈ C∞(X). If H(f) = ∅,
then the assertion is obvious. We suppose that the set H(f) is not empty. We put
h(x) = 0 if x ∈ U and h(x) = g(x) · f(x) if x ∈ X \U . The function h is continuous
at all points x ∈ X for which h(x) 6= ∞. Let x0 ∈ X \ U and h(x0) = ∞. Then
|g(x0)| > 1/m for some m ∈ N . We fix n ∈ N . There exists a neighborhood Ox0 of
the point x0 in X such that |g(x)| > 1/m and |f(x)| > nm for all x ∈ Ox0. Then
|h(x)| > n for all x ∈ Ox0. Therefore the function h is continuous at the point x0

and h = f · g ∈ C∞(X). The proof is complete. �

Lemma 3. Let X be a χ-normal χ-sequential space, f ∈ C∞(X) and the set f−1(0)
is not open in X. Then there exists a function g ∈ C∞(X) such that the product
f · g is not defined.

Proof. As the set F = f−1(0) is not open. Then there exist a point x0 ∈ F and a
sequence {xn ∈ X : n = 1, 2, ...} such that limxn = x0 and 0 < |f(xn)| < 2−n for all
n. The set P = F ∩ [X \F ] is nowhere dense, functionally closed and x0 ∈ P . There
exists a continuous function h ∈ C∞(X) such that P = h−1(0), h(x2n) = f(x2n)
and h(x2n+1) = 2−1f(x2n+1). Then g = 1/h ∈ C∞(X), g(x2n) · f(x2n) = 1 and
g(x2n+1) · f(x2n+1) = 2. The lemma is proved. �

Lemma 4. Let f ∈ C∞(X). The function 1/f exists if and only if the set H(f) ∪
f−1(0) is nowhere dense.

Proof. It is obvious. �

Theorem 3. Let ϕ : C∞(X) → C∞(E) be a multiplicative homeomorphism with the
property: if f ∈ C∞(X) and H(f) = f−1(0) = ∅, then H(ϕ(f)) = ∅. Then:

1) if f ∈ C(X) and |f(x)| < 1 for all x ∈ X, then |ϕ(f)(y)| < 1 for all y ∈ Y ;
2) ϕ(C(X)) ⊆ C(E).

Proof. The condition |f(x)| < 1 for all x ∈ X is equivalent to lim fn = 0X . The
statement 1 of Theorem 3 is proved. Let f ∈ C(X). We put h(x) = 2 + |f(x)| and
g = 1/h. Then f1 = f · g ∈ C(X) and |f(x)| < 1 for all x ∈ X. By construction,
f = h · f1 and H(f1) = f−1

1
(0) = ∅. Considering that ϕ(f1), ϕ(h) ∈ C(Y ) we receive

ϕ(f) = ϕ(f1 · h) = ϕ(f1)ϕ(h) ∈ C(Y ). The proof is complete. �

Corollary 3. If ϕ : C∞(X) → C∞(Y ) is a multiplicative homeomorphism and R is
the field of real numbers, then:

1) if f ∈ C(X) and the set f−1(0) is open, then g = ϕ(f) ∈ C(Y ) and the set
g−1(0) is open;

2) if f ∈ C(X) and f−1(0) = ∅, then g = ϕ(f) ∈ C(Y ) and g−1(0) = ∅;
3) if f ∈ C∞(X) and g = 1/f ∈ C∞(X), then ϕ(g) = 1/ϕ(f); ϕ(1X ) = 1Y and

ϕ(0X) = 0Y ;
4) if |f(x)| = 1X , then |ϕ(f)| = 1Y ;
5) if |f(x)| = 1X , then |ϕ(f)| = 1Y ;
6) if f ≥ 0, then ϕ(f) ≥ 0;
7) if |f(x)| < 1 for all x ∈ X, then |ϕ(f)(y)| < 1 for all y ∈ Y ;
8) ϕ(C(X)) = C(Y ).
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Proof. If f · g = f and f · h = h for all f ∈ C∞(X), then g = 1X and h = 0X .
Therefore ϕ(1X) = 1Y and ϕ(0X ) = 0Y . The statement 4 of Corollary 3 is proved.
The condition |f | = 1X is equivalent to the condition f · f = 1X . That proves the
statement 5. The statement 3 is obvious. The condition f ≥ 0 is equivalent to
f = g · g and g = (f)1/2. The statement 6 is proved. �

Let f ∈ C∞(X). There exist such functions gn ∈ C∞(X) for which (gn)n = f ·f .
The limit lim gn exists in the pointwise convergensce topology if and only if H(f) =
H(gn) = ∅ and the set f−1(0) = g−1

n (0) is open. Considering that (ϕ(gn))n = ϕ(f)2

and limϕ(gn) = ϕ(lim gn), we finish the proof of the statement 1. The statement 2
follows from the statements 1 and 3 and Lemma 4. The statements 7 and 8 follow
from Theorem 3.

Proposition 7. For a χ-normal χ-sequential space X the following statements are
equivalent:

1) C(X) = C∞(X);
2) the space X is discrete.

Proof. Implication 2 → 1 is obvious. Assume that the space X is not discrete. Then
there exists a non-isolated point x0 ∈ X and a sequence {xn ∈ X \ {x0} : n ∈ N}
such that lim xn = x0. There exists two open in X sets U and V for which U ∩ V =
∅, {x2n : n ∈ N} ⊂ U and {x2n+1 : n ∈ N} ∈ V . We put F = [U ] and Φ = [X \ F ].
Then x0 ∈ F ∩ Φ = H, the set H is nowhere dense and there exists a continuous
function f : X → [0; 1] such that H = f−1(0). Then g = 1/ϕ ∈ C∞(X) \ C(X).
Implication 1 → 2 is proved. �

Example 2. Let X = Y ∪ {b} be the one-point compactification of the discrete
space Y of uncountable cardinality. The neighborhoods of the point b have the form
Ob = X\F , where F is a finite subset of the set Y . The space X is χ-sequential, since
X is a Frechet-Urysohn space. We will prove that C(X) = C∞(X). Let f ∈ C∞(X).
Then H(f) ⊂ {b}. If H(f) = ∅, then f ∈ C(X). Let H(f) 6= ∅. Then H(f) =
{b} = ∩{f−1((−∞;−n) ∪ (n; +∞)) : n = 1, 2, ...}. This means that H(f) = {b} is
a Gδ-set. Then there exists a sequence of finite sets Fn ⊂ Y : n = 1, 2, ...} such that
X \ Fn ⊂ f−1((−∞;−n) ∪ (n; +∞)), i.e. {b} = ∩{X \ Fn : n = 1, 2, . . .}. Hence,
Y = ∪{Fn : n = 1, 2, ...}, and the set Y is countable, a contradiction. Therefore
H(f) = ∅.

A space X is called a P ∗-space if for any monotone decreasing sequence {Un :
n ∈ N} of open sets either ∩{Un : n ∈ N} = ∅, or there exists a non-empty open set
U such that U ⊂ {Un : n ∈ N}. The space X from Example 2 is a P ∗-space. The
concepts of χ-normal spaces and of P ∗-spaces are opposite. Only discrete spaces are
simultaneously χ-normal and P ∗-spaces.

Lemma 5. If X is a P ∗-space, then C(X) = C∞(X).

Proof. Let’s suppose that there exists a function f ∈ C∞(X). We put Un =
f−1([−∞, n] ∩ [n,+∞]) for all n ∈ N . Then ∩{Un : n ∈ N} = H(f). Let H(f) 6= ∅.
There exists an open nonempty set U such that U ⊂ ∩{Un : n ∈ N} = H(f). Then
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the set H(f) is not anywhere dense. Therefore H(f) = ∅ and f ∈ C(X). The lemma
is proved. �

Lemma 6. Suppose that in a space X there exists a sequence {Un : n ∈ N} of open
in X sets such that H = ∩{Un : n ∈ N} 6= ∅ and for any non-empty open in X set
U we have U \H 6= ∅. Then C∞(X) 6= C(X).

Proof. We fix x0 ∈ H. We build such continuous functions fn : X → [0; 1]
for which fn(x0) = 0 and f−1

n (0) ⊂ Un. By construction, the function f =
∑

(2−n · fn : n ∈ N) is continuous, f(x0) = 0 and f−1(0) ⊂ H. Thus the set
f−1(0) is nowhere dense and it is not closed. We put g = 1/f : X → R∞. Then
H(g) = f−1(0), x0 ∈ H(g) and g ∈ C∞(X) \ C(X). The lemma is proved. �

Corollary 4. For a space X the following statements are equivalent:
1) X is a P ∗-space;
2) C∞(X) = C(X).

Example 3. Let Y be an infinite compact space, being P ∗-space, and Z = βN .
Then X = Y ⊕ Z is a compact space, the space X is not extremally disconnented,
C∞(X) 6= C(X) and C∞(X) is a ring.

The space X is pseudocompact if all continuous real-valued functions are
bounded on X.

Theorem 4. Let X be a P ∗-space. The following statements are equivalent:
1) X is pseudocompact;
2) βX is a P ∗-space;
3) C(βX) = C∞(βX).

Proof. Implications 2 → 3 → 2 are obvious. If the space X is not pseudocompact,
there exists an unbounded function f ∈ C(X). By virtue of the proposition from
[6], there exists such a continuous map g : βX → R∞ for which f = g|X. Clearly,
H(g) 6= ∅. It proves the implication 2 → 1. Let the space X be pseudocompact.
We consider a sequence {Un : n ∈ N} of open in βX sets such that L = ∩{Un : n ∈
N} 6= ∅. We can consider that [Un+1] ⊆ Un. Then the set L is functionally closed.
If L∩X = ∅, then on X there exists some unbounded continuous function and X is
not pseudocompact.

Therefore there exists such an open in βX set W for which ∅ 6= V = W ∩X ⊆ L.
By construction, ∅ 6= W ⊆ L. Implication 1 → 2 is proved. The proof is finished.�

Example 4. Let X be not a pseudocompact P ∗-space. Then the map ϕ :
C∞(βX) → C∞(X) = C(X) satisfies the following conditions:

1) ϕ is a continuous isomorphism;
2) ϕ is not a homeomorphism;
3) ϕ(C(βX)) 6= C(X).

Example 5. Let X = βY , where Y be an infinite discrete space. Then there exists
a function h ∈ C∞(X) \C(X) such that h−1(0) = ∅ and the mapping ϕ : C∞(X) →
C∞(X), where ϕ(f) = f · h, satisfies the following conditions:
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1) is one-to-one;
2) is linear;
3) C(x) ∩ ϕ(C(X)) = ∅.

From Examples 4 and 5 it follows that the condition that ϕ is a homeomorphism
is essential in the conditions of Theorem 1: if ϕ : C∞(X) → C∞(X) is a linear
homeomorphism, then ϕ(C(X)) = C(Y ).
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