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A probabilistic method for solving minimax problems

with general constraints

Anatol Godonoaga, Pavel Balan

Abstract. The method proposed in paper solves a convex minimax problem with
a set of general constraints. It is based on a schema elaborated previously, but with
constraints that can be projected on quite elementary. Such kind of problems are of-
ten encountered in technical, economical applied domains etc. It does not use penalty
functions or Lagrange function – common toolkit for solving above mentioned prob-
lems. Movement directions have a stochastic nature and are built using estimators
corresponding to target function and functions from constraints. At the same time ev-
ery iteration admits some tolerance limits regarding non-compliance with constraints
conditions.

Mathematics subject classification: 49M37, 90C15, 90C25, 90C30, 90C47,
49K35, 49K45.

Keywords and phrases: Minimax problems, stochastic, convex, nondifferentiable,
optimization, subgradient, constraints, probability repartition, estimator, almost cer-
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The following problem is considered:







F (x) =max
y∈Yf

f (x, y) → min

Φ (x) = max
y∈Yϕ

ϕ (x, y) ≤ 0

x ∈ X

(1)

where X represents a compact and convex set in Euclidian space Em, the sets Yf , Yϕ

are compact sets in Em1 and Em2correspondingly. Suppose that the set of optimal
solutions X∗ 6= ∅.

Let us define:

V (x, ε) = {z ∈ En : ‖x− z‖ < ε} ,

V (X, ε) =
⋃

x∈X

(x, ε) ,

VX (X∗, ε) = V (X∗, ε)
⋂
X,

WX (x̃, r) = (V (x̃, r)
⋂
X) \V (X∗, ε) , r > 0,

WY (y, r) = V (y, r)
⋂
Y, r > 0.

(2)

The functions f (x, yf ) and ϕ (x, yϕ) are supposed to be convex on V (X, ε∗) for some
ε∗ > 0 and continuous on V (X, ε∗) × Yf and V (X, ε∗) × Yϕ correspondingly.
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Let’s admit that on the sets Yf , Yϕ probability repartitions Pf (·), Pϕ (·) are
defined that satisfy the conditions:

∫

Yf

Pf (dy) = 1,

∫

Yϕ

Pϕ (dy) = 1. (3)

For ∀r > 0 ∃γ > 0:

∫

WY (y,r)

Pf (dz) ≥ γ, if Y = Yf for every y ∈ Yf ,

∫

WY (y,r)

Pϕ (dz) ≥ γ, if Y = Yϕ for every y ∈ Yϕ.
(4)

1 Method description

Starting element x0 ∈ X is arbitrary taken. The sequence
{
xk

}

k≥1
is built.

Let’s admit that the approximate solution of order k – the element xk – is already
obtained. The approximation xk+1 is determined in the following way:

(A1) Two random variables ξ ∈ Yf , ψ ∈ Yϕ are simulated in series mk ≥ 1, lk ≥
1 of independent probes with distribution laws Pf and Pϕ correspondingly.
More specifically, the sets Mk = {ξ1, ξ2, . . . , ξmk

}, Lk = {ψ1, ψ2, . . . , ψlk} are
generated on each iteration k that contain independent realizations of random
vectors ξ (yf ) = yf ∈ Yf , ψ (yϕ) = yϕ ∈ Yϕ.

(A2) The elements yk
f (x) = ξi ∈ Mk, 1 ≤ i ≤ mk, y

k
ϕ (x) = ψj ∈ Lk, 1 ≤ j ≤ lk are

indicated:

f
(

xk, yk
f (x)

)

=max
y∈Mk

f
(
xk, y

)
,

ϕ
(
xk, yk

ϕ (x)
)

= max
y∈Lk

φ
(
xk, y

)
.

(5)

(A3) yk
f ∈

{

yk−1
f , yk

f (x)
}

, yk
ϕ ∈

{
yk−1

ϕ , yk
ϕ (x)

}
aredetermined where:

f
(

xk, yk
f

)

= max
{

f
(

xk, yk−1
f

)

, f
(

xk, yk
f (x)

)}

, where y0
f = y0

f (x),

ϕ
(
xk, yk

ϕ

)
= max

{
ϕ

(
xk, yk−1

ϕ

)
, ϕ

(
xk, yk

ϕ (x)
)}
, where y0

ϕ = y0
ϕ (x).

(6)

Definition 1. f
(

xk, yk
f

)

, ϕ
(
xk, yk

ϕ

)
are called estimators of the functions F (x)

and Φ (x), correspondingly, for x = xk.
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(A4) The new element xk+1 is built using the relation:

xk+1 =
∏

X

(

x̃k+1
)

, x̃k+1 = xk − ρkη
k (7)

where
∏

X (x̃) represents the projection of the element x̃ ∈ Em on the set X, that
is

∏

X (x̃) represents the closest element from X regarding x̃; ρk is the step value
corresponding to iteration k.

(A5) The sequence of vectors
{
ηk

}
is defined in the following way:

ηk =







gk

‖gk‖
, if gk 6= 0̄, k = 0, 1, 2, . . .

0̄, for gk = 0̄.
(8)

(A6) The vector gk is built as follows:

gk = gk
(

xk
)

=

{

∂f
(

x, yk
f

)

for x = xk, if ϕ
(
xk, yk

ϕ

)
≤ τk,

∂ϕ
(
x, yk

ϕ

)
for x = xk, if ϕ

(
xk, yk

ϕ

)
> τk.

(9)

Here ∂f
(

xk, yk
f

)

denotes the subgradient of the function f
(

x, yk
f

)

[2], and,

respectively, ∂ϕ
(
xk, yk

ϕ

)
is the subgradient of the function ϕ

(
x, yk

ϕ

)
for x = xk.

The vector g0 is considered to be an arbitrary, but bounded vector.
At the same time we consider that the numerical sequence {ρk} satisfies clas-

sical requirements that ensure the convergence of the methods with programmable
modification of the step:

ρk > 0, ρk → 0,
∞∑

k=0

ρk = ∞. (10)

Additionally, for any number τ ∈ (0, 1) we require the existence of a sequence {ε̄k}
with properties:

ε̄k → 0,
ε̄k
ρk

→ ∞ (11)

so that for ∀rk ∈
[ ε̄k

2
, ε̄k

]

occurs the convergence of the series:

∞∑

kk=0

τL(k,rk) <∞ (12)

where

L (k, rk) =







0, if ρk ≥ rk or k = 0,

sk, if
k∑

l=k−sk

ρl < rk and
k∑

l=k−sk−1

ρl ≥ rk.
(13)
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In other words sk is the biggest integer number among all numbers j ≥ 0 that

satisfies the relation
k∑

l=k−j

ρl < rk.

We will show that such numerical sequences {ρk} and {ε̄k} exist that conforms to
the requirements (10)–(13). Above mentioned are justified by the following lemma:

Lemma 1. The sequences of the form ρk =
c

kα + d
, c > 0, d ≥ 0, α ∈ (0, 1] and

ε̄k =
p

kβ + q
, p > 0, q ≥ 0, β ∈ (0, α) satisfy the (10)–(13) requirements.

Proof. It is obvious that lim
k→∞

L (k, rk) = lim
k→∞

sk = ∞. For consecutive values of

k = 0, 1, 2, . . . the resulting values of L (k, rk) have the form:

0, . . . , 0
︸ ︷︷ ︸

0≤C0 times

, 1, . . . , 1
︸ ︷︷ ︸

0≤C1 times

, . . . , sk, sk, . . . , sk
︸ ︷︷ ︸

0≤Ci times

, (14)

(sk + 1) , . . . , (sk + 1)
︸ ︷︷ ︸

0≤Ci+1 times

, (sk + 2) , . . . , (sk + 2)
︸ ︷︷ ︸

0≤Ci+2 times

, . . . (15)

In other words L (k, rk) takes the value 0 for C0 times, the value 1 for C1 times
etc., the value sk for Ci times, where i = sk. We find out that the sequence {Ci},
i = 0, 1, . . ., is bounded. If we suppose the contrary, it means that exists a value
Cj ∈ {Ci} that can be however big. This implies that starting from some k ≥ k′ all
L (k, rk) = sk′ . As a result, starting from k′ all the values ρl from (13) contradict the
requirement (11). Thus, there exists a number C <∞ so that Ci < C, ∀i = 0, 1, . . .
So, we can conclude that the sequence {sk} can take values however big (sk → ∞).

Further we take an arbitrary, but fixed number τ ∈ (0, 1). The numerical series:



τ0 + . . .+ τ0
︸ ︷︷ ︸

C times



 +



τ1 + . . .+ τ1
︸ ︷︷ ︸

C times



 + . . .

+



τ sk + . . .+ τ sk

︸ ︷︷ ︸

C times



 +



τ sk+1 + . . . + τ sk+1
︸ ︷︷ ︸

C times



 + . . . =

= Cτ0 + Cτ1 + . . .+ Cτ sk + Cτ sk+1 + . . . =

= C
(
τ0 + τ1 + . . .+ τ sk + τ sk+1 + . . .

)
= C

∞∑

k=0

τk =
C

1 − τ
<∞.

(16)

But, on the other hand:

∞∑

k=0

τL(k,rk) ≤ C
∞∑

k=0

τk. (17)

That leads us to the satisfaction of the (12) requirement. Lemma is proved.
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Now let’s get back to the method of computation of the sequence
{
xk

}
. It is

the moment to remark that the iterative process can be modified, namely different
distribution laws are applied for definition and simulation of random variables ξ, ψ
for every new iteration. This can favor the increase of convergence speed in a certain
sense of the sequence

{
xk

}
.

The idea of using the subgradients of target function F (x), in case that
Φ

(
xk

)
≤ 0, and subgradients of the function Φ (x), if Φ

(
xk

)
> 0, for solving a

convex model, is launched for the first time by B.Polyak in paper [1].

The stochastic subgradient method for solving a convex problem is defined in
the following way:

{
F (x) =max

y∈Yf

f (x, y) → min

x ∈ X

is realized and argued in [5]. Paper [4] describes this method that is developed using
the operation of normalization of subgradients and the convergence is established in
the same probabilistic terms. The proof of the convergence is based on two principal
stages. We will use and develop the mathematical mechanism used in [4] for arguing
the method (A1)-(A6) when solving the problem (1). Thus, the following affirmation
takes place:

Theorem 1. Let’s suppose that along with conditions mentioned above following
take place:

τk > 0, τk → 0,
∞∑

k=0

ρkτk = ∞,
τk
ρk

→ ∞. (18)

Then, for ∀ε > 0 fixed, all elements of the random sequence
{
xk

}

k≥0
, obtained as a

result of application of the described method (A1) -(A6) , are localized almost certain
(with probability 1) in vicinity V (X∗, 2ε), but excepting a finite number of elements.
Formally this can be represented in the following way:

P

{

lim
k→∞

min
x∗∈X∗

∥
∥
∥xk − x∗

∥
∥
∥ = 0

}

= 1,

where xk = xk
(
θ0, θ1, . . . , θk−1

)
, θk ∈ Θk = (Mk × Lk).

Proof. IfX ⊂ V (X∗, 2ε) then the statement is obvious. Let’s admitX\V (X∗, 2ε) 6=
∅. We mention here that on every iteration k for the initial model (1) is associated
the following problem:







F (x) = max
y∈Yf

f (x, y) → min,

Φ (x) ≤ τk,

x ∈ X

(19)
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or, the group
{

f
(

xk, yk
f

)

, ϕ
(
xk, yk

ϕ

)
, τk,X

}

corresponds to the iteration k, in order

to determine the direction ηk that will lead to obtaining the next element–xk+1.

Two stages for proof development will be accentuated.

Stage 1. Firstly, the existence of a subsequence
{
xkl

}
⊂

{
xk

}

k≥0
that

almost certain is contained in VX (X∗, ε) will be proved, i.e.

P
{

∃
{
xkl

}
⊂

{
xk

}

k≥0
: xkl ∈ VX (X∗, ε)

}

= 1.

Let’s suppose the contrary. In this case for some q ∈ (0, 1) a natural number
Kq <∞ can be indicated such that the following event is produced

A1 =
{

∃Kq : ∀k ≥ Kq,
∥
∥
∥xk − x∗

∥
∥
∥ ≥ ε, or xk /∈ Vx (X∗, ε) ,∀x∗ ∈ X∗

}

(20)

with probability P (A1) ≥ q.

Let’s denote Xε = X\V (X∗, ε).

Since the functions F (x), Φ (x) and their estimators f
(

x, yk
f

)

, ϕ
(
x, yk

ϕ

)
are

convex, the following inequalities are valid [2]:

F (x∗) − F
(
xk

)
≥

(
∂F

(
xk

)
, x∗ − xk

)
, f

(

xk+1, yk
f

)

− f
(

xk, yk
f

)

≥

≥
(

∂f
(

xk, yk
f

)

, xk+1 − xk
)

,

Φ (x∗) − Φ
(
xk

)
≥

(
∂Φ

(
xk

)
, x∗ − xk

)
, ϕ

(
xk+1, yk

ϕ

)
− ϕ

(
xk, yk

ϕ

)
≥

≥
(
∂ϕ

(
xk, yk

ϕ

)
, xk+1 − xk

)

(21)

for ∀x∗ ∈ X∗, ∀xk, xk+1 ∈ X.

Taking into consideration all properties enumerated above, two constants C1 >
0, C2 > 0 may be chosen, such that ‖x′ − x′′‖ ≤ C1, ∀x

′, x′′ ∈ X and ‖∂F (x)‖ ≤ C2,

‖∂Φ (x)‖ ≤ C2,
∥
∥
∥∂f

(

x, yk
f

)∥
∥
∥ ≤ C2,

∥
∥∂ϕ

(
x, yk

ϕ

)∥
∥ ≤ C2, ∀x ∈ X,∀yf ∈ Yf ,∀yϕ ∈ Yϕ.

Let’s consider the case ϕ
(
xk, yk

ϕ

)
≤ τk and xk ∈ Xε. Since the function F (x) is

convex, results that exists the number ∆F = ∆ (ε) > 0 such that

inf
x∈Xε,x∗∈X∗

(F (x) − F (x∗)) = 2∆F (22)

or, on basis of (21):

(

∂F
(

xk
)

, xk − x∗
)

≥ 2∆F , (23)

(
∂F

(
xk

)
, xk − x∗

)

‖∂F (xk)‖ · ‖xk − x∗‖
≥

(
∂F

(
xk

)
, xk − x∗

)

C2 · C1
≥

2∆F

C1 · C2
.

From (22) it follows that for ∀x̃ ∈ Xε:
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f (x̃, yf (x̃)) − F (x∗) ≥ 2∆F (24)

where yf (x̃) is such an element from Yf that f (x̃, yf (x̃)) = F (x̃).

Taking into consideration the last inequality and the continuity of the function
f (x, yf ) regarding (x, yf ) ∈ X×Yf , we conclude that for ∀x̃ ∈ Xε a number r0 (x̃) >
0 corresponds, so that:

f (x, yf ) ≥ F (x∗) +
3

2
∆f (25)

as soon as x ∈WX (x̃, r0 (x̃)) and yf ∈WYf
(yf (x̃) , r0 (x̃)).

The set Xε is compact. Therefore, there exists the number

r0 = min

{

min
x̃∈Xε

r0 (x̃) , ε

}

> 0. (26)

Hence, the inequality (25) is satisfied for all ∀x̃ ∈ Xε, x ∈ WX (x̃, r0), yf ∈
WYf

(yf (x̃) , r0).

Similarly, in case that ϕ
(
xk, yk

ϕ

)
> τk and xk ∈ Xε, it follows

Φ (x) − Φ (x∗) ≥ 2τk (27)

or, on basis of inequality from (21):

(

∂Φ
(

xk
)

, xk − x∗
)

≥ 2τk, (28)

(
∂Φ

(
xk

)
, xk − x∗

)

‖∂Φ (xk)‖ · ‖xk − x∗‖
≥

(
∂Φ

(
xk

)
, xk − x∗

)

C2 · C1
≥

2τk
C1 · C2

.

From (27) it follows that for ∀x̃ ∈ Xε:

ϕ (x̃, yϕ (x̃)) − Φ (x∗) ≥ 2τk (29)

where yϕ (x̃) is such an element from Yϕ that ϕ (x̃, yϕ (x̃)) = Φ (x̃).

Taking into consideration the last inequality and the continuity of the function
ϕ (x, yϕ) regarding (x, yϕ) ∈ X × Yϕ, we conclude that for ∀x̃ ∈ Xε a number
r0 (x̃) > 0 corresponds so that:

ϕ (x, yϕ) ≥ Φ (x∗) +
3

2
τk (30)

as soon as x ∈WX (x̃, r0 (x̃)) and yϕ ∈WYϕ (yϕ (x̃) , r0 (x̃)).

As was specified previously, the set Xε is compact. Therefore, there exists the
number

r0 = min

{

min
x̃∈Xε

r0 (x̃) , ε

}

> 0. (31)
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Hence, the inequality (30) is satisfied for all ∀x̃ ∈ Xε, x ∈ WX (x̃, r0), yϕ ∈
WYϕ (yϕ (x̃) , r0).

Let’s consider some numbers δF , δ
k
Φ from intervals

(

0,
2∆F

C1 · C2

)

,

(

0,
2τk

C1 · C2

)

and label δ̃k = min
{
δF , δ

k
Φ

}
. Particularly, δF , δ

k
Φ can be taken as midpoints of the

intervals

(

0,
2∆F

C1 · C2

)

,

(

0,
2τk

C1 · C2

)

:

δF =
∆F

C1 · C2
, δk

Φ =
τk

C1 · C2
(32)

As a result the following is obtained:

(
∂F

(
xk

)
, xk − x∗

)
≥ 2δ̃k

∥
∥∂F

(
xk

)∥
∥ ·

∥
∥xk − x∗

∥
∥ , if ϕ

(
xk, yk

ϕ

)
≤ τk,

(
∂Φ

(
xk

)
, xk − x∗

)
≥ 2δ̃k

∥
∥∂Φ

(
xk

)∥
∥ ·

∥
∥xk − x∗

∥
∥, if ϕ

(
xk, yk

ϕ

)
> τk.

(33)

The following events are being considered:

1. Ak
1 =

{(
ηk, xk − x∗

)
≥ δ̃k

∥
∥xk − x∗

∥
∥ ,∀x∗ ∈ X∗

}

. Obviously, the opposite

event with regards to Ak
1 has the following form:

Ak
1 =

{

∃x∗ ∈ X∗ :
(
ηk, xk − x∗

)
< δ̃k

∥
∥xk − x∗

∥
∥

}

;

2. D1 =

{
∞⋃

k=Kδ

∞⋂

i=k

Ai
1

}

, or, in other words, occurs all Ak
1 (k ≥ Kq), without,

perhaps, a finite number. It is obvious that D1 =

{
∞⋂

k=Kδ

∞⋃

i=k

Ai
1

}

, or, in other

words, an infinite number of events Ak
1 are produced.

Let us evaluate P (A1). In order to do this let’s represent

P (A1) = P
(

A1

⋂(

D1

⋃

D1

))

= P
(

A1

⋂

D1

)

+ P
(

A1

⋂

D1

)

.

Both terms from the last expression will be estimated.

From the realization of event A1
⋂
D1 follows the existence of such a natural

number Kδ <∞ that for all k ≥ Kδ and ∀x∗ ∈ X∗ the following inequality occurs

(

ηk, xk − x∗k

)

≥ δ̃k

∥
∥
∥xk − x∗k

∥
∥
∥ . (34)

Taking into consideration (34), for k ≥ Kδ we have the following sequence of
relations:
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∥
∥xk+1 − x∗

∥
∥2

≤
∥
∥xk − ρkη

k − x∗
∥
∥2

=
∥
∥xk − x∗

∥
∥2

− 2ρk

(
xk − x∗, ηk

)
+ ρ2

k

∥
∥ηk

∥
∥2

≤

≤
∥
∥xk − x∗

∥
∥2

− 2ρk δ̃k
∥
∥xk − x∗

∥
∥ + ρ2

k ≤
∥
∥xk − x∗

∥
∥2

− 2ρk δ̃kε+ ρ2
k =

=
∥
∥xk − x∗

∥
∥2

− ρk

(

2δ̃kε− ρk

)

.

Because ρk →
k→∞

0, for some KΦ: δF > δk
Φ or δ̃k = δk

Φ, as soon as k ≥ KΦ. According

to (18), (32) for some Kε ≥ KΦ: ρk ≤ δ̃kε, as soon as k ≥ Kε. Evidently, for
k ≥ k̂ = max {Kδ,Kε}:

∥
∥xk+1 − x∗

∥
∥2

≤
∥
∥xk − x∗

∥
∥2

− ρk δ̃kε,

∥
∥xk − x∗

∥
∥2

≤
∥
∥xk−1 − x∗

∥
∥2

− ρk−1δ̃kε ≤
∥
∥xk−2 − x∗

∥
∥2

−

−ε
(

ρk−2δ̃k−2 + ρk−1δ̃k−1

)

, . . .

∥
∥xk+1 − x∗

∥
∥2

≤
∥
∥
∥xk̂ − x∗

∥
∥
∥

2
− ε

k∑

i=k̂

ρiδ̃i,

or
∥
∥xk+1 − x∗

∥
∥2

≤
∥
∥
∥xk̂ − x∗

∥
∥
∥

2
− ε

k∑

i=k̂

ρiδ
i
ϕ.

Due to imposed conditions on τk in (18), based on relation (32), we get:

∥
∥
∥xk+1 − x∗

∥
∥
∥

2
≤

∥
∥
∥x

bk − x∗
∥
∥
∥

2
−

ε

C1 · C2

k∑

i=k̂

ρiτi → −∞, for k → ∞. (35)

We obtain a contradiction because the norm of any vector, moreover its square value,
cannot be negative. Therefore, the realization of event A1

⋂
D1 implies realization of

an event that is practically unrealizable, F1 =
{∥

∥xk+1 − x∗
∥
∥2
< 0, k → ∞

}

. That

is P (A1
⋂
D1) ≤ P (F1) = 0. It means that P (A1) = P

(
A1

⋂
D1

)
.

Let us evaluate P
(
A1

⋂
D1

)
. Let’s take an arbitrary number rk from the interval

[ ε̄k
2
, ε̄k

]

, where ε̄k = min

{

r0,
∆F

2C2
,
τk

2C2

}

. The following events are defined:

1. Bk
f ={at least one time among the iterations of the form j = k − sk, k an

element from the set WYf

(
yf

(
xj

)
, rk

)
is generated, where xj ∈ WX

(
xk, rk

)
,

for sk defined in (13)};

2. Bk
ϕ={at least one time among the iterations of the form j = k − sk, k an

element from the set WYϕ

(
yϕ

(
xj

)
, rk

)
is generated, where xj ∈ WX

(
xk, rk

)
,

for sk defined in (13)};

3. Bk
1 = Bk

f

⋂
Bk

ϕ.
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The simulation of the variables ξ and ψ on iteration k is executed in parallel and
independently. Since the events Bk

f , Bk
ϕ are independent, it follows that P

(
Bk

1

)
=

P
(

Bk
f

)

· P
(
Bk

ϕ

)
.

The realization of the event Bk
f implies: for some iteration jk ∈ k − sk, k the

generated element yjk

f

(
xjk

)
= ξtk ∈ Mjk

, 1 ≤ tk ≤ mjk
has the property yjk

f

(
xjk

)
∈

WYf

(
yf

(
xjk

)
, rk

)
, that is, according to (25):

f
(

xjk , yjk

f

)

≥ f
(

xjk , yjk

f

(
xjk

))

≥ F (x∗) +
3

2
∆F . (36)

Let’s admit that jk is an arbitrary element from the set of iterations

{k − sk, . . . , k − 1}. We will show that f
(

xk, yk
f

)

≥ F (x∗) + ∆F . Indeed,

taking into consideration the convexity of the estimator f (x, yf ) for ∀yf ∈ Yf and
the way of computation of the sequence

{
xk

}
, we get:

f
(
xk+1, yf

)
− f

(
xk, yf

)
≥

(
∂f(xk, yf ), xk+1 − xk

)
≥

≥ −
∥
∥∂f(xk, yf )

∥
∥ ·

∥
∥
∏

X

(
xk − ρkη

k
)
− xk

∥
∥ ≥ −C2ρk.

(37)

From (36) and (37) it follows:

f
(

xjk+1, yjk+1
f

)

≥ f
(

xjk+1, yjk

f

)

≥ f
(

xjk , yjk

f

)

− C2ρjk
,

. . .

f
(

xjk+i, yjk+i
f

)

≥ f
(

xjk , yjk

f

)

− C2

i−1∑

l=0

ρjk+l ≥ F (x∗) +
3

2
∆F − C2rk ≥

≥ F (x∗) +
3

2
∆F − C2

∆F

2C2
= F (x∗) + ∆F

(38)

for all i that
i−1∑

l=0

ρjk+l ≤ rk.

But,
k−jk∑

l=0

ρjk+l = ρjk
+ ρjk+1 + . . .+ ρk ≤

k∑

l=k−sk

ρl ≤ rk. Therefore,

f
(

xk, yk
f

)

≥ F (x∗) + ∆F . (39)

But if jk = k, then the last inequality is satisfied even more. As a consequence to
(39) we have the following chain of inequalities

−∆F ≥ F (x∗) − f
(

xk, yk
f

)

≥ f
(

x∗, yk
f

)

− f
(

xk, yk
f

)

≥
(

∂f
(

xk, yk
f

)

, x∗ − xk
)

or,

(

∂f
(

xk, yk
f

)

, xk − x∗
)

≥ ∆F . (40)

Taking into consideration (40) and the way the number δ̃k is chosen, we get:
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(

∂f
(

xk, yk
f

)

, xk − x∗
)

∥
∥
∥∂f

(

xk, yk
f

)∥
∥
∥ · ‖xk − x∗‖

≥ δ̃k

or, in other words, the event Ak
1 is realized.

The realization of the event Bk
ϕ implies: for some iteration jk ∈ k − sk, k the

generated element yjk
ϕ

(
xjk

)
= ψtk ∈ Ljk

, 1 ≤ tk ≤ ljk
has the property yjk

ϕ

(
xjk

)
∈

WYϕ

(
yϕ

(
xjk

)
, rk

)
, that is, according to (30):

ϕ
(
xjk , yjk

ϕ

)
≥ ϕ

(
xjk , yjk

ϕ

(
xjk

))
≥ Φ (x∗) +

3

2
τk. (41)

Let’s admit that jk is an arbitrary element from the set of iterations
{k − sk, . . . , k − 1}. We will show that ϕ

(
xk, yk

ϕ

)
≥ Φ (x∗) + τk. Indeed, taking

into consideration the convexity of the estimator ϕ (x, yϕ) for ∀yϕ ∈ Yϕ and the way
of computation of the sequence

{
xk

}
, we get:

ϕ
(
xk+1, yϕ

)
− ϕ

(
xk, yϕ

)
≥

(
∂ϕ(xk, yϕ), xk+1 − xk

)
≥

≥ −
∥
∥∂ϕ(xk, yϕ)

∥
∥ ·

∥
∥
∏

X

(
xk − ρkη

k
)
− xk

∥
∥ ≥ −C2ρk.

(42)

From (41) and (42) it follows:

ϕ
(

xjk+1, yjk+1
ϕ

)

≥ ϕ
(

xjk+1, yjk
ϕ

)

≥ ϕ
(

xjk , yjk
ϕ

)

− C2ρjk
,

. . .

ϕ
(

xjk+i, yjk+i
ϕ

)

≥ ϕ
(

xjk , yjk
ϕ

)

− C2

i−1∑

l=0

ρjk+l ≥ Φ (x∗) +
3

2
τk − C2rk ≥

≥ Φ (x∗) +
3

2
τk − C2

τk
2C2

= Φ (x∗) + τk

(43)

for all i that
i−1∑

l=0

ρjk+l ≤ rk.

But,
k−jk∑

l=0

ρjk+l = ρjk
+ ρjk+1 + . . .+ ρk ≤

k∑

l=k−sk

ρl ≤ rk. Therefore,

ϕ
(

xk, yk
ϕ

)

≥ Φ (x∗) + τk. (44)

But if jk = k, then the last inequality is satisfied even more. As a consequence to
(44) we have the following chain of inequalities

−τk ≥ Φ (x∗) − ϕ
(

xk, yk
ϕ

)

≥ ϕ
(

x∗, yk
ϕ

)

− ϕ
(

xk, yk
ϕ

)

≥
(

∂ϕ
(

xk, yk
ϕ

)

, x∗ − xk
)

or,

(

∂ϕ
(

xk, yk
ϕ

)

, xk − x∗
)

≥ τk. (45)
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Taking into consideration (45) and the way the number δ̃k is chosen, we get:

(
∂ϕ

(
xk, yk

ϕ

)
, xk − x∗

)

∥
∥∂ϕ

(
xk, yk

ϕ

)∥
∥ · ‖xk − x∗‖

≥ δ̃k

or, in other words, the event Ak
1 is realized.

The realization of the events Bk
f and Bk

ϕ implies the realization of the event Bk
1 .

At the same time the following implication takes place: Bk
1 ⊂ Ak

1 . Therefore, we

get P
(
Bk

1

)
≤ P

(
Ak

1

)
, or, P

(

Ak
1

)

≤ P
(

Bk
1

)

. But, accordingly to (4), (13) follows:

P
(

Bk
1

)

≤ αL(k,rk) where α = 1 − γ. We get following set of inequalities:

∞∑

k=0

P
(

Ak
1

)

≤
∞∑

k=0

P
(

Bk
1

)

≤
∞∑

k=0

αL(k,rk) <∞.

We are in the situation that the conditions of the Borel–Cantelli lemma are met [3].
It means that P

(
D1

)
= 0. Therefore,

q ≤ P (A1) = P
(

A1

⋂

D1

)

≤ P
(
D1

)
= 0.

Thus, q = 0.

A contradiction has been obtained, because we have supposed that q > 0. Thus,
there exists a subsequence

{
xkl

}
⊂

{
xk

}

k≥0
that almost certainly is contained in

VX (X∗, ε).

Stage 2. Further will be proved that all elements of the sequence
{
xk

}
, without

just a finite number, belong to the set VX (X∗, 2ε) with probability 1.

The following events are defined:

A2 =
{
∃

{
xkl

}
⊂

{
xk

}
:

{
xkl

}
⊂ VX (X∗, ε)

}
,

B2 =
{
∃

{
zkm

}
⊂

{
xk

}
:

{
zkm

}
6⊂ VX (X∗, 2ε)

}
.

(46)

Next, P (B2) will be appreciated. We will find out that P (B2) = P (B2
⋂
A2).

Indeed, P (B2) = P
(
(B2

⋂
A2)

⋃ (
B2

⋂
A2

))
= P (B2

⋂
A2) + P

(
B2

⋂
A2

)
=

P (B2
⋂
A2), because P

(
B2

⋂
A2

)
≤ P

(
A2

)
= 0.

Further, the following event will be considered: D2 = A2
⋂
B2. Suppose that

P (D2) > 0. Realization of the event D2 means that the transfer from VX (X∗, ε) to
X\VX (X∗, 2ε) and vice versa takes place infinitely.

Let us denote by:

1. K1 – the number of first iteration when the event
{
xK1 ∈ VX (X∗, ε)

}

is produced;

2. K2 – the number of first iteration when the event

{

xK2 ∈ VX

(

X∗,
3

2
ε

)}

is produced;
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3. K3 – the number of first iteration when the inequality ρK3 ≤ 2εδ̃K3 is satisfied;

4. K̄ = max {K1,K2,K3}.

In case for some k ≥ K̄ and xk /∈ VX

(

X∗,
3

2
ε

)

the inequality that de-

fines the event Ak
1 is satisfied, then the following sequence of inequalities occurs:

∥
∥xk+1 − x∗

∥
∥

2
≤

∥
∥xk − x∗

∥
∥

2
− ρk(2εδ̃k − ρk) <

∥
∥xk − x∗

∥
∥

2
, because

∥
∥xk − x∗

∥
∥ > ε.

That is, as soon as k ≥ K̄ and xk /∈ VX

(

X∗,
3

2
ε

)

it follows:

∥
∥
∥xk+1 − x∗

∥
∥
∥ <

∥
∥
∥xk − x∗

∥
∥
∥ . (47)

Since ρk →
k→∞

0, a number K∗ ≥ K̄ will appear with the property: xK∗

∈

VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

. This will happen certainly. Particularly, for ρk <
ε

2
:

∥
∥
∥xk+1 − xk

∥
∥
∥ ≤

∥
∥
∥xk − ρkη

k − xk
∥
∥
∥ ≤ ρk <

ε

2
.

Therefore, there exists a number k that satisfies xk ∈ VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

.

According to (47),
∥
∥xK∗+1 − x∗

∥
∥ <

∥
∥xK∗

− x∗
∥
∥. In case xK∗+1 /∈ VX

(

X∗,
3

2
ε

)

,

then
∥
∥xK∗+2 − x∗

∥
∥ <

∥
∥xK∗+1 − x∗

∥
∥ <

∥
∥xK∗

− x∗
∥
∥, and so forth, for all j ≥ 0 that

satisfy xK∗+j /∈ VX

(

X∗,
3

2
ε

)

, takes place:

min
x∗∈X∗

∥
∥
∥xK∗+j − x∗

∥
∥
∥ < min

x∗∈X∗

∥
∥
∥xK∗

− x∗
∥
∥
∥ < 2ε. (48)

Let us denote
{

xkl
}

l≥1
the sequence of all elements

{
xk

}
with the property that

kl ≥ K∗, xkl
∈ VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

and xkl−1 ∈ VX

(

X∗,
3

2
ε

)

. Then, for

l ≥ 1, kl < j < kl+1 and xj /∈ VX

(

X∗,
3

2
ε

)

the following inequality occurs:

min
x∗∈X∗

∥
∥xj − x∗

∥
∥ < min

x∗∈X∗

∥
∥
∥xkl

− x∗
∥
∥
∥ < 2ε. (49)

Thus, in other words, admitting that for someK elements of type xk /∈ VX

(

X∗,
3

2
ε

)

,

k < ∞, k ≥ K satisfy the inequality from the event Ak
1 , then the event

B2 cannot occur with positive probability. The supposition that D2 is realized

means that beyond the layer VX

(

X∗,
3

2
ε

)

the penetration of the layer takes

place only when infinitely the event Ak
1 considered previously is produced. But,

P
(
D1

)
= 0. So, the conclusion that can be drawn is that the transfer from the layer
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VX (X∗, 2ε) \VX

(

X∗,
3

2
ε

)

into the layer X\VX (X∗, 2ε) occurs only a finite number

of times. That is, P (D2) = 0, and it implies P (B2) = 0. Theorem is proved.

Remark 1. In case the set of optimal solutions X∗ = ∅, application of the above
described method for solving the problem (1) leads us to the solution of the following
problem:

{
Φ(x) =max

y∈Yϕ

ϕ(x, y) → min

x ∈ X.
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