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Abstract. Structural network analysis is an intricate problem. In fact, the majority
of techniques that have been developed so far are only applicable to investigate deter-
ministic network models. This gives rise to develop novel graph-theoretical methods
for applying them to more complex graphs and especially to statistically inferred net-
works. In this regard, we review methods for analyzing complex networks structurally
putting the special emphasis on network partitioning and quantifying network com-
plexity. Both areas are of general importance in structural graph theory as well as
useful for exploring biological networks.

Mathematics subject classification: 68R01, 68R10, 90B10, 92E10.
Keywords and phrases: Complex networks, graph classes, graph clustering,
graph partitioning, biological networks, structural complexity, information measures,
entropy, quantitative graph theory.

1 Introduction

Prominent areas in which graph-theoretical methods have been intensely used
are, e.g., social network analysis [71,110], biological network analysis [59], chemical
graph theory [103] and investigating technological networks [82]. In terms of de-
veloping methods for exploring complex networks, random graph models have been
frequently investigated [37, 41]. But besides merely exploring random graphs, it
turned out that many real world phenomena can be modeled by using non-random
network topologies and, hence, meaningful methods for their structural analysis are
crucial [30]. From a mathematical point of view, either descriptive or quantitative
methods could be used to explore graphs structurally. To name some well-known ex-
amples, we mention metrical properties of graphs [97], general graph measures [54],
graph polynomials [50], graph decompositions [20], graph colorings [54], graph com-
plexity [72] and the partitioning of graphs [22]. Importantly, we want to remark
that most of the just mentioned approaches are only suitable to analyze determi-
nistic graphs. But the observation that complex networks are often the result of
a dynamical processes led to the insight that their analysis can not be adequately
performed in a deterministic framework [40]. Thus, there is a strong need to design
novel techniques to meet this challenge.

In this paper we provide a review about the structural analysis of complex net-
works. Here, we focus on such techniques which have been preferably used in com-
putational and systems biology. Concretely, we will put the emphasis on approaches
to partition complex networks and to quantify network complexity. Both problems
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are challenging and there is a future need to find novel approaches when considering
networks which were inferred statistically. Altogether, the main goal of this review
paper is to demonstrate the usefulness and potential of Structural Graph Analysis
and to stimulate the interest of other researchers to observe graph theory as a tool
for solving interdisciplinary problems.

2 Graph-Theoretical Applications in Bioinformatics and

Computational Biology

Various examples in the scientific literature have been demonstrated that bio-
logical phenomena and processes can be tackled by applying graph theory, see, e.g.,
[38,80,84].

In this section, we provide a general overview about important areas dealing
with graph-based approaches in computational biology:

• Phylogenetics: During the last thirty years, various graph-based techniques
have been successfully applied for solving problems in phylogenetics, see, e.g.,
[42, 89, 99]. A prominent example, for instance, is phylogenetic tree recon-
struction that has been a major research goal for biologists because it often
serves as indispensable interpretive framework for the analysis of evolutionary
processes by representing the interrelationships among biological entities as
graphs [42, 59]. Further, distance-, character-, and likelihood-based methods
are three important approaches which have been used for phylogenetic tree
analysis [42,99,100]. Besides the problem of inferring phylogenetic trees from
biological data sets, the structural analysis of such graphs has been found as
crucial. In this context, various tree distance measures and metrics [89,92,93]
were used to determine the structural similarity between phylogenetic trees.

• RNA-Structure Analysis: Graphs play an important role when analyzing se-
condary structures inferred from biological sequences [109,111]. For example,
Nussinov [79] did the first attempt to calculate secondary structures for sim-
plified energy models based on base-pairing rules. After the model was elabo-
rated, it turned out that there is a further need for considering loops in the
RNA secondary structure and, consequently, Zuker and Stiegler [116] proposed
a recursive algorithm to take the loop types [116] into account. Moreover, an
important contribution when analyzing secondary structures comparatively
was proposed by McCaskill [70]. In order to compare secondary structures
structurally, it turned out to be useful encoding them as trees and to use exis-
ting tree distance measures [92,101] for determining their similarity. Note that
a recent survey on graph-based techniques to model and process A-structures
has been contributed by Washietl et al. [109].

• Molecular Biology: For instance, regulatory, signal transduction, or metabolic
networks are often represented by networks to analyze molecular biological
processes [57]. For this, special graph classes like bipartite graphs, hypergraphs
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and directed acyclic graphs [58, 59, 67] were particularly used. Apart from
applying existing graph classes [21] to represent networks, graph-theoretical
techniques have been intensely used to analyze molecular biological pathways.
Exemplarily, we here mention a contribution due to Rosselló et al.[90] who
describe development pathways by using graph grammars.

• High-Throughput Analysis: A hype dealing with employing graphs in com-
putational biology started after the development of high-throughput tech-
niques [24, 38] because they allow a large-scale identification of genes, RNAs,
proteins. In this context, a key problem is to identify and study functional
components of a biological system meaningfully, based on their molecular in-
teractions involving, e.g., genes, proteins or metabolites, instead of exploring
these components in isolation. For example, a challenging problem in the
above mentioned area is to investigate complex diseases by investigating un-
derlying network representations [38]. To tackle these problems, methods from
statistical data analysis and machine learning have been used [26,38,39].

• Drug Design and Bio-chemical Graph Analysis: A still challenging and ongo-
ing problem is to predict physico-chemical or toxic properties of bio-chemical
molecules using structural graph descriptors [33, 102]. Particularly entropy-
based measures to perform such studies within QSPR (quantitative structure-
property relationship) and QSAR (quantitative structure-activity relationship)
have been found to be powerful, see, e.g., [8,14,33]. But because a large num-
ber of measures to quantify molecular complexity have been developed so far,
there is a strong need to examine which kind of structural information the
measures do detect. Contributions to shed light on this problem were recently
made in [7,32]. Similarly, Pathway Analysis [88] using graph-based techniques
became a crucial field when analyzing bio-chemical processes and complex di-
seases [38]. In particular, it allows, e.g., the identification of gene networks
and to study how genes are regulated [31].

3 Applied Graph Partitioning

The investigation of general graph partitioning methods for finding community
structures is currently of considerable interest when analyzing complex networks
quantitatively as well as descriptively [49, 78, 115]. In this section, we briefly de-
scribe such methods by using graph partitioning. Before we start outlining concrete
techniques, we sketch some seminal work concerning classical graph partitioning [61].

3.1 Classical Methods

To understand the underlying idea of graph partitioning properly, we firstly state
the following definition that describes the problem intuitively, see, e.g., [60].

Definition 1. Let G = (V,E) be a graph. Then, we define the k-way graph parti-

tioning problem as follows: Partition the vertex set V into k subsets V1, V2, . . . , Vk
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such that Vi

⋂

Vj = ∅, i 6= j, |Vi| = n
k
,
⋃

i Vi = V , and the number of edges of E

whose incident vertices belong to different subsets is minimized.

An important contribution in this area is the algorithm due to Kernighan and
Lin [61]. Apart from this work, other approaches to partition graphs based on
spectral clustering and multilevel partitioning have been explored, see, e.g., [76]. For
instance, spectral methods produce a partition based on the eigendecomposition [51]
of the graph. Also, spectral approximations for a variety of partitioning criteria
have been formulated including the minimum cut [83], ratio cut [25] and normalized
cut [95]. Interestingly, most of the multilevel algorithms are based on the work
we already mentioned above, see [61]. A strong point of this heuristic algorithm is
the fact that its time complexity is O(|V |3) on sparse graphs [61]. Improvements
possessing lower computational complexity can be found in [106]. Let’s now describe
the original method presented in [61] in more detail: Let G = (V,E) be a graph with
weighted edges (costs) and |V | = 2n. Let S be a set of 2n points with an associated
cost matrix, C = (cij), i, j = 1, . . . , 2n. Further, without loss of generality, it is
assumed [61] that C is a symmetric matrix and cii = 0,∀ i. Then, the aim of the
algorithm is to partition S into two sets A and B, |A| = |B| = n, such that the
so-called external costs T =

∑

A×B cab will be minimized.
Note that the work initiated by Kernighan and Lin [61] has already been suc-

cessfully improved, see, e.g., [43, 60, 61]. A well-known example of such a recently
developed multilevel approach is the METIS algorithm [60] that aims to partition
graphs from different application domains efficiently. In addition, we mention an-
other fast multi-level algorithm developed by Dhillon et al. [34] that directly opti-
mizes various weighted graph clustering objectives. In particular, Dhillon et al. [34]
show that a general weighted k-means objective is mathematically equivalent to a
weighted graph clustering objective. The main advantage of this method is that it
approximates graph clustering objectives without requiring an eigendecomposition,
which can be computationally intensive for large graphs [34]. Another advantage of
this algorithm, compared to other multilevel approaches, is that it does not require
the partitions to be of equal sizes [34].

3.2 Community Structure Detection

In this section, we sketch known approaches to detect community structures
within biological networks. Generally, to find community structures in complex
networks, classical and recent graph partitioning methods have often been ap-
plied [48, 59]. Until now, the concept of graph partitioning has been used for de-
tecting community structures in social networks, WWW-graphs, and biological or
biochemical networks [44,48,56,59, 77]. Informally speaking, the community struc-
ture property of a network can be understood by considering a graph in which the
vertices are joined together in tightly-knit groups and there are only looser connec-
tions between them, see [48]. It is important to mention that the traditional method
for detecting community structures in networks is hierarchical clustering [48]. If we
start with a weighted graph G = (V,E), |V | = n, (i) we first have to calculate a
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weight wij for every pair i, j of vertices in the network, (ii) select all vertices in
the network with no edges between them and (iii) add edges between pairs one by
one in the order of their weights, starting with the pair with the strongest weight
and progressing to the weakest, see [48]. If edges are added, the resulting graph
shows a nested set of connected subsets of vertices, which are expected to be the
communities [48]. Note that algorithms of this kind are called agglomerative, see,
e.g., [12].

To overcome existing shortcomings of agglomerative methods, see, e.g., [35], Gir-
van and Newman [48] proposed an alternative approach for detecting communities
that represents a so-called divisive algorithm [48]. The main procedure works as
follows: Start with the entire graph and iteratively cut the edges, thus dividing the
network progressively into smaller and smaller disconnected sub-networks finally
identified as the communities. The crucial point of this algorithm is the selection of
the edges to be cut, which has to be those connecting communities and not those
within them. The main steps of algorithm proposed in [48] can be stated as follows:

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweenness for all edges affected by the removal.

4. Repeat from the step 2 until no edges remain.

Until now, several improvements and extensions using shortest path versions of this
algorithm have already been proposed [48]. For example, Holme et al. [56] modified
this method and then applied this modification, based on global centrality measure
(betweenness), to a number of metabolic networks from different organisms for fin-
ding communities that correspond to functional units within these networks. Also,
Wilkinson and Huberman [113] have applied the approach to a network representing
relationships between genes, as established by the co-occurrence of gene names found
in published research articles. For finding communities in network they used a
nonlocal process exploiting the concept of betweenness centrality.

For finalizing, we state two more contributions in this area. The CONGA
(Cluster-Overlap Newman Girvan Algorithm) [52] is an extension of [48]. It can
be also used with undirected, unweighted graphs and performs hierarchical clus-
tering but it allows overlapping clusters. Finally, the CFinder algorithm [81], that
is a bottom-up approach, provides a method to interpret communities as union of
cliques. For more details refer to [48,81].

4 Topological Complexity Measures for Graphs

The problem of determining the structural complexity of a network can be under-
stood as characterizing the graphs taking structural features into account [11,17,62].
Clearly, this task is not uniquely defined because no complexity index can measure
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all structural features which contribute to the complexity of a graph. Before star-
ting with describing concrete non-information-theoretic and information-theoretic
complexity measures, we outline existing applications in computational biology and
bioinformatics:

• To investigate the evolution of PPI domains and the impact on organismal
complexity and the complexity of protein-protein interaction networks [114].

• General studies to examine how, e.g., biological and technological networks
differ by calculating their structural complexity [108].

• To find interrelations between the structure and complexity of the path-
ways and the phylogeny of species by using non-information-theoretic and
information-theoretic complexity measures [17,69].

• To use entropy-based measures for problems in QSPR (quantitative structure-
property relationship) and QSAR (quantitative structure-activity relation-
ship), see, e.g., [8, 14,33].

• To employ non-information-theoretic and information-theoretic measures in
the field of chemoinformatics [47], e.g., to perform correlation analyses [7] and
develop similarity/diversity measures [107].

4.1 Distance-Based Measures

A large number of complexity measures that have been developed so far are
based on distances in a graph [102]. As a strong point, such distances are simple to
calculate by any shortest path algorithm to be applied to the underlying adjacency
matrix. Often, a weak point of such measures is that they do not capture structural
information uniquely, that means, the measures are highly degenerated [64]. Let
G = (V,E) be a graph. We now start by expressing the well-known Wiener-index
[112],

W (G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

d(vi, vj). (1)

Originally, it was developed to detect branching of chemical graphs [53]. d(vi, vj)
denotes the shortest distance between vi and vj . Similarly, the Harary-index [4,36],

H(G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

(d(vi, vj))
−1, i 6= j, (2)

is based on reciprocal distances. A more complex example of such a measure is the
Balaban J-index [2],
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J(G) :=
|E|

µ + 1

∑

(vi,vj)∈E

[DSiDSj ]
− 1

2 . (3)

Note that DSi denotes the distance sum (row sum) of vi ∈ V and µ := |E|+1−|V | is
the cyclomatic number. Other important distance-based measures are, for instance,
the mean distance deviation [97],

∆µ(G) :=
1

|V |

|V |
∑

i=1

|µ(vi) − µ̄|, (4)

where

µ(vi) :=

|V |
∑

j=1

d(vi, vj) and µ̄ :=
2W

|V |
, (5)

the product of row sums-index [91] given by

log
(

PRS(G)
)

:= log





|V |
∏

i=1

µ(vi)



 , (6)

and, finally, the hyper-distance-path index [102],

DP (G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

d(vi, vj) +
1

2

|V |
∑

i=1

|V |
∑

j=1

(

d(vi, vj)

2

)

. (7)

For further distance-based measures, refer to [102].

4.2 Other and Related Complexity Indices

Besides distance-based measures, various other complexity indices for networks
based on other graph invariants have been developed. To pursue outlining known
graph complexity measures, we now state some important examples which have been
used to measure molecular complexity [86]. Note that the purpose for deriving such
indices was either to find measures with low computational complexity or with high
discrimination power [64]. For example, the index of total adjacency [17] can be
easily derived from the underlying adjacency matrix,

A(G) :=
1

2

|V |
∑

i=1

|V |
∑

j=1

aij. (8)

aij denotes the entry in the i-th row and j-th column of A. From this, it straight-
forwardly follows the normalized edge complexity [17],

E|V |(G) :=
A

|V |2
. (9)
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Let kvi
be the degree of the vertex vi ∈ V . Interestingly, the vertex degrees seen as

a graph invariant have also been used to define measures to quantify the structural
complexity of graphs. In order to list some well-known examples, we now state the
Zagreb group-indices [36],

Z1(G) :=

|V |
∑

i=1

kvi
or Z2(G) :=

∑

(vi,vj)∈E

kvi
kvj

, (10)

and the Randić connectivity-index [85],

R(G) :=
∑

(vi,vj)∈E

[kvi
kvj

]−
1
2 . (11)

An interesting generalization of such measures was developed by Bonchev [14] who
developed the so-called Overall (OX) indices given by

OX(G) :=

|E|
∑

k=0

kX; {OX(G)} = {0X, 1X, . . . , |E|X}. (12)

OX is called the overall value of a certain graph invariant X by summing up its values
in all subgraphs, and partitioning them into terms of increasing orders (increasing
number of subgraph edges k). For instance, OX = SC is equal to the subgraph
count [14,17].

More recent complexity measures were developed by Kim et al. [62]. To name
an example, we here express the so-called Efficiency complexity Ce of a graph G

that is based on calculating path lengths. Starting from

E′(G) :=
2

|V |(|V | − 1)

∑

i

∑

j>i

1

d(vi, vj)
, (13)

expressing the arithmetic mean of all inverse path lengths. Further, by defining

Epath(G) :=
2

|V |(|V | − 1)

|V |−1
∑

i=1

(|V | − i)

i
, (14)

the Efficiency complexity Ce yields to

Ce(G) :=

(

E′ − Epath

1 − Epath

)(

1 −
E′ − Epath

1 − Epath

)

∈ [0, 1]. (15)

Moreover, a measure that crucially relies on the largest eigenvalue of an undirected
graph G was defined in [62]. If r stands for the largest eigenvalue calculated from
the adjacency matrix of G, then, the graph index Cr is defined as

Cr := 4cr(1 − cr) ∈ [0, 1], (16)
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where

cr :=
r − 2 cos

(

π
N+1

)

|V | − 1 − 2 cos
(

π
|V |+1

) . (17)

Numerical examples to calculate these measures and details regarding their inter-
pretation can be found in [62].

4.3 Information-theoretic Complexity Measures

The key concept for obtaining a further class of important graph complexity
measures relies on Shannons’s information theory [94]. Starting from inferred struc-
tural features of a network, the crucial step for quantifying its structural information
is to infer a probability distribution and, then, to apply Shannons’s entropy formula.
As a result, one obtains topological entropies for characterizing networks [13,32,98].
Prior to start explaining concrete information measures, we emphasize that the main
application domains of general information-theoretic methods to analyze networks
have been biology [27,68,73,87], ecology [55,105], mathematical chemistry [6,8,13],
software technology [1], and operations research [23,45].

4.3.1 Classical Information Measures for Graphs

The development of information measures represented by entropies to character-
ize the underlying topology of a given network was the starting point of applying in-
formation theory to investigate biological and chemical systems structurally [87,104].
These measures are based on the principle that by assuming a graph G = (V,E), a
graph invariant X and an equivalence criterion, distributions of X can be obtained.
Particularly, this process can be understood by considering the following scheme [13]:





1 2 · · · k

|X1| |X2| · · · |Xk|
p1 p2 · · · pk



 . (18)

The first row of this matrix contains the equivalency classes and the second row the
cardinalities of the obtained partitions, respectively. The probability values, calcu-
lated by pi = |Xi|

|X| , for each partition form the third row. Hence, PG = (p1, . . . , pk)
represents a probability distribution. Then, the application of the well known
Shannon-entropy [94]

H(X) := H (p(x1), . . . , p(xk)) = −
k
∑

i

p(xi) log(p(xi)), (19)

of a discrete random variable X = (x1, x2, . . . , xk) leads to the following graph
entropies [13],

It(G) := |X| log(|X|) −
k
∑

i=1

|Xi| log(|Xi|), (20)
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Im(G) := −
k
∑

i=1

pi log(pi) = −
k
∑

i=1

|Xi|

|X|
log

(

|Xi|

|X|

)

. (21)

It(G) is called the total structural information content of G and can be recalculated
by using Im(G). The latter is called the mean structural information content of a
graph.

Now, by using certain graph invariants X, special entropy measures can be ob-
tained which serve as graph complexity measures. The starting point by developing
concrete measures was done by Rashevsky [87] and Trucco [104]. Rashevsky’s infor-
mation measures to characterize G are concretely given by [87]

IV
t (G) := |V | log(|V |) −

k
∑

i=1

Ni log (Ni) , (22)

IV
m(G) := −

k
∑

i=1

|Ni|

|V |
log

(

|Ni|

|V |

)

, (23)

where |Ni| denotes the number of topologically equivalent vertices in the i-th vertex
orbit of G. k stands for the number of different vertex orbits. Trucco’s measure [104]
can be analogously obtained by using the edge automorphism group. After this
seminal work, Mowshowitz [74] also investigated the measure IV

m (see Equation (23))
in depth and additionally explored the chromatic information content of a graph [75]:

Ic(G) := min
V̂

{

−
h
∑

i=1

ni(V̂ )

|V |
log

(

ni(V̂ )

|V |

)}

. (24)

V̂ = {Vi|1 ≤ i ≤ h} is an arbitrary chromatic decomposition of G, |Vi| = ni(V̂ ),
and h = χ(G) is the chromatic number of G. Note that the computation of the
chromatic number is a costly procedure for arbitrary graphs [54].

Apart from defining and calculating information measures for networks, there
is also a strong need to understand the meaning of these measures in depth. This
could be done by establishing their mathematical properties under certain theoretical
assumptions (e.g., bounds and the behavior under certain graph operations etc.).
Such a concrete result has been proven by Mowshowitz [74].

Theorem 1. For graphs G and H

IV
m(G × H) ≤ IV

m(G) + IV
m(H), (25)

and

IV
m(G ◦ H) ≤ IV

m(G) + IV
m(H), (26)

where × and ◦ represent the cartesian product and composition, respectively.
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The assertion of this theorem is that the information measure is semi-additive on
the cartesian product and on the composition of two graphs. Interestingly, we em-
phasize that formal properties like the just shown one or bounds for the entropies (by
using important graph classes) are unknown for the majority of network information
measures.

After the just outlined work, Bonchev [13,18] introduced the so-called magnitude-
based information indices by defining a weighted probability scheme. These indices
can be considered as generalization of the measures due to Rashevsky and Mow-
showitz. It follows easily that such a scheme can be analogously applied to a system
with |N | elements to group these elements into k partitions according to the mag-
nitude. Then, the modified scheme is [13]:













1 2 · · · k

|N1| |N2| · · · |Nk|
p1 p2 · · · pk

w1 w2 · · · wk

pM
1 pM

2 · · · pM
k













. (27)

In addition to the already existing rows of the introduced probability scheme (see
Matrix (18)), the magnitudes representing weights (w1, w2, . . . , wk) and the weighted
probability values (pM

1 , pM
2 , . . . , pM

k ) were introduced [13,18]. Because it holds M =
∑k

i=1 wiNi and pi = wi

M
, the graph entropies represented by Equation (20) and

Equation (21) can be rewritten as

IM
t (G) := M log(M) −

k
∑

i=1

Niwi log(wi), (28)

IM
m (G) := −

k
∑

i=1

Niwi

M
log
(wi

M

)

. (29)

By using this approach, concrete magnitude-based information were defined, for
instance [13],

ID(G) := −
1

N
log

(

1

N

)

−

ρ(G)
∑

i=1

2ki

N2
log

(

2ki

N2

)

, (30)

IW
D (G) := W (G) log(W (G)) −

ρ(G)
∑

i=1

iki log(i). (31)

ki is the occurrence of a distance possessing value i in the distance matrix of G. A
strong point of these measures is their low degeneracy [63] compared to the classical
measures mentioned in the beginning of this section. In general, one calls such a
measure degenerated if for more than one graph the measure possesses the same
value [3]. By using chemical graphs, numerical results are reported in [13,65].
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Again Bonchev [16,17] developed a substructure-based approach to detect mole-
cular complexity. Let G = (V,E) be a graph and X be a graph invariant. Then,
the following entropy-based complexity measure

I(G,OX) := OX log(OX) −

|E|
∑

k=0

kX log
(

kX
)

, (32)

relies on the overall value OX (see Equation (12)) by summing up its values in
all subgraphs [16]. The values will be partitioned into terms of increasing or-
ders (increasing number of subgraph edges k) [16]. As an example, one can set
OX = SC, i.e., OX equals the subgraph count [16]. Starting from this construc-
tion, Bonchev [16, 17] obtained several overall information indices such as overall
connectivity (the sum of total adjacency of all subgraphs) [14], overall Wiener-index
(the sum of total distances of all subgraphs) [15], overall Zagreb-indices [19], and the
overall Hosoya-index [16]. Known earlier and also substructure-based contributions
to detect molecular complexity were developed by, e.g., Bertz et al. [9, 10]. As a
further remark, note that many further information measures for graphs which are
similar to the outlined ones or which are based on the same construction principle
(e.g., simple finite probability scheme, weighted probability scheme, etc.) can be
found in [8, 13,17,33,102].

To finalize this section as well as to show a different paradigm to derive graph
entropies, we state the well-known Körner entropy [66,96] that has been applied in
information theory. The measure is defined by

H(G,P ) := lim
t−→∞

min
U⊆V t,P t(U)>1−ǫ

1

t
log(χ(Gt(U))). (33)

For V ′ ⊆ V (G), the induced subgraph on V ′ is denoted by G(V ′) and χ(G) is the
chromatic number [5] of G, Gt the t-th co-normal power [66] of G and

P t(U) :=
∑

x∈U

P t(x). (34)

Examples and an interpretation of this measure can be found in [66,96].

4.3.2 Parametric Information Measures

To compute the structural information content of arbitrary large networks, one
needs a method whose underlying algorithm is efficient, i.e., its time complexity is
polynomial. From Section (4.3.1), it follows that classical network information mea-
sures are often rely on algebraic principles, e.g., determining automorphism groups
of graphs or chromatic decompositions. However it is known that for arbitrary net-
works, the computational complexity of the corresponding algorithms is often very
high [46].

In order to overcome this problem, we now present parametric entropy measures
whose time complexity has been proven to be polynomial [28]. The key principle to
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construct such information measures is as follows: Let G = (V,E) be an arbitrary
graph and let S be a given set, e.g., a set of vertices or paths etc. The function
f : S −→ R+ is called an abstract information functional of G. Instead of inducing
partitions using an equivalence criterion (see Section (4.1)), we start from an abstract
information functional f and define the quantity [29],

pf (vi) :=
f(vi)

∑|V |
j=1 f(vj)

, ∀ vi ∈ V. (35)

Because the following equation

pf (v1) + pf (v2) + . . . + pf (v|V |) = 1, (36)

holds by definition, these entities can be interpreted as vertex probabilities. Hence,
(pf (v1), . . . , p

f (v|V |)) forms a probability distribution. From this, it is straightfor-
ward to obtain families of graph entropy measures like

If (G) := −

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log

(

f(vi)
∑|V |

j=1 f(vj)

)

, (37)

or

Iλ
f (G) := λ



log(|V |) +

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log

(

f(vi)
∑|V |

j=1 f(vj)

)



 , (38)

λ > 0. By incorporating special information functionals, one clearly obtains special
entropies. To give an example for a special information functional that is based on
metrical properties, we express [29]

fV1(vi) := αc1|S1(vi,G)|+c2|S2(vi,G)|+···+cρ(G)|Sρ(G)(vi,G)|,

ck > 0, 1 ≤ k ≤ ρ(G), α > 0. (39)

ck are arbitrary real positive coefficients. ρ(G) denotes the diameter of G and

Sj(vi, G) := {v ∈ V | d(vi, v) = j, j ≥ 1}, (40)

the j-sphere of a vertex vi of G, respectively. fV1 is a parametric information
functional that depends on both the parameter α and the vector (c1, c2, . . . , cρ(G)).
The meaning of these parameters has been explained in [29]. Then, the resulting
(parametric) information measure representing the entropy of the underlying graph
topology is

IfVi (G) := −

|V |
∑

i=1

fVi(vi)
∑|V |

j=1 fVi(vj)
log

(

fVi(vi)
∑|V |

j=1 fVi(vj)

)

, i = 1, 2. (41)

Of course, it is also possible to define

fV2(vi) := c1|S1(vi, G)| + c2|S2(vi, G)| + · · · + cρ(G)|Sρ(G)(vi, G)|, (42)
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that does not depend on α. Importantly, the process to design an information
functional and, thus, the resulting information measures strongly depends on the
specific problem when characterizing a graph using an information measure.

5 Summary and Conclusion

In this paper, we reviewed some concepts known in structural graph analysis.
We emphasized that we particularly put the underscore on such methods which have
been used in bioinformatics and systems biology. After outlining graph-theoretical
approaches in these areas, we firstly began to survey graph partitioning methods to
find clusters or communities within complex networks. Due to the steadily increas-
ing complexity of real-world networks, we believe that it will be fruitful to further
develop this field to process statistically inferred networks.

As future work, we want to focus on approaches combining graph-theoretical
and information-theoretic techniques. Secondly, we studied the challenging problem
to determine the structural complexity of graphs and reviewed classical and recent
methods. We want to emphasize that finding a meaningful complexity measure
to quantify structural information of a graph is far from trivial and usually not
unique. These facts give an idea about the complexity of such measures. Also, in
consideration of the fact that a vast number of graph complexity measures have been
developed so far, the problem to examine which kind of structural information the
measures do detect is not solved properly. Therefore, we would like to shed light
on this important aspect in the future by examining correlations and interrelations
between graph complexity measures.
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Int. Közl, 1960, 5, 17–61.

[42] Felsenstein J. Coalescents, phylogenies, and likelihoods. Biological Bulletin, 1999, 196,
343–344.

[43] Fiduccia C.M., Mattheyses R.M. A linear-time heuristic for improving network parti-
tions. Proceedings of the 19-th Design Automation Conference, pages 241–247, 1982.



TOWARDS STRUCTURAL NETWORK ANALYSIS 19

[44] Flake G.W., Lawrence S.R., Giles C.L., Coetzee F.M. Self-organization and identifi-
cation of web communities. IEEE Computer, 2002, 35, 66–71.

[45] Frizelle G., Woodcock E. Measuring complexity as an aid to developing operational
strategy. International Journal of Operations & Production Management, 1995, 15, 26–39.

[46] Garey M.R., Johnson D.S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman, 1979.

[47] Gasteiger J., Engel T. Chemoinformatics - A Textbook. Wiley VCH, Weinheim, Germany,
2003.

[48] Girvan M., Newman M.E.J. Community structure in social and biological networks. PNAS,
2002, 99, 7821–7826.

[49] Gleiser P.M., Danon L. Community structure in jazz. Advances in complex systems, 2003,
6(4), 565–574.

[50] Godsil C., Royle G. Algebraic Graph Theory. Graduate Texts in Mathematics. Academic
Press, 2001.

[51] Golub G.H., Van Loan C.F. Matrix Computations. John Hopkins University Press, Bal-
timore, USA, 1996.

[52] Gregory S. An algorithm to find overlapping community structure in networks. Proceedings
of 11th European conference on principles and practice of knowledge discovery in databases
(PKDD’07), pages 91–102, 2007.
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