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Abstract. It is proved that any free Moufang loop can be embedded in to a loop
of invertible elements of some alternative algebra. Using this embedding it is quite
simple to prove the well-known result: if three elements of Moufang loop are bound
by the associative law, then they generate an associative subloop. It is also proved
that the intersection of the terms of the lower central series of a free Moufang loop is
the identity and that a finitely generated free Moufang loop is Hopfian.
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This work offers another way of examining Moufang loops, and namely, with the
help of alternative algebras. It is well known that for an alternative algebra A with
unit the set U(A) of all invertible elements of A forms a Moufang loop with respect
to multiplication. It is known also that if L is a Moufang loop, then its loop algebra
FL is not always alternative, i.e. the Moufang laws are not always true in F'L [1].
These themes are stated in survey [2] and [3] in details.

However, let L be a free Moufang loop. It is shown that if we factor the loop
algebra F'L by some ideal I, then F'L/I will be an alternative algebra and the loop
L will be embedded in to the loop of invertible elements of algebra FL/I. This is
a positive answer to the question raised in [4]: is it true that any Moufang loop
can be imbedded into a homomorphic image of a loop of type U(A) for a suitable
unital alternative algebra A? The equivalent version of this question is: whether the
variety generated by the loops of type U(A) is a proper subvariety of the variety of
all Moufang loops?

The findings of this paper also give a partial positive answer to a more general
question (see, for example, [3]): is it true that any Moufang loop can be embedded
into a loop of type U(A) for a suitable unital alternative algebra A? A positive
answer to this question was announced in [5]. Here, in fact, the answer to this
question is negative: in [4] the author constructed a Moufang loop, which is not
embedded into a loop of invertible elements of any alternative algebra.

Using this embedding it is quite simple to prove the well-known Moufang Theo-
rem: if three elements of Moufang loop are bound by the associative law, then they
generate an associative subloop. The Magnus Theorem for groups, stating that the
intersection of the terms of the lower central series of a free group is the identity, is
well known. This paper proves an analogous result for free Moufang loops. It also
proves that a finitely generated free Moufang loop is Hopfian.
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1 Preliminaries

1

Aloop (L,-) = L is called IP-loop if the laws ~'z-zy = yz -2~ = y are true in

it, where ~'zz = zz=! = 1. In IP- loops ~'z = 27! and (zy)~' = y~'z~!. A loop
is Moufang if it satisfies the law
x(y - zy) = (zy - 2)y. (1)

Every Moufang loop is an I P-loop. A subloop H of a loop L is called normal in L
if
tH=Hzx, z-yH=xzy-H, H-zy=Hz -y (2)

for every x,y € L.

For elements z,y, z of a loop, the commutator (x,y) and the associator (z,y,z)

are defined by
zy = (yx)(z,y), (2y)z = (x(yz))(z,y,2). 3)

The set of all elements z of a loop L which commute and associate with all
elements of L, so that for all a,b in L, (a,2) = 1, (2,a,b) = 1, (a,2,b) = 1,
(a,b,z) =1 is a normal subloop Z(L) of L, called its center.

If Zi1(L) = Z(L), then the normal subloops Z;11(L) : Zit1(L)/Zi(L) =
Z(L/Z;(L)) are inductively determined. A loop L is called centrally nilpotent of class
n if its upper central series has the form {1} C Z1(L) C ... C Z,,—1(L) C Z,(L) = L.

If H is a normal subloop of a loop L, there is a unique smallest normal subloop
M of L such that H/M is a part of the center of L/M, and we write M = [H, L].
From here it follows that M is the normal subloop of L generated by the set
{(z,2),(z,2,9), (x,2,y), (z,y,2)|Vz € H,Vx,y € L}. The lower central series of
L is defined by Ly = L, Lix1 = [L;,L] (i > 1) [2]. Consequently, L,4+1 is the
normal subloop of L generated by the set {(g,x),(g9,x,y), (x,9,9), (x,y,9)|Vg € Ly,
Va,y € L}.

Let F' be a field and L be a loop. Let us examine the loop algebra F'L. This is
a free F-module with the basis {¢g|¢ € L} and the product of the elements of this
basis is determined as their product in loop L. Let H be a normal subloop of loop
L. We denote the ideal of algebra F'L, generated by the elements 1 — h (h € H) by
wH. If H = L, then wL is called the augmentation ideal of algebra F'L [2].

2 Embedding of free Moufang loops in to alternative algebras

Let us determine the homomorphism of F-algebras ¢: FL — F(L/H) by the
rule (> Agq) = > A\¢Hgq. Takes place

Lemma 1. Let H, Hy, Hy be normal subloops of loop L. Then

1) Kerp = wH;

2)1—hewH if and only if h € H;

3) if the elements h; generate the subloop H, then the elements 1 — h; generate
the ideal wH ; if Hy # Hs, then wH, # wHo; if Hi C Hs, then wHy1 C wHsy; if
H = {Hl,Hg}, then wH = le +wH2;
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4) wL = {ZqEL )‘q(J| ZqEL Af] = 0}7

5) FL/JwH = F(L/H), wL/wH =w(L/H);

6) the augmentation ideal is generated as F-module by the elements of the form
l—q(qge L)

Proof. 1) As the mapping ¢ is F-linear, then by (2) for h € H,q € L we have
©((1 —h)q) = Hg— H(hq) = Hq— Hq = 0, i.e. wH C Kerp. Let now K =
{kj|lj € J} be a complete system of representatives of cosets of loop L modulo
the normal subloop H and let ¢(r) = 0. We present r as r = uiky + ... + riky,

where u; = Y,y )\Ef)h, k; € K. Then 0 = (1) = p(u1)p(kr) + ... + @(up)p(ke) =

hen A%l))gp(k‘l)—i-. A hen )\g))cp(kt). As o(ky), ..., ¢(k;) are pairwise distinct,
then for all © >, 4 )\S) = 0. Hence —u; = > ,cpy )\S)(l —h) = > hen )\S) =
Y oheH )\EZ)(l — h) is an element from wH. Consequently, Kerp C wH, and then
kerp = wH.

2)If ¢ ¢ H, then Hq # H. Then o(1 —q) = H— Hq #0,ie by 1l)1—q¢
Kerp = wH.

3) Let elements {h;} generate subloop H and I be an ideal, generated by the
elements {1 — h;}. Obviously I C wH. Conversely, let ¢ € H and g = g192,
where g1, g2 are words from h;. We suppose that 1 —g;,1 —go € I. Then 1 — g =
(I1—qg1)g2+1—gy € I,ie. wH C 1. Hence I = wH. Let H; # Hj (respect.
Hy C Hy) and g € H1,9 ¢ Hy. Thenby 1) 1 —g € wH;, but 1 — g ¢ wH,. Hence
wHy, # wHj (respect. wHy C wHs). If H = {H;, H2}, then by the first statement
of 3) wH = wH; + wHs.

4) We denote R = {3 1 Aq| >_,er, Aq = 0}. Obviously, wL C R. Conversely,
ifre Randr =3 5 A\q, then —r = —3" 1 A\qg = (D e M)l — Doper A =
Yger (1 —¢q) EwL,ie. R Cw@Q. Hence wL = R.

5) Mapping ¢ : FL — F(L/H) is a homomorphism of loop algebras and as by
1) Kerp = wH, then FL/wH = F(L/H). Now from 4) it follows that wL/wH =
w(L/H).

6) As (1 —¢q)¢ = (1 —qq') — (1 — ¢'), then the augmentation ideal wL is gen-
erated by elements of the form 1 — ¢, where ¢ € L. This completes the proof of
Lemma 1. O

Lemma 2. Let (L,-) be an IP-loop and let ¢ be a homomorphism of the algebra
(FL,+,-). Then the A-homomorphism image at ¢ of the loop (L,-) will be a loop.

Proof. We denote the A-homomorphism at image ¢ of the loop (L,-) by (L,). It
follows from the IP-loop identity 2! - zy = y that ¢(z7!) = (px)~! and (pz~!) %
(prxpy) = py, (px) tx(prxpy) = py, T 1x(TxY) =7. Let @,b € L. It is obvious
that the equation @xx = b is always solvable and as @~ ' (@xx) = @ !xb, x = a 1 xb,
then it is uniquely solvable. It can be shown by analogy that the equation y*a@ = b

is also uniquely solvable. Therefore, (L, ) is a loop, as required.

Now, before we pass to the presentation of the basic results, we give the con-
struction of free I P-loop with the set of free generators X = {x1, 2, ...}, using ideas
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from [2]. To the set X we add the disjoint set {$1_1,x2_1, ...}. Let us examine all
groupoid words L(X) from the set {z1, ml_l, T, a;2_1, ...} relative to the multiplica-
tion (-) and let e denote the empty word. For the words from L(X) we define the
inverse words: 1) for z; € X the inverse will be xi_l, and for a:i_l the inverse will be
T, i.e. (xi_l)_l =x;; 2) if u-v € L(X), then (u-v)~! = v~1-u~!. Further, we define
two words u, v in F(X) to be Moufang-equivalent, u = v if one can be obtained from
other by a sequence of substitutions, each of which replaces a subword (rs - r)t by
r(s - rt) and vice-versa, where r,s,t are any words in F(X). By a contraction pu
of a word in F(X) we mean the substitution at a subword of the form u~!(vw) or
(wv)u~!, where u =~ v, by w. The action v, opposite to contraction y we call the
expansion.

For words w, w' in F'(X) we define the (i, v)-equivalence w = w’ if one word can
be obtained from the other one by a finite sequence of substitutions, each of which
is either a contraction p or an expansion v or a single use of the Moufang law (1).
The relation = will be, obviously, a relation of equivalence on L(X). Moreover, it
will be congruence, as if a word (ujus...u,)s is given when « is some parentheses
distributions, obtained from words w1, us, ..., u,, then the replacement of the word
ui, 1 = 1,2,...,n, with words or equivalence can be realized applying to the given
word a finite number of transformations of the above described form.

With the multiplication {u} - {v} = {uv} and the inverse {u}~' = {u~'} of
congruence classes we obtain a loop with the unity {e}, as the quotient loop L(X)/ =
satisfies the laws 212y = y, yz-2~! = y. Moreover, L(X)/ = will be a free Moufang
loop on {z;}, 1 = 1,2,3,..., the set of free generators of X. We identify {x;} with
x; and we denote L(X)/ = by Lx ().

Similarly to F(X), we introduce the Moufang-equivalence, transformations u,
v and (u,v)-equivalence for words in Ly (99t). We define a word in L(91) to be a
reduced word if no reductions of type u of it are possible. If w € L(9M), then the
number [(w) of the variables in X, contained in w, will be called the length of the
word w. Now let us show that if w — wy and w — w9 are any reductions of type
u of a word w, then there is a word ws obtained from each of wy,ws by a sequence
of reductions of type u. We use induction on the length of w. If [(w) = 1, w is
already a reduced word. If [(w) = n and w = u - v where u,v are subwords of w,
then I(u) < n, l(v) < n. If both reductions w — w; and w — ws take place in
the same subword, say u, then induction on length applied to u yields the result.
If the two reductions take place in separate subwords, then applying both gives the
w3 needed. This leaves the last case where at least one of the reductions w — w;
and w — wo involves both subwords w,v of w. Then w has, for example, the form
w = u~(uv). Therefore w = v and thus [(w) < n, then by inductive hypothesis the
statement is true.

Using this statement, one may prove by induction on length that any word w
has reduced words regarding the reductions p and all such reduced words belong to
unique class of Moufang-equivalence. Then, induction on the number of reductions
and expansions connecting a pair of congruent words shows that congruent words
have the same reduced words.
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Any word in Lx(9) has a reduced words. A normal form of a word u in
Lx(9M) is a reduced word of the least length. Clear by every word in Lx (1) has
a normal form. Let u(z1,2a,...,2k), u(y1,Y2,.-.,Yn), where z;,y; € X UX "1, be
two words of normal form of w of length I(u). Lx(9M) is a free loop. Assume, for
example, y1 ¢ {x1,z2,..., 2}, then u(xy,x2,...,2x) = u(l,y2,...,yn). The length
of u(l,ya,...,yp) is strict by less than [(u). But this contradicts the minimum
condition for I(u). Consequently, all words of normal form of the same word in
Lx (9M) have the same free generators in their structure. This completes the proof
of the following statement. O

Lemma 3. Any word in Lx (M) has a reduced word that belongs to the unique class
of Moufang - equivalence, two words are (u,v)-equivalent if and only if they have
the same reduced words and all words of normal form of the same word in Lx (9)
have the same free generators in their structure.

Now we consider a loop algebra F'M of free Moufang loop (M,:) = M over
an arbitrary field F. Let M = {u = 1 — ulu € M} and we define the circle
composition ToT = T+ T — u-v. Then (M,o) is a loop, denoted sometimes as
M. The identity T of M is the zero of FM, T = 1 — 1, and the inverse of &
su!l=1-utlaswol=1-u+0-(1-u0=1-u=1a lou =7,
gou l=u4+ut—wul=1-u+l-ut—(1-u)(1-ut)=0,u'tou=0. Let
U, 0 € M. Thenwov =u+0-w=1-u+1-v—(1—u)(l-v) =1—uv =1-—71uw.
Hence M is closed under the composition (o) and

wov=1—uy. (4)

Further, by (4) @ 'o(to7)=1—-u"'(uw)=1—v=vand (Touw)ow ' =v. From
here it follows that (M, o) is a loop. We call it the circle loop corresponding to the
loop (M, ).

We define the one-to-one mapping @ : M — M by @(a) = a@. For a,b € M
by (4) we have @(ab) =1 —ab =aob = ¢(a) o ¢(b). Hence P is an isomorphism
of the loop M upon the loop M. Then, by Lemma 2, it follows that % induces
the isomorphism ¢ of the loop algebra FM upon the loop algebra F'M by the rule
@(EueMauu) = EueMau(a(u)) = YueMyU.

Clear by if the loop M is generated by free generators x1,x2,..., then the loop
M is generated by free generators Ty,®o,..., the isomorphism ¢ : FM — FM is
defined by mappings x; — T; and a word u in M has a normal form if and only if
the corresponding word w also has a normal form. This completes the proof of the
following lemma.

Lemma 4. Let FM be a loop algebra of a free Moufang loop (M,-) with free gen-
erators T1,xa,... and let M = {w =1 — ulu € M} be the corresponding loop under
the circle composition TWoT = U+ T — wv. Then the mappings r; — T; define
an isomorphism ¢ of the loop algebra FM wupon the loop algebra FM by the rule
o(Bayu) = Xy (B(u) = Layt, a € F, u € M, and a word in the loop (M,-) has
a normal form if and only if the word pu has a normal form in the loop (M, o).
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From now on, according to Lemma 4 for the algebra F'M we will consider only
monomials of normal form. Let w € FM and let ¢ be the isomorphism defined in
Lemma 4. We denote ¢(u) = u. If u = Yau;, a; € F, u; € M, is a polynomial in
FM then we denote ¢(u) = ;. Clear by ¢(u) = ¢(u), where @ = Xa,T;.

Let (a,b,c) = ab-c¢ — a - bc be the associator in algebra. If the free Moufang
loop M is non-associative, then from the definition of loop algebra it follows that
the equalities

(a,b,¢) + (b,a,c) =0, (a,b,c)+ (a,c,b) =0 Va,b,ce L, (5)

do not always hold in algebra FM. Let I(M) denote the ideal of algebra FM,
generated by all the elements of the left part of equalities (5). It follows from the
definition of loop algebra and di-associativity of Moufang loops that FM/I(M) will
be an alternative algebra. We remind that an algebra A is called alternative if the
identities (z,z,y) = (y,x,z) = 0 hold in it. Hence we proved

Lemma 5. Let FM and FM be the loop algebras of a free Moufang loop (M, -) and
its corresponding circle loop (M, o) and let I(M,-),
FM respectively, defined above. Then I(M) = I(
c¢(mw) = 0.

,0) be the ideals of FM and

I(
M) and for any w € I(M) and

Proof. We denote vi = wvy(uir,ui2,u13) = (w11, w12, u13) + (w12, u11,u13), v =
v (u21, U2, U23) = (u21, U2z, Ugs) + (Ug1, U2, uga), where u;; € M,i=1,2,j=1,2,3.
Then, as an F-module, the ideal I(M) is generated by elements of the form

w(dla s adkaviydk-i-l) o adm)v

where i = 1,2 and dq,...,d,, are monomials from F M.
Let w = w(dy,...,dg,v1,dks1,- .. ,dpy). Then by (4)

w=w(dy,... dg, (u11,u12,u13) + (w12, ur1, u13), dt1, - din) =
w(dl,...,dk,ullulg -ulg,dk+1,...,dm)—
w(dl, e ,dk,ull . ulgulg,dk+1, e ,dm)+
w(dl, PN ,dk,ulgun . U13,dk+1, PN ,dm)—
w(dl, PN ,dk,’LLm s U11U13, dk—i—ly PN ,dm) =
—(1 — w(dl, . ,dk,ullulg . ulg,dk_H, ‘o ,dm))+
(1 — w(dl,. .. ,dk,ull . ulgulg,dk+1, vy m) —

dm))
(1 —w(di,...,dg,ur2uin - w13, dgt1, - - - dm))+
dm))

(1 — w(dl, e ,dk,um . U11U13,dk+1, ceey m) =
@(81, - ,Ek, (Ull Oﬂlg) Oﬂlg,ajﬁ_l, - ,Em)—
w(dy, ..., dg, U1 o (W2 0 Ws), dikt1, - - -, dm)+
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)

w(dy,. .., dk, (T2 0 U11) 0 Urg, djptd, - - - 5 ) —
dpy) =

W(dy, ..., dg, W2 0 (U1 0 W13), Akt 1y - - -, dim)

@(817 s >akyﬁ2aak+l7 ce aam)

Similarly, w(dy,...,dg,v2,dgs1,---,dm) = W(dy,...,dg, V2, dgs1,--.,dn). Hence
I(M) C I(M).
Conversely, we consider a polynomial in fM of the form w(dy, ..., dy, Vi, dgi1,

..ydy). It is clear that w € I(M) and any element z € I(M) will be represented
as the sum of a finite number of polynomials of such a form. We have ¢(7;) = 0,
then ¢(w) = 0 and, consequently, ¢(Z) = 0. Now, let for example 7; = ;. By (4) we
get Ty = (TUpy 0 Ui2) oW1z = Ur1 © (W2 0Wig) = 1 —unuaz - w1z — (1 — uir - wppuiz) =
—ujiuie - U1z + w1 - upuiy = —(uir, uie,uig) = —wvp. Further, by the relation
Toy =1— 2y in an expression W we pass from the operation (o) to the operation
(-). Then W can be written as the sum of a finite number of monomials, each
of them containing the associators v; in its structure. Then w € I(M), and hence
z€I(M), I(M) C I(M). Consequently, I(M) = I(M). This completes the proof of
Lemma 5. O

Theorem 1. Let (M,-) be a free Moufang loop, let F be an arbitrary field and let
p: FM — FM/I(M) be the natural homomorphism of the algebra FM wupon the
alternative algebra FM/I(M). Then the image o(M,-) = (M,*) of the loop (M, ")
will be an isomorphism of these loops.

Proof. Any Moufang loop is an [P-loop, so by Lemma 2 the image of the loop
(M,-) under the A-homomorphism ¢ : FM — FM/I(M) will be a loop (M,x).
Let H be a normal subloop of loop (M,-) that corresponds to ¢. Then 1 — H C
I(M). We suppose that H # {1} and let 1 # wu(z1,...,2;) € H be a word in free

generators Iy, ..., ) of the normal form. Then the length I(u) > 0. By (4) we write
1 —wu(zy,...,x) in generators Ty, ..., T with respect to the circle composition (o),
1—wu(zy,...,2) =w(Ty,...,Tk). As 1 —wu(xy,...,2x) € [(M) then by Lemma 5
U(T1,...,Tx) € (M) and U(Zy,. .., Tx) = ¥ has a normal form. Hence [(7) > 0 and,

consequently, ¢(w) = 1. But by Lemma 1 ¢(u) = 0. We get a contradiction with
¢(u) = 1. Hence our supposition that H # {1} is false. This completes the proof of
Theorem 1. O

Remark. The proof of Lemma 3 has a constructive character for free Moufang loops.
But Lemma 3 holds for algebras of Q-words (see, for example, [6]). Any relatively
free Moufang loop is an algebra of 2-words. From here it follows that Lemma 3 is
true for any relatively free Moufang loop. Then it is easy to see that the main result
of this paper (Theorem 1) holds for every relatively free Moufang loop.

Further we identify the loop (M,x) with (M,-). Then every element in
FM/I(M) has the form > .y, Aqq, A € F. Further for the alternative algebra
FM/I(M) we use the notation F'M and we call them “loop algebra” (in quote
marks). Let H be a normal subloop of M. We denote the ideal of ”loop algebra”
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F M, generated by the elements 1 — h (h € H) by wH. If H = M, then wM will
be called the "augmentation ideal” (in quote marks) of "loop algebra” FM. Let us
determine the homomorphism ¢ of F-algebra F'M by the rule (> A\gq) = > A\;Hg.
Similarly to Lemma 1 we proved

Proposition 1. Let H be a normal subloops of a free Moufang loop M and let F'M
and wM be, respectively, the "loop algebra” and the ”augmentation ideal” of M.
Then

1) wH C Keryp;

2)1—h € Kery if and only if h € H;

3) wM = {quM /\IIQ| quM Ag = 0}

4) the 7augmentation ideal” wM is generated as F-module by elements of the
form1—gq (g€ M).

Let wM denote the augmentation ideal (without quote marks) of FM. Then
from 4) of Lemma 1 and 3) of Proposition 1 it follows that

wM = wM/I(M). (6)

Any Moufang loop L has a representation L = L/H, where L is a free Moufang
loop. As we have noted above, in [4] Moufang loops L are constructed that are not
embedded into a loop of invertible elements of any alternative algebras. Then for
such normal subloop H of L Kergp = FL and by 2) of Proposition 7 the inclusion
wH C Kery is strict.

We mention that Proposition 1 holds also for Moufang loops for which Theorem
1 is true.

3 Some corollaries

Now we consider Moufang loops with the help of alternative algebras, using the
embedding of Moufang loops in alternative algebras from Theorem 6. It is obvious
that from the identities (z,y,2) = —(y,x,2), (z,y,2) = —(x,z,y), which hold in
any alternative algebra, follows

Lemma 6. Let QQ be a loop, let F'QQ be its "loop algebra” and let a,b,c € Q. Then,
if (a,b,¢) =0, then (a/,V/,c) =0, where a’, ¥/, are obtained from a,b,c with some
substitution or with the change of some loop elements a,b, c for the inverse.

In an arbitrary alternative algebra the identities

(‘T27y72) = ‘T(m7 y? Z) + (x7 y? Z)‘T7 (7)
(x7 yx7 Z) = ‘T(m7 y? Z)’ (8)
(z,2y,2) = (z,y,2)x  [7] 9)

hold true, the linearization of the last leads to the identities
(z,yt,2) + (t,yz, 2) = 2(t,y, 2) + t(z,y, 2), (10)
(z,ty,2) + (¢, 2y, 2) = (2,9, 2)t + (£, y, 2). (11)
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Proposition 2. (Moufang Theorem) If three elements a,b,c of Moufang loop Q
are bounded by the associative law ab - c = a - be, then they generate an associative
subloop.

Proof. Obviously, it is sufficient to show that if there are arbitrary monomials
u; = ui(x1,x9,23),1 = 1,2,3, of the ”loop algebra” FLx(9M) from the gener-
ators xl,xl_l,mg,xgl,xg,mgl of the free Moufang loop Lx(9), then the equal-
ity (uy,u2,u3) = 0 holds true for a,b,c € @ in the "loop algebra” F(@Q where
u; = wu(a,b,c). We prove the proposition by induction on the number n =
[(u1)+1(u2)+I(ug), where I(u;) is the length of word u; of loop Lx (9). If n = 3, then
the statement follows from Lemma 6. Let now n > 3 and the equality (71, 72,73) =0
holds true for the words vy (z1,x2,x3), va(21, X2, x3), v3(x1, 22, 23) of loop Lx (M)
such that [(v1) + [(v2) + l(v3) < n. Then by the inductive hypothesis the associator
(u1,ug,us3) does not depend on the parentheses places in the words ;. Let us now
consider the two possible cases.

1. The words u; have, for example, the form u; = x’f, Up = T, uz = T3.
Taking into account Lemma 6, we consider that k& > 0. If k& = 2n, then by (7)
and by the inductive hypothesis (a®", s, W3) = a™(a", o, u3) + (a™, Uz, Uz)a™ = 0.
Let now k = 2n + 1. Then by (11), by the inductive hypothesis and the previous
case (a7, U3) = (a®a, s, U3) = (a®",Usa,U3) — (Ua,a,U3)a®" — (a®",a,Us)Uy =
(a2"a,ﬂg,ﬂ3) =0.

2. Two words from uy,u9, us have in their structure a variable of the form x; or
xi_l. Taking into account the property of I P-loop (zy)~! = y~'z~! and Lemma 6, it
is sufficient to consider the case when these words have the variable x; in their struc-
ture. We suppose, for example, that u1 = vix1-w1, us = vox1-we, where vy, wy, Vo, Wo
can be missing. Then by the identities (8) - (11) and by the inductive hypothesis

we have (Ul,ﬂg,ﬂgg) = (ﬂ3,ﬂ1,ﬂ2) = (ﬂg,@la'wl,@ﬂl'wg) = —(51&,@3@1,5261'@2)4-
(ﬂg,@l,ﬂga-WQ)(ﬂla)-i-(ﬁla,ml,ﬁga"wg)ﬂg = —(ﬁla,ﬂgml,@ga'mg) = —(ﬂg@l,@ga-
@2,51&) = (@2&,@3@1 . @2,51&) — (U3@1,@2,@1&)(52&) — (@2&,@2,51&)(@3@1) =
(ﬁga,ﬂgwl . @2,@1@) = (Ega,t,ma) = (t,@la,ﬁga) = —(a,ﬁlt,ﬁga) + t(a,ﬁl,ﬂga) +
a(t,v1,v2a) = —(a,v1t,v2a) = (a,V2a,01t) = ala,Ve,v1t) = 0. This completes the
proof of Proposition 2. O

If we apply the Proposition 2 to the equality a - ab = aa - b, which follows from
(1), we get

Corollary. The Moufang loop is di-associative, i.e. any its two elements generate
an associative subloop.

Let Lx (9M) be a free Moufang loop with the set of free generators X. By Lemma
3 every word in Lx(9) can be presented as a reduced word in different ways. As
Lx(9M) is a free loop, all reduced words of the same element in L x (9t) have the same
free generators in their structure. Hence, their number is finite. The reduced words
of element w in Lx(9M) of the least length will be called normal reduced words of
w. Hence every word in Ly (97) has normal reduced words. We will call the normal
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reduced words u, v in Lx (9) [-homogeneous if u, v have the same length, I(u) = [(v)
with respect to the variables y € X U X L.

By the definition of the loop algebra F' Ly (9) any element in F'Lx (9) has the
form )" ag9,9 € Lx(9M), and only a finite number of coefficients o, € F' differ from
zero. We have introduced earlier a notion of [-homogeneity for the monomials g;. We
extend it to the polynomials of algebra F'Lx (9). It can be done, as FLx (M) is a
free F-module with free generators g;. Then the algebra F'Lx (9t) decomposes into
a direct sum of [-homogeneous submodules, consisting of I-homogeneous polynomials.

By 3) of Lemma 1 the augmentation ideal wLx(9M) of the loop algebra
FLx(9M) is generated by the set X = {1 — z;|Va; € X U X1} If u(zy, 2o0,. ..
..., Tk}, where z; € X U X! is a normal reduced word in Ly (), then the mono-
mial (T, To,...,Tg) in wLx (M) will be called normal reduced with respect to the
generating set X. We transfer the notions of length and I-homogeneity of monomials
u(xy,xa,. .., 2} to monomials u(Z, ..., Tk).

Lemma 7. Let FLx(9M) be a loop algebra of the free Moufang loop Lx(IN) with
a set of free generators X and let u(xy,...,x) be a normal reduced word in the
variables o1, ...,z € X U X1 of length [(u). Then

1) the polynomial 1 — u(xy,...,xx) of the augmentation ideal wL x (M) is repre-
sented as a sum of normal reduced monomials of wLx (M) in variables Ty,..., Ty €
X whose lengths do not exceed (u), and in this representation there is only one
monomial of length l(u) which has the form +u(Ty,...,Tk);

2) wLx (M) is generated as F-module by the normal reduced monomials from the
set of generators X and decomposes into a direct sum of l-homogeneous submodules

wLx (M) = P,/ (wLx (M));.

Proof. 1) We will prove by induction on length I(u). Let 71,22 € XUX 1. We have
(1 —l‘l)(l —l‘Q) =1—21 —x9+ 21209 = (1 —l‘l) — (1—1—3)2) o (1 —l‘liﬂg), 1—x129 =
(I4z1)+(1+z2)— (1—21)(1—2x2), 1 —x129 = T1 + T2 —T1T2. Hence the statement
of lemma for I(u) = 2 holds. Let us now consider the normal reduced loop word
u(z1,...,xk) of length I(u) > 2. We expand the expression u(1+x1,...,1+z) and
get

w(Ty,...,Tk) = 1+Z$j+zv2($jlv$j2)+'”

---+Zvr($j1,---,$jr)+---+U(!E1,---,33k), (12)
where v,.(zj,,...,2j.) is a loop word, containing in its structure r (r < l(u) — 1)
generators zj,,...,x;. € {x1,...,z5}. We consider that the loop words v, (z;,, ...

...,x;.) are reduced, as in the opposite case we can bring them to this form. It
is easy to see by induction on k that the right part of the equality (12) contains
even number of monomials. That is why u(Z1,...,Tx) can be presented as a sum of
terms of the form 1 —wv,(xj,,...,z;,) or 1 —u(x1,...,xy,). Then it follows from (12)
that 1 —u(zy,...,25) = > (1 —vr(zjy,...,2j)) +u(T1,...,Ty), where e = £1,r <
l(u) — 1. Using the inductive hypothesis for the monomials 1 — v,(zj,,...,x;.) we
obtain from here the troth of 1).
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2) We have proved above that the algebra FLx(9) decomposes into a di-
rect sum of I-homogeneous submodules FLx (M) = @, ;(FLx(M));. From 6)
of Lemma 1 and 1) of this lemma it follows that wLx (M) = >, ;(wLx(9M));. Let
w(Z1,...,Tk) € (wWLx(M)); N (wLx(M));, where ¢ # j. From the definition of
a normal reduced word with respect to the set X it follows that wu(z1,...,7;) €
(wLx(M)); N (wLx(9M));. From here it follows that w(xy,...,zx) = 0. Then
u(Ty,...,T) = 0, as well. Hence wLx (M) = @, (wLx(M));. This completes
the proof of Lemma 7. O

Now, according to Theorem 1 we transfer the notions of length, [-homogeneity
of polynomials and /-homogeneity submodules of augmentation ideal of loop algebra
for polynomials of ”augmentation ideal” of "loop algebra”.

Lemma 8. Let wLx(9M) be the "augmentation ideal” of "loop algebra” of free Mo-
ufang loop Lx(9M). Then

1) wLx (M) decomposes into a direct sum of l-homogeneous submodules
WLx (D) = B,y (wLx (M),

2) the intersection of the l-homogeneous submodules of wLx(IM) is the zero.

Proof. Expanding the expression we obtain that (1 —a,1 —b,1 —¢) = —(a,b,c).
Then from the definition (5) of ideal I(Lx (99)) of loop algebra F'Lx () it follows
that this ideal is generated by elements of the form

U(dla s adkawiydk-i-l) o adm)v

where ¢ = 1,2 and dy, . . ., d,, are normal reduced words from F'Lx (). Now, by the
relations yz =z — (1—y)z, zy=2—2(1—y), yz=(14+y)z—z, zy = 2z(1+y) — 2,
and by 1) of Lemma 4 it is easy to see that the ideal I(Lx (1)) is generated as
F-module by [-homogeneous polynomials of the form

v(bla"'abr7wi7b7”+l7"'7b8)7 (13)

where b; are normal reduced monomials from wLx (90) with respect respect to the
set X.

By 2) of Lemma 7 the augmentation ideal wLx(9) decomposes into a direct
sum of [-homogeneous submodules wLx (M) = @, ;(wLx(M));. Then the ideal
I(Lx(9M)) decomposes into a direct sum of [-homogeneous submodules I(Lx (90)) =
P, (I(Lx(9M))); as well. From here it follows that the decomposition of algebra
wLx (M) into a direct sum of submodules (wLx (9M)) induces a similar decompo-
sition also for the quotient algebra wLx(9M)/I(Lx(M)): wLx(9MN)/I(Lx(M)) =
D (WLx (M)); N I(FLx(9M))), which by (6) is the "augmentation ideal” of the
"loop algebra” FLx(9M)/FLx(9M). This completes the proof of item 1). The item
2) follows from item 1) and item 2) of Lemma 7. O

Theorem 2. The intersection of the terms of the lower central series of a free
Moufang loop Lx(9N) is the identity.
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Proof. We denote Lx (M) = Q, wLx(M) =B. Let Q =Qo2Q12...2Q, 2 ...
be the lower central series of free Moufang loop ). We have to prove that

m;L.OZOQn =1 (14)

Really, let B = B, B" = Ziﬂ-:n B'- BJ. By 2) of Lemma 8 it is easy to see
that N2>y B™ = 0. Further, D, = {g € Q|1 — ¢ € B"} is a normal subloop of
loop @, as this is the kernel of homomorphism, induced by natural homomorphism
FLx(9) — FLx(9M)/B". From the relation N3 B™ = 0 it follows that NS> D,, =
1. Now to prove (14) it is sufficient to show that @, C D,,. We will prove this by
induction on n. We have Qo = @ = Dy. Let a,b € Q and we suppose that
the element ¢, € @, belongs to D,. Then u, = 1—g, € B", v = 1—a €
B%w =1—-b e B° Any Moufang loop is an IP-loop. Then from (3) we get
1= (gn,a,0) =1 = (gna-b)(gn - ab)™" = (gn - ab— gna-b)(gn - ab)™ = ((1 — gn)((1 -
@) (1= ) = (1 = gn)(1 = a)(L = B))(gn - @B)~" = (tp - 00 — - ) (g - ab) " =
(tp - VW — Upv - W) — (Up - VW — Upv - w)(1 — (gn - ab)~!) € B"L. By analogy we
prove that 1 — (a,b,,b) € B"*1 1 — (a,b,9,) € B!, 1 — (gn,a) € B""!. Then
(gn,a,b), (a, gn,b), (a,b,gn), (gn,a) € Dyy1. But as shown at the beginning of this
paper elements of the form (g,,,a,b), (a,gn,b), (a,b,gn), (gn,a) generate the normal
subloop Qn+1. Then Q41 C D,y1. Consequently, NS2(,Q, = 1. This completes
the proof of Theorem 2. O

We remind now that a loop @ is called a Hopfian loop and it has a Hopfian
property if it can’t be isomorphic to any of its quotient loop. Obviously, any finite
loop is Hopfian, but no free loop of infinite rank F., can be Hopfian. Really, if
T1,T2,...,Ti,... 18 a free generators for F,,, then the map =1 — 1,z; — x;1
(x > 1) defines an endomorphism on with non-trivial kernel.

Proposition 3. A finitely generated centrally nilpotent Moufang loop L is Hopfian.

Proof. Let us consider a normal subloop N # 1 of the loop L such that L = L/N
is isomorphic to L. We must come to a contradiction. For that we will prove that
no element g # 1 of the loop L can be mapped into the unit of the loop L. In [§]
it is proved that the loop L is residually finite. Then let K be a normal subloop
of L of index n, not containing g. We denote by K* the intersection of all normal
subloops of L of index < n.Then the subloop K* also has a finite index n* in L and
also doesn’t contain ¢g. Under a homomorphic mapping of L on L, the subloop K* is
mapped on subloop K** of loop L. As the index of a finite loop is not augmented by
a homomorphic mapping, K** will contain subloop K of loop L, which corresponds
to K* C L under an isomorphic mapping of L on L. In such a way the inverse image
of K" in L (denoted by P) should be contained in K*. On the other hand, P contains
N and, consequently, g is not mapped on 1 (under a natural homomorphism of L
on L). O

Lemma 9. A loop L has a Hopfian property if and only if it has a set of fully
mwariant normal subloops, whose quotient loop has a Hopfian property and whose
intersection is trivial.
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Proof. The necessity is trivial. To prove this, it is enough to denote by ¢ some
endomorphism on loop L and by N we denote the fully invariant normal subloop
of L, whose quotient loop is Hopfian. As ¢ N C N and ¢L = L then ¢ induces an
endomorphism on of L/N. According to the supposion, it is an automorphism of
loop L/N, so that kerp C N. It means that the intersection at any set of such fully
invariant subloops contains kery. If the intersection is trivial, then kery is trivial
and ¢ is an automorphism, as required. O

Combining (14), Proposition 3 and Lemma 9 we get

Theorem 3. Any finitely generated free Moufang loop is Hopfian.
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