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Free Moufang loops and alternative algebras
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Abstract. It is proved that any free Moufang loop can be embedded in to a loop
of invertible elements of some alternative algebra. Using this embedding it is quite
simple to prove the well-known result: if three elements of Moufang loop are bound
by the associative law, then they generate an associative subloop. It is also proved
that the intersection of the terms of the lower central series of a free Moufang loop is
the identity and that a finitely generated free Moufang loop is Hopfian.
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This work offers another way of examining Moufang loops, and namely, with the
help of alternative algebras. It is well known that for an alternative algebra A with
unit the set U(A) of all invertible elements of A forms a Moufang loop with respect
to multiplication. It is known also that if L is a Moufang loop, then its loop algebra
FL is not always alternative, i.e. the Moufang laws are not always true in FL [1].
These themes are stated in survey [2] and [3] in details.

However, let L be a free Moufang loop. It is shown that if we factor the loop
algebra FL by some ideal I, then FL/I will be an alternative algebra and the loop
L will be embedded in to the loop of invertible elements of algebra FL/I. This is
a positive answer to the question raised in [4]: is it true that any Moufang loop
can be imbedded into a homomorphic image of a loop of type U(A) for a suitable
unital alternative algebra A? The equivalent version of this question is: whether the
variety generated by the loops of type U(A) is a proper subvariety of the variety of
all Moufang loops?

The findings of this paper also give a partial positive answer to a more general
question (see, for example, [3]): is it true that any Moufang loop can be embedded
into a loop of type U(A) for a suitable unital alternative algebra A? A positive
answer to this question was announced in [5]. Here, in fact, the answer to this
question is negative: in [4] the author constructed a Moufang loop, which is not
embedded into a loop of invertible elements of any alternative algebra.

Using this embedding it is quite simple to prove the well-known Moufang Theo-
rem: if three elements of Moufang loop are bound by the associative law, then they
generate an associative subloop. The Magnus Theorem for groups, stating that the
intersection of the terms of the lower central series of a free group is the identity, is
well known. This paper proves an analogous result for free Moufang loops. It also
proves that a finitely generated free Moufang loop is Hopfian.
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1 Preliminaries

A loop (L, ·) ≡ L is called IP -loop if the laws −1x · xy = yx · x−1 = y are true in
it, where −1xx = xx−1 = 1. In IP - loops −1x = x−1 and (xy)−1 = y−1x−1. A loop
is Moufang if it satisfies the law

x(y · zy) = (xy · z)y. (1)

Every Moufang loop is an IP -loop. A subloop H of a loop L is called normal in L
if

xH = Hx, x · yH = xy · H, H · xy = Hx · y (2)

for every x, y ∈ L.
For elements x, y, z of a loop, the commutator (x, y) and the associator (x, y, z)

are defined by
xy = (yx)(x, y), (xy)z = (x(yz))(x, y, z). (3)

The set of all elements z of a loop L which commute and associate with all
elements of L, so that for all a, b in L, (a, z) = 1, (z, a, b) = 1, (a, z, b) = 1,
(a, b, z) = 1 is a normal subloop Z(L) of L, called its center.

If Z1(L) = Z(L), then the normal subloops Zi+1(L) : Zi+1(L)/Zi(L) =
Z(L/Zi(L)) are inductively determined. A loop L is called centrally nilpotent of class
n if its upper central series has the form {1} ⊂ Z1(L) ⊂ . . . ⊂ Zn−1(L) ⊂ Zn(L) = L.

If H is a normal subloop of a loop L, there is a unique smallest normal subloop
M of L such that H/M is a part of the center of L/M , and we write M = [H,L].
From here it follows that M is the normal subloop of L generated by the set
{(x, z), (z, x, y), (x, z, y), (x, y, z)|∀z ∈ H,∀x, y ∈ L}. The lower central series of
L is defined by L1 = L, Li+1 = [Li, L] (i ≥ 1) [2]. Consequently, Ln+1 is the
normal subloop of L generated by the set {(g, x), (g, x, y), (x, g, y), (x, y, g)|∀g ∈ Ln,
∀x, y ∈ L}.

Let F be a field and L be a loop. Let us examine the loop algebra FL. This is
a free F -module with the basis {q|q ∈ L} and the product of the elements of this
basis is determined as their product in loop L. Let H be a normal subloop of loop
L. We denote the ideal of algebra FL, generated by the elements 1 − h (h ∈ H) by
ωH. If H = L, then ωL is called the augmentation ideal of algebra FL [2].

2 Embedding of free Moufang loops in to alternative algebras

Let us determine the homomorphism of F -algebras ϕ: FL → F (L/H) by the
rule ϕ(

∑
λqq) =

∑
λqHq. Takes place

Lemma 1. Let H,H1,H2 be normal subloops of loop L. Then
1) Kerϕ = ωH;
2) 1 − h ∈ ωH if and only if h ∈ H;
3) if the elements hi generate the subloop H, then the elements 1 − hi generate

the ideal ωH; if H1 6= H2, then ωH1 6= ωH2; if H1 ⊂ H2, then ωH1 ⊂ ωH2; if
H = {H1,H2}, then ωH = ωH1 + ωH2;
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4) ωL = {
∑

q∈L λqq|
∑

q∈L λq = 0};
5) FL/ωH ∼= F (L/H), ωL/ωH ∼= ω(L/H);
6) the augmentation ideal is generated as F -module by the elements of the form

1 − q (q ∈ L).

Proof. 1) As the mapping ϕ is F -linear, then by (2) for h ∈ H, q ∈ L we have
ϕ((1 − h)q) = Hq − H(hq) = Hq − Hq = 0, i.e. ωH ⊆ Kerϕ. Let now K =
{kj |j ∈ J} be a complete system of representatives of cosets of loop L modulo
the normal subloop H and let ϕ(r) = 0. We present r as r = u1k1 + . . . + rtkt,

where ui =
∑

h∈H λ
(i)
h

h, ki ∈ K. Then 0 = ϕ(r) = ϕ(u1)ϕ(k1) + . . . + ϕ(ut)ϕ(kt) =

(
∑

h∈H λ
(1)
h

)ϕ(k1)+. . .+(
∑

h∈H λ
(t)
h

)ϕ(kt). As ϕ(k1), . . . , ϕ(kt) are pairwise distinct,

then for all i
∑

h∈H λ
(i)
h

= 0. Hence −ui =
∑

h∈H λ
(i)
h

(1 − h) −
∑

h∈H λ
(i)
h

=
∑

h∈H λ
(i)
h (1 − h) is an element from ωH. Consequently, Kerϕ ⊆ ωH, and then

kerϕ = ωH.
2) If q /∈ H, then Hq 6= H. Then ϕ(1 − q) = H − Hq 6= 0, i.e. by 1) 1 − q /∈

Kerϕ = ωH.
3) Let elements {hi} generate subloop H and I be an ideal, generated by the

elements {1 − hi}. Obviously I ⊆ ωH. Conversely, let g ∈ H and g = g1g2,
where g1, g2 are words from hi. We suppose that 1 − g1, 1 − g2 ∈ I. Then 1 − g =
(1 − g1)g2 + 1 − g2 ∈ I, i.e. ωH ⊆ I. Hence I = ωH. Let H1 6= H2 (respect.
H1 ⊂ H2) and g ∈ H1, g /∈ H2. Then by 1) 1 − g ∈ ωH1, but 1 − g /∈ ωH2. Hence
ωH1 6= ωH2 (respect. ωH1 ⊂ ωH2). If H = {H1,H2}, then by the first statement
of 3) ωH = ωH1 + ωH2.

4) We denote R = {
∑

q∈L λqq|
∑

q∈L λq = 0}. Obviously, ωL ⊆ R. Conversely,
if r ∈ R and r =

∑
q∈L λqq, then −r = −

∑
q∈L λqq = (

∑
q∈L λq)1 −

∑
q∈L λqq =∑

q∈L λq(1 − q) ∈ ωL, i.e. R ⊆ ωQ. Hence ωL = R.
5) Mapping ϕ : FL → F (L/H) is a homomorphism of loop algebras and as by

1) Kerϕ = ωH, then FL/ωH ∼= F (L/H). Now from 4) it follows that ωL/ωH ∼=
ω(L/H).

6) As (1 − q)q′ = (1 − qq′) − (1 − q′), then the augmentation ideal ωL is gen-
erated by elements of the form 1 − q, where q ∈ L. This completes the proof of
Lemma 1.

Lemma 2. Let (L, ·) be an IP -loop and let ϕ be a homomorphism of the algebra
(FL,+, ·). Then the A-homomorphism image at ϕ of the loop (L, ·) will be a loop.

Proof. We denote the A-homomorphism at image ϕ of the loop (L, ·) by (L, ⋆). It
follows from the IP -loop identity x−1 · xy = y that ϕ(x−1) = (ϕx)−1 and (ϕx−1) ⋆
(ϕx⋆ϕy) = ϕy, (ϕx)−1 ⋆(ϕx⋆ϕy) = ϕy, x−1⋆(x⋆y) = y. Let a, b ∈ L. It is obvious
that the equation a⋆x = b is always solvable and as a−1⋆(a⋆x) = a−1⋆b, x = a−1⋆b,
then it is uniquely solvable. It can be shown by analogy that the equation y ⋆ a = b
is also uniquely solvable. Therefore, (L, ⋆) is a loop, as required.

Now, before we pass to the presentation of the basic results, we give the con-
struction of free IP -loop with the set of free generators X = {x1, x2, . . .}, using ideas
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from [2]. To the set X we add the disjoint set {x−1
1 , x−1

2 , . . .}. Let us examine all
groupoid words L(X) from the set {x1, x

−1
1 , x2, x

−1
2 , . . .} relative to the multiplica-

tion (·) and let e denote the empty word. For the words from L(X) we define the
inverse words: 1) for xi ∈ X the inverse will be x−1

i , and for x−1
i the inverse will be

xi, i.e. (x−1
i )

−1
= xi; 2) if u ·v ∈ L(X), then (u ·v)−1 = v−1 ·u−1. Further, we define

two words u, v in F (X) to be Moufang-equivalent, u ≈ v if one can be obtained from
other by a sequence of substitutions, each of which replaces a subword (rs · r)t by
r(s · rt) and vice-versa, where r, s, t are any words in F (X). By a contraction µ
of a word in F (X) we mean the substitution at a subword of the form u−1(vw) or
(wv)u−1, where u ≈ v, by w. The action ν, opposite to contraction µ we call the
expansion.

For words w, w′ in F (X) we define the (µ, ν)-equivalence w ∼= w′ if one word can
be obtained from the other one by a finite sequence of substitutions, each of which
is either a contraction µ or an expansion ν or a single use of the Moufang law (1).
The relation ∼= will be, obviously, a relation of equivalence on L(X). Moreover, it
will be congruence, as if a word (u1u2 . . . un)α is given when α is some parentheses
distributions, obtained from words u1, u2, . . . , un, then the replacement of the word
ui, i = 1, 2, . . . , n, with words or equivalence can be realized applying to the given
word a finite number of transformations of the above described form.

With the multiplication {u} · {v} = {uv} and the inverse {u}−1 = {u−1} of
congruence classes we obtain a loop with the unity {e}, as the quotient loop L(X)/ ∼=
satisfies the laws x−1·xy = y, yx·x−1 = y. Moreover, L(X)/ ∼= will be a free Moufang
loop on {xi}, i = 1, 2, 3, . . ., the set of free generators of X. We identify {xi} with
xi and we denote L(X)/ ∼= by LX(M).

Similarly to F (X), we introduce the Moufang-equivalence, transformations µ,
ν and (µ, ν)-equivalence for words in LX(M). We define a word in L(M) to be a
reduced word if no reductions of type µ of it are possible. If w ∈ L(M), then the
number l(w) of the variables in X, contained in w, will be called the length of the
word w. Now let us show that if w → w1 and w → w2 are any reductions of type
µ of a word w, then there is a word w3 obtained from each of w1, w2 by a sequence
of reductions of type µ. We use induction on the length of w. If l(w) = 1, w is
already a reduced word. If l(w) = n and w = u · v where u, v are subwords of w,
then l(u) < n, l(v) < n. If both reductions w → w1 and w → w2 take place in
the same subword, say u, then induction on length applied to u yields the result.
If the two reductions take place in separate subwords, then applying both gives the
w3 needed. This leaves the last case where at least one of the reductions w → w1

and w → w2 involves both subwords u, v of w. Then w has, for example, the form
w = u−1(uv). Therefore w = v and thus l(w) < n, then by inductive hypothesis the
statement is true.

Using this statement, one may prove by induction on length that any word w
has reduced words regarding the reductions µ and all such reduced words belong to
unique class of Moufang-equivalence. Then, induction on the number of reductions
and expansions connecting a pair of congruent words shows that congruent words
have the same reduced words.
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Any word in LX(M) has a reduced words. A normal form of a word u in
LX(M) is a reduced word of the least length. Clear by every word in LX(M) has
a normal form. Let u(x1, x2, . . . , xk), u(y1, y2, . . . , yn), where xi, yj ∈ X ∪ X−1, be
two words of normal form of u of length l(u). LX(M) is a free loop. Assume, for
example, y1 /∈ {x1, x2, . . . , xk}, then u(x1, x2, . . . , xk) = u(1, y2, . . . , yn). The length
of u(1, y2, . . . , yn) is strict by less than l(u). But this contradicts the minimum
condition for l(u). Consequently, all words of normal form of the same word in
LX(M) have the same free generators in their structure. This completes the proof
of the following statement.

Lemma 3. Any word in LX(M) has a reduced word that belongs to the unique class
of Moufang - equivalence, two words are (µ, ν)-equivalent if and only if they have
the same reduced words and all words of normal form of the same word in LX(M)
have the same free generators in their structure.

Now we consider a loop algebra FM of free Moufang loop (M, ·) ≡ M over
an arbitrary field F . Let M = {u = 1 − u|u ∈ M} and we define the circle
composition u ◦ v = u + v − u · v. Then (M, ◦) is a loop, denoted sometimes as
M . The identity 1 of M is the zero of FM , 1 = 1 − 1, and the inverse of u
is u−1 = 1 − u−1 as u ◦ 1 = 1 − u + 0 − (1 − u)0 = 1 − u = u, 1 ◦ u = u,
u ◦u−1 = u+ u−1 − uu−1 = 1−u + 1−u−1 − (1−u)(1−u−1) = 0, u−1 ◦u = 0. Let
u, v ∈ M . Then u◦v = u+ v−uv = 1−u+1− v− (1−u)(1− v) = 1−uv = 1−uv.
Hence M is closed under the composition (◦) and

u ◦ v = 1 − uy. (4)

Further, by (4) u−1 ◦ (u ◦ v) = 1− u−1(uv) = 1− v = v and (v ◦ u) ◦ u−1 = v. From
here it follows that (M, ◦) is a loop. We call it the circle loop corresponding to the
loop (M, ·).

We define the one-to-one mapping ϕ : M → M by ϕ(a) = a. For a, b ∈ M
by (4) we have ϕ(ab) = 1 − ab = a ◦ b = ϕ(a) ◦ ϕ(b). Hence ϕ is an isomorphism
of the loop M upon the loop M . Then, by Lemma 2, it follows that ϕ induces
the isomorphism ϕ of the loop algebra FM upon the loop algebra FM by the rule
ϕ(Σu∈Mαuu) = Σu∈Mαu(ϕ(u)) = Σu∈Mαuu.

Clear by if the loop M is generated by free generators x1, x2, . . ., then the loop
M is generated by free generators x1, x2, . . ., the isomorphism ϕ : FM → FM is
defined by mappings xi → xi and a word u in M has a normal form if and only if
the corresponding word u also has a normal form. This completes the proof of the
following lemma.

Lemma 4. Let FM be a loop algebra of a free Moufang loop (M, ·) with free gen-
erators x1, x2, . . . and let M = {u = 1 − u|u ∈ M} be the corresponding loop under
the circle composition u ◦ v = u + v − uv. Then the mappings xi → xi define
an isomorphism ϕ of the loop algebra FM upon the loop algebra FM by the rule
ϕ(Σαuu) = Σαu(ϕ(u)) = Σαuu, αu ∈ F , u ∈ M , and a word in the loop (M, ·) has
a normal form if and only if the word ϕu has a normal form in the loop (M, ◦).
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From now on, according to Lemma 4 for the algebra FM we will consider only
monomials of normal form. Let u ∈ FM and let ϕ be the isomorphism defined in
Lemma 4. We denote ϕ(u) = u. If u = Σαiui, αi ∈ F , ui ∈ M , is a polynomial in
FM then we denote c(u) = Σαi. Clear by c(u) = c(u), where u = Σαiui.

Let (a, b, c) = ab · c − a · bc be the associator in algebra. If the free Moufang
loop M is non-associative, then from the definition of loop algebra it follows that
the equalities

(a, b, c) + (b, a, c) = 0, (a, b, c) + (a, c, b) = 0 ∀a, b, c ∈ L, (5)

do not always hold in algebra FM . Let I(M) denote the ideal of algebra FM ,
generated by all the elements of the left part of equalities (5). It follows from the
definition of loop algebra and di-associativity of Moufang loops that FM/I(M) will
be an alternative algebra. We remind that an algebra A is called alternative if the
identities (x, x, y) = (y, x, x) = 0 hold in it. Hence we proved

Lemma 5. Let FM and FM be the loop algebras of a free Moufang loop (M, ·) and
its corresponding circle loop (M, ◦) and let I(M, ·), I(M, ◦) be the ideals of FM and
FM respectively, defined above. Then I(M) = I(M) and for any u ∈ I(M ) and
c(u) = 0.

Proof. We denote v1 = v1(u11, u12, u13) = (u11, u12, u13) + (u12, u11, u13), v2 =
v2(u21, u22, u23) = (u21, u22, u23)+(u21, u23, u22), where uij ∈ M , i = 1, 2, j = 1, 2, 3.
Then, as an F -module, the ideal I(M) is generated by elements of the form

w(d1, . . . , dk, vi, dk+1, . . . , dm),

where i = 1, 2 and d1, . . . , dm are monomials from FM .
Let w = w(d1, . . . , dk, v1, dk+1, . . . , dm). Then by (4)

w = w(d1, . . . , dk, (u11, u12, u13) + (u12, u11, u13), dk+1, . . . , dm) =

w(d1, . . . , dk, u11u12 · u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u11 · u12u13, dk+1, . . . , dm)+

w(d1, . . . , dk, u12u11 · u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u12 · u11u13, dk+1, . . . , dm) =

−(1 − w(d1, . . . , dk, u11u12 · u13, dk+1, . . . , dm))+

(1 − w(d1, . . . , dk, u11 · u12u13, dk+1, . . . , dm))−

(1 − w(d1, . . . , dk, u12u11 · u13, dk+1, . . . , dm))+

(1 − w(d1, . . . , dk, u12 · u11u13, dk+1, . . . , dm)) =

w(d1, . . . , dk, (u11 ◦ u12) ◦ u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u11 ◦ (u12 ◦ u13), dk+1, . . . , dm)+
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w(d1, . . . , dk, (u12 ◦ u11) ◦ u13, dk+1, . . . , dm)−

w(d1, . . . , dk, u12 ◦ (u11 ◦ u13), dk+1, . . . , dm) =

w(d1, . . . , dk, v2, dk+1, . . . , dm).

Similarly, w(d1, . . . , dk, v2, dk+1, . . . , dm) = w(d1, . . . , dk, v2, dk+1, . . . , dm). Hence
I(M) ⊆ I(M).

Conversely, we consider a polynomial in fM of the form w(d1, . . . , dk, vi, dk+1,
. . . , dm). It is clear that w ∈ I(M) and any element z ∈ I(M) will be represented
as the sum of a finite number of polynomials of such a form. We have c(vi) = 0,
then c(w) = 0 and, consequently, c(z) = 0. Now, let for example vi = v1. By (4) we
get v1 = (u11 ◦ u12) ◦ u13 = u11 ◦ (u12 ◦ u13) = 1− u11u12 · u13 − (1− u11 · u12u13) =
−u11u12 · u13 + u11 · u12u13 = −(u11, u12, u13) = −v1. Further, by the relation
x ◦ y = 1 − xy in an expression w we pass from the operation (◦) to the operation
(·). Then w can be written as the sum of a finite number of monomials, each
of them containing the associators vi in its structure. Then w ∈ I(M), and hence
z ∈ I(M), I(M ) ⊆ I(M). Consequently, I(M ) = I(M). This completes the proof of
Lemma 5.

Theorem 1. Let (M, ·) be a free Moufang loop, let F be an arbitrary field and let
ϕ : FM → FM/I(M) be the natural homomorphism of the algebra FM upon the
alternative algebra FM/I(M). Then the image ϕ(M, ·) = (M,⋆) of the loop (M, ·)
will be an isomorphism of these loops.

Proof. Any Moufang loop is an IP -loop, so by Lemma 2 the image of the loop
(M, ·) under the A-homomorphism ϕ : FM → FM/I(M) will be a loop (M,⋆).
Let H be a normal subloop of loop (M, ·) that corresponds to ϕ. Then 1 − H ⊆
I(M). We suppose that H 6= {1} and let 1 6= u(x1, . . . , xk) ∈ H be a word in free
generators x1, . . . , xk of the normal form. Then the length l(u) > 0. By (4) we write
1− u(x1, . . . , xk) in generators x1, . . . , xk with respect to the circle composition (◦),
1 − u(x1, . . . , xk) = u(x1, . . . , xk). As 1 − u(x1, . . . , xk) ∈ I(M) then by Lemma 5
u(x1, . . . , xk) ∈ I(M) and u(x1, . . . , xk) = u has a normal form. Hence l(u) > 0 and,
consequently, c(u) = 1. But by Lemma 1 c(u) = 0. We get a contradiction with
c(u) = 1. Hence our supposition that H 6= {1} is false. This completes the proof of
Theorem 1.

Remark. The proof of Lemma 3 has a constructive character for free Moufang loops.
But Lemma 3 holds for algebras of Ω-words (see, for example, [6]). Any relatively
free Moufang loop is an algebra of Ω-words. From here it follows that Lemma 3 is
true for any relatively free Moufang loop. Then it is easy to see that the main result
of this paper (Theorem 1) holds for every relatively free Moufang loop.

Further we identify the loop (M,⋆) with (M, ·). Then every element in
FM/I(M) has the form

∑
q∈M λqq, λq ∈ F . Further for the alternative algebra

FM/I(M) we use the notation FM and we call them ”loop algebra” (in quote
marks). Let H be a normal subloop of M . We denote the ideal of ”loop algebra”
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FM , generated by the elements 1 − h (h ∈ H) by ωH. If H = M , then ωM will
be called the ”augmentation ideal” (in quote marks) of ”loop algebra” FM . Let us
determine the homomorphism ϕ of F -algebra FM by the rule ϕ(

∑
λqq) =

∑
λqHq.

Similarly to Lemma 1 we proved

Proposition 1. Let H be a normal subloops of a free Moufang loop M and let FM
and ωM be, respectively, the ”loop algebra” and the ”augmentation ideal” of M .
Then

1) ωH ⊆ Kerϕ;
2) 1 − h ∈ Kerϕ if and only if h ∈ H;
3) ωM = {

∑
q∈M λqq|

∑
q∈M λq = 0};

4) the ”augmentation ideal” ωM is generated as F -module by elements of the
form 1 − q (q ∈ M).

Let ωM denote the augmentation ideal (without quote marks) of FM . Then
from 4) of Lemma 1 and 3) of Proposition 1 it follows that

ωM = ωM/I(M). (6)

Any Moufang loop L has a representation L = L/H, where L is a free Moufang
loop. As we have noted above, in [4] Moufang loops L are constructed that are not
embedded into a loop of invertible elements of any alternative algebras. Then for
such normal subloop H of L Kerϕ = FL and by 2) of Proposition 7 the inclusion
ωH ⊂ Kerϕ is strict.

We mention that Proposition 1 holds also for Moufang loops for which Theorem
1 is true.

3 Some corollaries

Now we consider Moufang loops with the help of alternative algebras, using the
embedding of Moufang loops in alternative algebras from Theorem 6. It is obvious
that from the identities (x, y, z) = −(y, x, z), (x, y, z) = −(x, z, y), which hold in
any alternative algebra, follows

Lemma 6. Let Q be a loop, let FQ be its ”loop algebra” and let a, b, c ∈ Q. Then,
if (a, b, c) = 0, then (a′, b′, c′) = 0, where a′, b′, c′ are obtained from a, b, c with some
substitution or with the change of some loop elements a, b, c for the inverse.

In an arbitrary alternative algebra the identities

(x2, y, z) = x(x, y, z) + (x, y, z)x, (7)

(x, yx, z) = x(x, y, z), (8)

(x, xy, z) = (x, y, z)x [7] (9)

hold true, the linearization of the last leads to the identities

(x, yt, z) + (t, yx, z) = x(t, y, z) + t(x, y, z), (10)

(x, ty, z) + (t, xy, z) = (x, y, z)t + (t, y, z)x. (11)
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Proposition 2. (Moufang Theorem) If three elements a, b, c of Moufang loop Q
are bounded by the associative law ab · c = a · bc, then they generate an associative
subloop.

Proof. Obviously, it is sufficient to show that if there are arbitrary monomials
ui = ui(x1, x2, x3), i = 1, 2, 3, of the ”loop algebra” FLX(M) from the gener-
ators x1, x

−1
1 , x2, x

−1
2 , x3, x

−1
3 of the free Moufang loop LX(M), then the equal-

ity (u1, u2, u3) = 0 holds true for a, b, c ∈ Q in the ”loop algebra” FQ where
ui = ui(a, b, c). We prove the proposition by induction on the number n =
l(u1)+l(u2)+l(u3), where l(ui) is the length of word ui of loop LX(M). If n = 3, then
the statement follows from Lemma 6. Let now n > 3 and the equality (v1, v2, v3) = 0
holds true for the words v1(x1, x2, x3), v2(x1, x2, x3), v3(x1, x2, x3) of loop LX(M)
such that l(v1) + l(v2) + l(v3) < n. Then by the inductive hypothesis the associator
(u1, u2, u3) does not depend on the parentheses places in the words ui. Let us now
consider the two possible cases.

1. The words ui have, for example, the form u1 = xk
1, u2 = xr

2, u3 = xs
3.

Taking into account Lemma 6, we consider that k > 0. If k = 2n, then by (7)
and by the inductive hypothesis (a2n, u2, u3) = an(an, u2, u3) + (an, u2, u3)a

n = 0.
Let now k = 2n + 1. Then by (11), by the inductive hypothesis and the previous
case (ak, u2, u3) = (a2na, u2, u3) = (a2n, u2a, u3) − (u2, a, u3)a

2n − (a2n, a, u3)u2 =
(a2na, u2, u3) = 0.

2. Two words from u1, u2, u3 have in their structure a variable of the form xi or
x−1

i . Taking into account the property of IP -loop (xy)−1 = y−1x−1 and Lemma 6, it
is sufficient to consider the case when these words have the variable xi in their struc-
ture. We suppose, for example, that u1 = v1x1·w1, u2 = v2x1·w2, where v1, w1, v2, w2

can be missing. Then by the identities (8) - (11) and by the inductive hypothesis
we have (u1, u2, u3) = (u3, u1, u2) = (u3, v1a ·w1, v2a ·w2) = −(v1a, u3w1, v2a ·w2)+
(u3, w1, v2a ·w2)(v1a)+(v1a,w1, v2a ·w2)u3 = −(v1a, u3w1, v2a ·w2) = −(u3w1, v2a ·
w2, v1a) = (v2a, u3w1 · w2, v1a) − (u3w1, w2, v1a)(v2a) − (v2a,w2, v1a)(u3w1) =
(v2a, u3w1 · w2, v1a) = (v2a, t, v1a) = (t, v1a, v2a) = −(a, v1t, v2a) + t(a, v1, v2a) +
a(t, v1, v2a) = −(a, v1t, v2a) = (a, v2a, v1t) = a(a, v2, v1t) = 0. This completes the
proof of Proposition 2.

If we apply the Proposition 2 to the equality a · ab = aa · b, which follows from
(1), we get

Corollary. The Moufang loop is di-associative, i.e. any its two elements generate
an associative subloop.

Let LX(M) be a free Moufang loop with the set of free generators X. By Lemma
3 every word in LX(M) can be presented as a reduced word in different ways. As
LX(M) is a free loop, all reduced words of the same element in LX(M) have the same
free generators in their structure. Hence, their number is finite. The reduced words
of element w in LX(M) of the least length will be called normal reduced words of
w. Hence every word in LX(M) has normal reduced words. We will call the normal
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reduced words u, v in LX(M) l-homogeneous if u, v have the same length, l(u) = l(v)
with respect to the variables y ∈ X ∪ X−1.

By the definition of the loop algebra FLX(M) any element in FLX(M) has the
form

∑
αgg, g ∈ LX(M), and only a finite number of coefficients αg ∈ F differ from

zero. We have introduced earlier a notion of l-homogeneity for the monomials gj . We
extend it to the polynomials of algebra FLX(M). It can be done, as FLX(M) is a
free F -module with free generators gj . Then the algebra FLX(M) decomposes into
a direct sum of l-homogeneous submodules, consisting of l-homogeneous polynomials.

By 3) of Lemma 1 the augmentation ideal ωLX(M) of the loop algebra
FLX(M) is generated by the set X = {1 − xi|∀xi ∈ X ∪ X−1}. If u(x1, x2, . . .
. . . , xk}, where xi ∈ X ∪ X−1 is a normal reduced word in LX(M), then the mono-
mial u(x1, x2, . . . , xk) in ωLX(M) will be called normal reduced with respect to the
generating set X. We transfer the notions of length and l-homogeneity of monomials
u(x1, x2, . . . , xk} to monomials u(xi, . . . , xk).

Lemma 7. Let FLX(M) be a loop algebra of the free Moufang loop LX(M) with
a set of free generators X and let u(x1, . . . , xk) be a normal reduced word in the
variables x1, . . . , xk ∈ X ∪ X−1 of length l(u). Then

1) the polynomial 1− u(x1, . . . , xk) of the augmentation ideal ωLX(M) is repre-
sented as a sum of normal reduced monomials of ωLX(M) in variables x1, . . . , xk ∈
X whose lengths do not exceed l(u), and in this representation there is only one
monomial of length l(u) which has the form ±u(x1, . . . , xk);

2) ωLX(M) is generated as F -module by the normal reduced monomials from the
set of generators X and decomposes into a direct sum of l-homogeneous submodules
ωLX(M) =

⊕
i∈I(ωLX(M))i.

Proof. 1) We will prove by induction on length l(u). Let x1, x2 ∈ X∪X−1. We have
(1− x1)(1−x2) = 1− x1 − x2 + x1x2 = (1− x1)− (1 + x2)− (1− x1x2), 1− x1x2 =
(1+x1)+(1+x2)−(1−x1)(1−x2), 1−x1x2 = x1 +x2−x1x2. Hence the statement
of lemma for l(u) = 2 holds. Let us now consider the normal reduced loop word
u(x1, . . . , xk) of length l(u) > 2. We expand the expression u(1+x1, . . . , 1+xk) and
get

u(x1, . . . , xk) = 1 +
∑

xj +
∑

v2(xj1 , xj2) + . . .

. . . +
∑

vr(xj1 , . . . , xjr
) + . . . + u(x1, . . . , xk), (12)

where vr(xj1 , . . . , xjr
) is a loop word, containing in its structure r (r ≤ l(u) − 1)

generators xj1, . . . , xjr
∈ {x1, . . . , xk}. We consider that the loop words vr(xj1, . . .

. . . , xjr
) are reduced, as in the opposite case we can bring them to this form. It

is easy to see by induction on k that the right part of the equality (12) contains
even number of monomials. That is why u(x1, . . . , xk) can be presented as a sum of
terms of the form 1− vr(xj1 , . . . , xjr

) or 1−u(x1, . . . , xn). Then it follows from (12)
that 1−u(x1, . . . , xk) =

∑
ǫ(1− vr(xj1 , . . . , xjr

))+u(x1, . . . , xn), where ǫ = ±1, r ≤
l(u) − 1. Using the inductive hypothesis for the monomials 1 − vr(xj1 , . . . , xjr

) we
obtain from here the troth of 1).



106 N. I. SANDU

2) We have proved above that the algebra FLX(M) decomposes into a di-
rect sum of l-homogeneous submodules FLX(M) =

⊕
i∈I(FLX(M))i. From 6)

of Lemma 1 and 1) of this lemma it follows that ωLX(M) =
∑

i∈I(ωLX(M))i. Let
u(x1, . . . , xk) ∈ (ωLX(M))i ∩ (ωLX(M))j , where i 6= j. From the definition of
a normal reduced word with respect to the set X it follows that u(x1, . . . , xk) ∈
(ωLX(M))i ∩ (ωLX(M))j . From here it follows that u(x1, . . . , xk) = 0. Then
u(x1, . . . , xk) = 0, as well. Hence ωLX(M) =

⊕
i∈I(ωLX(M))i. This completes

the proof of Lemma 7.

Now, according to Theorem 1 we transfer the notions of length, l-homogeneity
of polynomials and l-homogeneity submodules of augmentation ideal of loop algebra
for polynomials of ”augmentation ideal” of ”loop algebra”.

Lemma 8. Let ωLX(M) be the ”augmentation ideal” of ”loop algebra” of free Mo-
ufang loop LX(M). Then

1) ωLX(M) decomposes into a direct sum of l-homogeneous submodules
ωLX(M) =

⊕
i∈I(ωLX(M))i;

2) the intersection of the l-homogeneous submodules of ωLX(M) is the zero.

Proof. Expanding the expression we obtain that (1 − a, 1 − b, 1 − c) = −(a, b, c).
Then from the definition (5) of ideal I(LX(M)) of loop algebra FLX(M) it follows
that this ideal is generated by elements of the form

v(d1, . . . , dk, wi, dk+1, . . . , dm),

where i = 1, 2 and d1, . . . , dm are normal reduced words from FLX(M). Now, by the
relations yz = z − (1− y)z, zy = z − z(1− y), yz = (1 + y)z − z, zy = z(1 + y)− z,
and by 1) of Lemma 4 it is easy to see that the ideal I(LX(M)) is generated as
F -module by l-homogeneous polynomials of the form

v(b1, . . . , br, wi, br+1, . . . , bs), (13)

where bi are normal reduced monomials from ωLX(M) with respect respect to the
set X.

By 2) of Lemma 7 the augmentation ideal ωLX(M) decomposes into a direct
sum of l-homogeneous submodules ωLX(M) =

⊕
i∈I(ωLX(M))i. Then the ideal

I(LX(M)) decomposes into a direct sum of l-homogeneous submodules I(LX(M)) =⊕
i∈I(I(LX(M)))i as well. From here it follows that the decomposition of algebra

ωLX(M) into a direct sum of submodules (ωLX(M)) induces a similar decompo-
sition also for the quotient algebra ωLX(M)/I(LX (M)): ωLX(M)/I(LX (M)) =⊕

i∈I((ωLX(M))i ∩ I(FLX(M))), which by (6) is the ”augmentation ideal” of the
”loop algebra” FLX(M)/FLX(M). This completes the proof of item 1). The item
2) follows from item 1) and item 2) of Lemma 7.

Theorem 2. The intersection of the terms of the lower central series of a free
Moufang loop LX(M) is the identity.
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Proof. We denote LX(M) = Q, ωLX(M) = B. Let Q = Q0 ⊇ Q1 ⊇ . . . ⊇ Qn ⊇ . . .
be the lower central series of free Moufang loop Q. We have to prove that

∩∞

n=0Qn = 1. (14)

Really, let B0 = B,Bn =
∑

i+j=n Bi · Bj. By 2) of Lemma 8 it is easy to see
that ∩∞

n=0B
n = 0. Further, Dn = {g ∈ Q|1 − g ∈ Bn} is a normal subloop of

loop Q, as this is the kernel of homomorphism, induced by natural homomorphism
FLX(M) → FLX(M)/Bn. From the relation ∩∞

n=0B
n = 0 it follows that ∩∞

n=0Dn =
1. Now to prove (14) it is sufficient to show that Qn ⊆ Dn. We will prove this by
induction on n. We have Q0 = Q = D0. Let a, b ∈ Q and we suppose that
the element gn ∈ Qn belongs to Dn. Then un = 1 − gn ∈ Bn, v = 1 − a ∈
B0, w = 1 − b ∈ B0. Any Moufang loop is an IP -loop. Then from (3) we get
1− (gn, a, b) = 1− (gna · b)(gn · ab)−1 = (gn · ab− gna · b)(gn · ab)−1 = ((1− gn)((1−
a)(1 − b)) − (((1 − gn)(1 − a))(1 − b))(gn · ab)−1 = (un · vw − unv · w)(gn · ab)−1 =
(un · vw − unv · w) − (un · vw − unv · w)(1 − (gn · ab)−1) ∈ Bn+1. By analogy we
prove that 1 − (a, bn, b) ∈ Bn+1, 1 − (a, b, gn) ∈ Bn+1, 1 − (gn, a) ∈ Bn+1. Then
(gn, a, b), (a, gn, b), (a, b, gn), (gn, a) ∈ Dn+1. But as shown at the beginning of this
paper elements of the form (gn, a, b), (a, gn, b), (a, b, gn), (gn, a) generate the normal
subloop Qn+1. Then Qn+1 ⊆ Dn+1. Consequently, ∩∞

n=0Qn = 1. This completes
the proof of Theorem 2.

We remind now that a loop Q is called a Hopfian loop and it has a Hopfian
property if it can’t be isomorphic to any of its quotient loop. Obviously, any finite
loop is Hopfian, but no free loop of infinite rank F∞ can be Hopfian. Really, if
x1, x2, . . . , xi, . . . is a free generators for F∞, then the map x1 → 1, xi → xi−1

(x > 1) defines an endomorphism on with non-trivial kernel.

Proposition 3. A finitely generated centrally nilpotent Moufang loop L is Hopfian.

Proof. Let us consider a normal subloop N 6= 1 of the loop L such that L = L/N
is isomorphic to L. We must come to a contradiction. For that we will prove that
no element g 6= 1 of the loop L can be mapped into the unit of the loop L. In [8]
it is proved that the loop L is residually finite. Then let K be a normal subloop
of L of index n, not containing g. We denote by K⋆ the intersection of all normal
subloops of L of index ≤ n.Then the subloop K⋆ also has a finite index n⋆ in L and
also doesn’t contain g. Under a homomorphic mapping of L on L, the subloop K⋆ is
mapped on subloop K⋆⋆ of loop L. As the index of a finite loop is not augmented by
a homomorphic mapping, K⋆⋆ will contain subloop K

⋆
of loop L, which corresponds

to K⋆ ⊆ L under an isomorphic mapping of L on L. In such a way the inverse image
of K

⋆
in L (denoted by P ) should be contained in K⋆. On the other hand, P contains

N and, consequently, g is not mapped on 1 (under a natural homomorphism of L
on L).

Lemma 9. A loop L has a Hopfian property if and only if it has a set of fully
invariant normal subloops, whose quotient loop has a Hopfian property and whose
intersection is trivial.
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Proof. The necessity is trivial. To prove this, it is enough to denote by ϕ some
endomorphism on loop L and by N we denote the fully invariant normal subloop
of L, whose quotient loop is Hopfian. As ϕN ⊆ N and ϕL = L then ϕ induces an
endomorphism on of L/N . According to the supposion, it is an automorphism of
loop L/N , so that kerϕ ⊆ N . It means that the intersection at any set of such fully
invariant subloops contains kerϕ. If the intersection is trivial, then kerϕ is trivial
and ϕ is an automorphism, as required.

Combining (14), Proposition 3 and Lemma 9 we get

Theorem 3. Any finitely generated free Moufang loop is Hopfian.
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