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for second order linear differential equations
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Abstract. We study the behavior of solutions to the problem

{s(ug(w + Avuc(t)) +ub(t) + Aous(t) = f(8), >0,

uE(O) = Uo, uls(o) = u1,
in the Hilbert space H as ¢ — 0, where A; and Ao are two linear selfadjoint operators.
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1 Introduction

Let H be a real Hilbert space endowed with the inner product (-,-) and the
norm |- |. Let A; : D(A4;) — H,i= 0,1, be two linear self-adjoint, positive defined
operators. Consider the following Cauchy problem:

{ e (e (8) + Arue () +ue(t) + Aoue(t) = fo(t), ¢ € (0,7),

ua(O) = Uoe, U (0) = Ule, (Pa)

where £ > 0 is a small parameter(e < 1), u, f- : [0,T7) — H.

We will investigate the behavior of solutions u.(t) to the perturbed system (P.)
when € — 0, uge — ug and f. — f. We will establish a relationship between solutions
to the problem (P:) and the corresponding solutions to the following unperturbed
System:

V() + Agu(t) = f(t), te(0,T), P
v(0) = uo. (7)

In our study we will use the following conditions:
(H1) The operator Ay : D(Ag) € H — H is self-adjoint and positive defined,
i.e. there exists wg > 0 such that

(Aou,u) > wo \u!2, Vu € D(Ap);

(H2) The operator Ay : D(A1) € H — H s self-adjoint, positive defined and
there exists a > 1 such that:
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(6) D(45) € D(Av);
(i6) 4 [ D(AF] € D(AZ™);

(iii) A1 A 'u = A5 A, Vu € D(AZ*TY);
(tv) there exists wy > 0 and wg > 0 such that

wy [u]? < (Ayu,u) < w3 (AJu,u), Yu € D(AZ*Y).

The definition and properties of operator A% can be found in [2].

If, in some topology, u.(t) tends to the corresponding solutions v(t) of the un-
perturbed system (Fp) as € — 0, then the system () is called regularly perturbed.
In the opposite case, the system (F) is called singularly perturbed. In the last case,
a subset of [0,00), in which the solution u.(t) has a singular behavior relative to ¢,
arises. This subset is called the boundary layer. The function which defines the sin-
gular behavior of the solution w,(t) within the boundary layer is called the boundary
layer function.

Our approach is based on two key points. The first one is the relationship
between the solutions to the problems (P.) and (Pp). The second key point consists
in obtaining a priori estimates for the solutions to the problems (P:), estimates
which are uniform with respect to the small parameter .

In what follows we will need some notations. Let k € N*, 1 < p < 400, (a,b) C
(—o0, +00) and let X be a Banach space. We denote by W¥P(a,b; X) the Banach
space of all vectorial distributions u € D'(a,b; X), u'9) € LP(a,b;X), j =0,1,...,k,
endowed with the norm
1/p

k
lellwroasy = | 22191 iy
=0

for p € [1,00) and

HuHkaOO(a,b;X) = o?fgxk HU(]) ||L°°(a,b;X)

for p = oo.
In the particular case p = 2, we denote W¥*2(a,b; X) = H*(a,b; X). If X is a
Hilbert space, then H k(a, b; X) is also a Hilbert space with the inner product

k b
(w0 = 3 [ (100,00 0)) .
J=07%

For each fixed s € R, k € N and p € [1, 00|, we define the Banach space
WEP(a,b;H) = {f = (a,b) — H; fO()e™™ € LP(a,5;X), 1 = 0,... k},

with the norm
”f”Wf’p(a,b;X) = er_St”Wk’P(a,b;X)'
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2 Existence of strong solutions to both (P.) and (FPp)

Theorem 1. [1] Let T > 0 and let us assume that Ay satisfies the condition (H1).
If ug € D(Ag) and f € WHY(0,T; H), then there exists a unique strong solution
v e WLH(0,T; H) to the problem (Fy). Moreover, v satisfies

()] + </0t ‘Aé%(s)‘ ds>1/2 < |uo| +/0t 1f(s)|ds, Vte[0,T],

VO] < 1w = FO1+ [ (o) s, vee 0]

Theorem 2. [1] Let T > 0. Let us assume that A : D(A) C H — H s linear self-
adjoint and positive defined. Ifug € D(A), uy € H and f € W0, T; H), then there
exists a unique function w : [0,T] — H such that: u € W>>(0,T; H), AY?u e
W0, T, H), Aue L®(0,T;H), AY?u and v’ are differentiable on the right in
H for every t € [0,T) and

d* du du
= )+ (1) + Au(t) = £(1), t€[0,7), e
uw(0) = ug, u'(0) =wuy. (2)

In what follows this function will be called the strong solution to the problem

(1), (2).
3 A priori estimates for solutions to the problem (P;)
Consider the following problem:

{ e (uZ(t) + Arue(t)) + uc(t) + Aoue(t) = f(t), t€(0,1), (3)

us(0) =g, ul(0) = u.

Lemma 1. [4] Let T > 0. Suppose that, for each ¢ € (0,1), the operator A(e) =
(€A1 4+ Ag) : D(A(e)) € H — H is self-adjoint and satisfies

(A(e)u,u) > wluf’>, Yue D(A()), w>0, eec(0,1]. (4)

If f e WHY0,T; H),ug € D (A(e)), uy € H, then the unique strong solution, u., of
the problem (3) satisfies

1A (e ucllc o, 0: 1) + 1l 20,1 11y < Clw) M (1), ()
for each t € [0,T] and each € € (0,1/2]. If, in addition, u; € D (A1/2(5)), then

Wl oo, 4; 1) + IAY2(€) ull| p2(0, 11y < C'(w) Ma(2), (6)



84 GALINA RUSU

for each t € [0,T), and each ¢ € (0,1], and
[A(€)ue oo (0,1, my < Clw)Mi(t), VEe[0,T], Ve e (0,1], (7)
where C'(w) is a constant depending on w,
M) = M(t,ug, wr, f) = [AYV2()uo | + [ua] + 1 Flwra o) + £(0)]
and
Mi(t) = Mi(tuo,u, f) = [AY2(e)u| + |AG)uo| + | lwra o 11y + 17 O)]
Let u. be a strong solution of the problem (3) and let us denote by
z(t) = ul(t) + ae”t5 o= f(0) — uy — A(e)uo. (8)
Lemma 2. [4] Let T > 0 and let us assume that, for each € € (0,1), the operator
A(e) = €A1 + Ag is self-adjoint and satisfies (4). If ui, f(0) — A(e)up € D (A(e))

and f € W20, T; H), then there exists C(w) > 0, such that the function z., defined
by (8), satisfies

1/2 1/2
1472 @)zelleqo, ) + Natlleqo, s + A2 Ly

< C(w) Ma(t), Vte[0,T], Vee(0,1], (9)
where

Ma(t) = |A(e) £(0) — A*(e)uo| + || fllw2a(0,:m) + [A()ur| + | £(0)].

4 The relationship between the solution to (P:.) and (P,)

Now we are going to establish the relationship between the solution to the prob-
lem (P.) and the corresponding solution to the problem (F). To this end, we begin
by defining the transformation kernel which realizes this relationship.

Namely, for € > 0, let us denote

1
2e /T

3t — 27 2t — 71
Ki(t,1,e) = A — |,
1(t,1,¢) exp{ " } <2 5t>

3t 4 67 2+ 7
Ks(t,m,e) = A ,
o(t,7,¢) exp{ " } < W )

Ks(t, 7,e) = exp {E} A <;\—;€1t> . Als) = /:O e‘”zdn.

K(t,7¢) =

(Kl (tv T, 5) + 3K> (t7 7, 6) - 2K3(t7 T, 5)) )

where
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Lemma 3. [3]. The function K € C([0,00) x [0,00)) N C?((0,00) x (0,00)) has the
following properties:

(1) K(t,7,e) >0, Vt>0, Vr>0;

(i7) For every continuous ¢ : [0,00) — H, with |¢(t)| < M exp{yt}, we have:

/ K(t,7,e)p )dT—/ e Tp(2eT)dr
0

for every e € (0, (27)_1) :

lim

= 07
t—0

H

(iid)
/ K(t,r,e)dr =1, Vt>D0.
0

(tv) For every q € [0,1], there exists C > 0 and g9 > 0, depending on q, such that:

/ K(t,,e)|t — 7|7 dr < C¥/? <1+\/¥>q, vVt >0, Ve € (0,1];
0

(v) Let p € (1,00] and f : [0, 00) — H, f € W'P(0,00; H). There exist C > 0,
and g depending on p, such that

Hf(t) — /Oo K(t,T,E)f(T)dT

< CIf Nl Le(0,00:m) (1 +\f) eP=D/2 vt >0, Ve € (0,1].

(vi) For every q >0 and o > 0, there exists C(q, ) > 0 such that
t )
/ / K(7,0,¢)e"9%% |7 —9|* do dr < C(q,a) ',
0

for each t > 0, and each € > 0.

Theorem 3. [4] Suppose that A(e) satisfies (H1), let f € L2°(0,00; H) and let u. €
W2>(0,00; H) be the strong solution to the problem (3), with Au. € L3°(0, 00; H),
for some ¢ > 0. Then the function we, defined by

o
- [ Ko ar
0
is the strong solution to the problem

[ U+ A = Rt ¢> w0)

where

e = /OOO e Tue(2eT)dr,  Fo(t,e) = fo(t,e)ur + /OOO K(t, 7€) f(r)dr,

- snl2 () 1)
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5 The limit of the solutions to the problem (P.) as ¢ — 0

In this section we will study the behavior of the solutions to the problem (P:)
as € — 0.

Theorem 4. Let T > 0 and p € (1,00]. Suppose that the operators Ay and A;
satisfy conditions (H1) and (H2). If

ug € D(Ao),uge € D(AZ™Y), wi. € DAY, f, A5 f- € WHP(0,T; H),

then there exist constants g = g9(wp) € (0,1) and C = C(T,p,wp,ws,ws, ) > 0
such that

Hua - UHC’([O,T};H) <C (M3€ EB + |u06 - UO‘ + HfE - fHL”(O,T;H))’ (11)

for all e € (0,g9], where us and v are the strong solutions to problems (Pe) and (Pp)
respectively,

B =min{1/4,(p — 1)/2p} and
Mie = |APTD Pug |+ 145 ur o] + 1AS fellwro o1y,

If in addition, uq¢ € D(A3/2), then

|lue = olleqormy < C <M4€ el=/% o —uo| + || fc — £ ‘LP(O,T;H))’ (12)
e € (0,e0] and
||A(1)/2ue - A(l)/2U||L2(0, T; H)

< C (Maee® + fuoe = uo| + ||z = ] pogoizian) ) (13)

e € (0,e9] where
B =min{1/4,(p —1)/2p} and

My, = |Aé3a—2)/2u06‘ + |Aguge| + |[Aruge| + |A§/QU1E\
+|A8_1“16| + ||A3_1fs||W1»P(0,T; H)-

Proof. During the proof of this theorem, we will agree to denote all constants ¢(wy)
and C = C(T, p,wp, w2, ws, ) > 0 be g9 and C respectively.

Using (H1) and the properties of A proved in [2], we can state that there exists
a constant C'(wp, @) such that:

(48u,u) = Clwo,a) [ u|?, ue D(AF). (14)
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Using (H1), (H2) and (14), since ug. € D(A3* 1), uie € D(AG™)

(A3 2uge, uge) = (A3“‘2A8/2u05, AS“/Qan) > C(wo, o) (A uoe, uoe)

= C(wo, @) (A A Puge, AP uge) > C2(wo, o) (Aguoe, e );
(A5~ e, A5 ure) = (A5 ATT e, AT )
2 O(WO, a)(AgC_luley ule) 2 Cz(w()) a)(ulev ulE)' (15)

Let us also observe that, for @ > 1, we have D(A3* ') C D(Ag). Thus, from
(H2), we get

M+ A D Aju = AN+ Ay Nu, we DAY, A>0,
which implies
A+ A DT AT = ATV O+ A5 Y, Yu e D(AZY), va>o.

Since Al_l is bounded and commutes with the resolvent of Ag‘_l, we can state
that

]1/2

(457 AT e = A 457 Y2 Ve DAY,

1/2
So, if u € D(A2™Y), then A7! [Ag—l} u € D(A;). Thus
Ay (AP AT u = APV u, vue D(AgT).

Taking u € D(A2*™!), from (ii) of (H2), we get Aju € D(AS™"), which finally

implies

A ALTIRy = A2 4 e D(AZY,
Using (iv) of (H2) and the last inequality, we get

|(Ayu,v)| = ](A(“ D240, A (a=1)/2 )| = |(A A(a 1)/2 u,Ag(a‘l)/%)\

< \/(‘Al‘A(()OC—l)/2u7 Aéa_l)/2U)(A1A5(a_l)/2U,Ao_(a_l)/zv)

< wg\/( A3 ALTD2y AOD/2) (o p=(0=1)/2, g=(0=D/2,y

= w3 AS2ul|AY 0], Vu,v e D(AZTY. (16)

If f. € Whe(0,T; H) with p € (1,00] and | € N*, we have that f. € C([0,T]; H)
and there exists an extension f. € W(0, 00; H) such that
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H.feEHC([O,oo);H) + HfEHleP(O,oo;H) < C(T,p, ) | fllwiw 0,1 )- (17)

Let us denote by 4. the unique strong solution to the problem (F.) and by v the
unique strong solution to the problem (F), substituting (0,7") by (0,00) and f. by
fe. From Theorem 2, we have

. € W22(0,T; H), AY?(e)a. € WH(0,T; H),
A(e)te. € L*(0,T;H), VT € (0,00).

From Lemma 1 and (15), it follows that

fie € W22(0,00; H), AY*i. € W2(0, 003 H),
A(e)te € L>(0,00; H).

Moreover, due to this lemma and inequalities (15) and (17), we get
1/2 - .
146 2 oo, ) + 1l 20,6y < C Mse, 620, e€ (0,20)  (18)
If, in addition, u;. € D(Ag/Z), then
@lleqo, i m + 1146 @l 20,6 < C Mae, €20, c€ (0.0 (19)

Proof of (11). According to Theorem 3, the function

we(t) = / K(t,7,e)u:(r)dr, (20)
0
is the strong solution to the problem

{ wk(t) + A(e)w:(t) = F(t,e), ¢t>0, in H,
we(0) = wo,

for 0 < e < ¢g, where

F(t,e) = folt,e)wic + [¢° K(t,7,e) fo(T) dr,

N N (0 I
wo = [;° e Tl (2eT)dr.

Using Holder’s inequality, properties (i)-(v) of Lemma 3 and (18), we obtain

[e(t) = we(®)]]; = ||ie(t) - /Ooo K(t7e)ie(r)dr],
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< Hﬂ/EHLZ(O,oo;H) / K(t77—7 E) ’t - 7‘1/2 dr < C Mse 51/47t € [07T]7 €€ (0750]'
0

Then it follows

||Z~L€ — w€||(;([07T} H) < C Ms, 61/4, €€ (0,60]. (23)

)

Let us denote by R(t,e) = 0(t) — w.(t), which clearly is the strong solution in H to
the problem

R'(t,e) + AoR(t,e) = e Aywc(t) + F(t,e), t>0, o4
{ R(0,2) = R, (24)

where Ry = ug — wp and
Fte) = )~ [ Kt fr)dr - folt.e)ure (25)

Taking the inner product by R in the equation (24) and then integrating, we
obtain

t
|R(t,s)|2—|—2/0 |AY2R(s, )2 ds

= |Ro|2 + 2/0t |F(s,e)| |R(s,e)| ds +2¢ /Ot (Ajwe(s), R(s,e))ds, t>0.

Using (16), from the last equality, we get

t
|R(t,s)|2—|—/0 |Ay/* R(s, )| ds

< ‘Ro|2 +2/t | F(s,)| |R(s,¢)| ds + € /t ‘Ag_l/zwa(s)Fds, t>0. (26)
0 0

From (26), we obtain

R(t)| + (/Ot ‘A(l)/2R(s,s)|2ds>l/2

< |Ro‘+/t | F(s,e)|ds+ e </t ‘A3_1/2w5(3)|2ds)1/2, t>0, e€(0,g0]. (27)
0 0

From (18), it follows that

‘R0| < /0 e_s‘zla(%s) — u05| ds + |uge — ug
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o] 2es

g/ e_s/ |112(T)‘d7'ds+]u05—u0]
0 0

<O Msee'? + Juge —ug|, €€ (0,e0).

Using property (v) of Lemma 3, from (17), we have
i~ [ Kre i ar| < |50 - o)
0

+ /0 K(t,re) | fe(t) = fo(r)| dr

IN

‘f(t) - fe(t)| + C(Tvp) ||fé ||LP(O,T; H) 6(17—1)/217’ t> 07 €€ (0760]‘

As e A7) < C, 7 >0, we have

(29)

t L ')
/ exp{?’—T})\(\/f)dTng/ e_T/4dT§C’€/ e_T/4d7'§C’z—:, t>0,
0 46 & 0 0

/Ot)\<%\/§>d7'§€/ooo)\<%\/7_'>d7§06, t>0.

Hence

‘ /Ot fo(r,e)druy ¢

Using (29) and (30), we get

<Celuie|l, t>0.

/Ot |]—"(s,£)‘ ds

<C <M3€ e(P=1)/2p er — fHLp(O,T;H))’ t€[0,T], e€(0,e0].

(30)

(31)

Let us denote by 4. = Ag‘_lﬂe. Since AS‘_luo6 € D(Af), Ag‘_lule €

H, Ag‘_lf6 € WHP(0,T; H), from Lemma 1, we can state:
1/2 - -
HAo/ Uelleqo, gy + 1021 220,61y S O Mae, 20, € (0,1/2].
As the operator Ag_l/ % is closed, then, using (32), we obtain
|A8‘_1/2w5(t)|

< / K(t,7.2) |AY2g.(r)| dr < C Mot > 0,2 € (0, ).
0

(32)

(33)
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Thanks to (28), (31) and (33), from (27) it follows that

IRllco, 77 1) + |45 R| |20, 7 1)

< <M3€ 6(1’—1)/217 -+ |u0€ - UO‘ + er - fHU’(O,T;H))’ €€ (0,60]. (34)

Finally, from (23) and (34), it follows that

[t — lleo,m;m) < e — welloqo,m;my + 1Rlleo,m;m)

SC(M3€EB+|u0&‘_u0‘+Hft’:‘_fHLp(QT;H))? 56(0750]’ (35)

According to Theorems 1 and 2, we have that u.(t) = @.(¢t) and 9(t) = v(t) for
t € [0,T]. Therefore, from (35), we deduce (11).

Proof of (12). If ui. € D(A3/2), from (19), we get

() = w-(8)| | = [|(0) - /Ooo K(t,m€) e(r) dr] |,

g/ooo K(t,T,E)Hﬂa(t)—115(7')HHdT§/OOO K(t,T,E)‘/tTH@;(s)HHds‘dT

< Hﬁ/EHC([O,OOﬁH) / K(t77—7 E) ’t - T‘ dr < CM4851/27 te [07T]7 €€ (0750]'
0

This yields

||ie — welloqo, 11 1) < C Mace'/?, e €(0,e).

As, for p € (1;00], we have (p —1)/2p < 1/2 , the proof of (12) follows in the
same way as the proof of (11).
Proof of (13). Using properties (i), (iii) and (iv) of Lemma 3 and (19), we get

A2 (@) w)| < [ Ktre) JAY (3.0~ 5.(0) | ar

g/om K(t,T,e)‘/: | 4y/2aL(3)] | s dr

o] t
< [T wre | [ l|aY a7 o] as] ar
0 T
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<C Myt t>0, ec (0, 0]
As uc(t) = u(t), t € [0,T], therefore

HA(l)/2 (ua - wa)HC([QT];H) S CM4E 51/4, €€ (O,EO]. (36)

From (34), it follows that
1/2
AR 20,7 e
< <M4E€(p—1)/2p_|_ ‘UOE_UO‘ + Hfa_fHLP(O,T;H)>’ olS (0760]' (37)
Finally, (36) and (37) imply (13) and this completes the proof. O

Theorem 5. Let T > 0 and p € (1,00]. Suppose that the operators Ay and A;
satisfy (H1) and (H2). If ug, Aouo, f(0) € D(Ao), w1, Aouoe, Aruoe, f(0) €
D(AZY), f, AT fo € W2P(0,T; H), then there exist constants g9 = £o(wo) € (0,1)
and C = C(T,p,wo, w2, w3, a) > 0 such that

14 —v + hoe ¢

—1)/2
ciomm <C (Msa er=1/2p DE), (38)

HA(1)/2(ué — v + he e‘ﬁ)

leo.rim <€ <M55 e’ + D€>, (39)
where v and u. are the strong solutions to problems (Py) and (P.) respectively,

B =min{l/4,(p —1)/2p}, he = fc(0) —u1. — A(e)uge,

D = ||/ - fHWLP(o,T;H) + [ Ao (uoe — uo)|,

Ms. = |AGhe| + | A" Arhe| + |Afua. |

+\A3_1A1u1€ + [Aruoe| + HAg_leHW&p(o,T; H)

Proof. During this proof, for a., 9, f and f. we will use the same notations as in
the proof of Theorem 4. Let us denote by

Z(t) = al(t) + ace™E, e = fe(0) —ui . — A(e)uge.

Ifuic+oe € D(Aga_l)) C D(Ag) and f € W2L(0,T; H), then, due to (15) and
(17), w1 + e € D(A(e))) and f e W21(0,00; H). According to Theorem 2, 2. is
the strong solution in H to the problem

{ e3"(t) + Z.(t) + A(e) 2. (t) = F(t,e), t>0, (40)

2(0) = fo(0) = A()uoe,  2(0) =0,

where
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F(t,e) = fL(t) + et A(e)a

and
5 € W22(0,00; H), AY?2. € WY(0,00; H), A(e)2 € L™(0,00; H).
From Lemma 2 it follows that
11462 Ze |0, ool 11y + 112 o, o0); 11

+|]4y%2| < CMs., e (0,e). (41)

L2(0,00; H) —

According to Theorem 3 the function

[e.e]
wla(t) = / K(t77—7€) gE(T)dT
0
is a strong solution to the problem

{ wlle(t) + A( )wle( ) = fl(t,aE), t>0, e¢€ (0,60]
wi:(0) = [y e TZ(2e T)dT,

where

Fite) = [ K (7 dr+ e A)ac) dr

Moreover,
1/2 > 12~
| Ay w1 (t)] g/ K(t,7,e) |Ay “Z(7)|dr < CMs., t>0. (42)
0

Using properties (i), (iii)-(v) of Lemma 3 and(41), we get

_/OOO K(t,T,E)Zg(T)dTHH
< /Ooo K(t,7,e)||Z(t) — Z(7)||; dr

< [7 Ko [ 1 ds]ar
0 t

< Hét{;‘HC([0,00),H) /0 K(t77_7 5) |t - 7—| dr < CM5€€1/27 te [07T]7 €€ (0760]

||Z€(t) - wle(t)HH =

and

HAé/Q(gE(t) —wie(®)|| = HA1/2~ - /000 K(t,T,¢) Aé/2§€(7') dTHH
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< [T KA ) - 5] o
0

g/o K(t,T,E)‘/t 143221 (5] 1 ds ar
< ||A(1)/22é/:||L2(0,oo,H)/0 K(t77_7€)|t_7—|1/2 dr

< CMse e, te0,T], «€(0,e),

from which it follows that

1Ze — wielloqo, 1y, 1) < C Msee’?, e €(0,e], (43)

HA(I]/2 (26 - wle) | ‘LQ(O,T; H) < CMs. 61/4, e € (0,e0]. (44)

Let Ry(t,e) = ¥'(t)—w1c(t). If f£(0)—Agug € D(Ap) and f € W2L(0,T; H), then,
according to Theorem 1, & € W2°°(0,00; H), A(l)/2z7 € W2(0,00; H). Therefore
Ry € W1°(0,00; H) and

{ Rll (t’g) + AORl(tve) = f,(t) -FA (t’g) + €A1w1€(t)v t> 0)
Rl(O,E) = f(O) — AQUQ — wla(O).

Similarly to (27), we deduce inequality
¢
|Ri(t,e)| + (/ ‘A(l)/le(s,E)‘zds)l/z < |R1(0,¢)|
0

t t o /
—I-/O |f/(8) —fl(S,E)‘ ds+ ¢ </0 ‘Ao 1/2w15(3)|2d8)1 2, t>0. (45)
Using (41), for R;(0,¢), we get
|R1(0,)] < |f(0) = f=(0)] + |Ao(uo — uoc)|
+e |Arug.| +/0 e |z (2e5) — 2.(0)| ds

SCDE—FE‘Al?LOE‘+M5g€§CDE+M5E€, e € (0,eq]. (46)
As

F(s) — Fi(s,0)] < |F(s) — ()| + /0 T K(s.me) |F(r) - Fis)| dr

+/ K(s,7,e)e = dr | Ae)o|,
0
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then, due to property (iv) and (vi) of Lemma 3, it follows:
t ~
/ |f'(s) = Fi(s,e)| ds < C'<D6 + My eP=D/2p 4 | A(e) o | E)
0

< C<D€ + Ms. a@’—l)/?p), te0,7], =e(0,e). (47)

Let us denote by §i- = A§™'Z. Since A§7'2:(0) € D(Af), Af7'f. €
WP(0,T; H), from Lemma 1, we can state the estimate:

145 2 delloo, s ) + 1Tl 20,6 < C Mse, 620, £€(0,1/2. (48)

As the operator AS‘/ % is closed, then, using (48), we obtain

145w (t)| < /0 K(t,7,¢) | Ay *5e(7)| dr

<CMs., t>0, €€ (0,60]. (49)
Using (42), (46), (47), from (45), we get

||Ry 1145 Ry <c(p-

HC([O,T];H HL?(O,T;H)

+ M. s<p-1>/2p), s e (0,1]. (50)

Finally, as (43), (44) and (45) imply (38) and (39), the proof is complete. O
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