

Some more results on b - θ -open sets

N. Rajesh, Z. Salleh

Abstract. In this paper, we consider the class of b - θ -open sets in topological spaces and investigate some of their properties. We also present and study some weak separation axioms by involving the notion of b - θ -open sets. We define the concepts of b - θ -kernal of sets and slightly b - θ - R_0 spaces. We apply them to investigate some properties of the graph functions.

Mathematics subject classification: 54C10 .

Keywords and phrases: Topological spaces, b -open sets, b -closure, b - θ -open sets.

1 Introduction

In 1996, Andrijevic [1] initiated the study of so called b -open sets. This notion has been studied extensively in recent years by many topologists (see [2–5]). In this paper, we will continue the study of related spaces by using b - θ -open [7] sets.

Throughout this paper, X and Y refer always to topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X , $\text{cl}(A)$ and $\text{int}(A)$ denote the closure of A and the interior of A in X , respectively. A subset A of X is said to be b -open [1] if $A \subseteq \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A))$. The complement of b -open set is called b -closed. The intersection of all b -closed sets of X containing A is called the b -closure [1] of A and is denoted by $b\text{cl}(A)$. A set A is b -closed if and only if $b\text{cl}(A) = A$. The union of all b -open sets of X contained in A is called the b -interior of A and is denoted by $b\text{int}(A)$. A set A is said to be b -regular [7] if it is b -open and b -closed. The family of all b -open (resp. b -closed, b -regular) sets of X is denoted by $BO(X)$ (resp. $BC(X)$, $BR(X)$). We set $BO(X, x) = \{V \in BO(X) | x \in V\}$ for $x \in X$.

2 Preliminaries

A point x of X is called a b - θ -cluster [7] point of $S \subseteq X$ if $b\text{cl}(U) \cap S \neq \emptyset$ for every $U \in BO(X, x)$. The set of all b - θ -cluster points of S is called the b - θ -closure of S and is denoted by $b\text{cl}_\theta(S)$. A subset S is said to be b - θ -closed if and only if $S = b\text{cl}_\theta(S)$. The complement of a b - θ -closed set is said to be b - θ -open. The family of all b - θ -open subsets of X is denoted by $B_\theta O(X)$.

Theorem 1 (see [7]). *Let A be a subset of a topological space X . Then,*

- (i) $A \in BO(X)$ if and only if $b\text{cl}(A) \in BR(X)$.
- (ii) $A \in BO(X)$ if and only if $b\text{int}(A) \in BR(X)$.

Theorem 2 (see [7]). *For a subset A of a topological space X , the following properties hold:*

- (i) *If $A \in BO(X)$, then $b\text{cl}(A) = b\text{cl}_\theta(A)$,*
- (ii) *$A \in BR(X)$ if and only if A is b - θ -open and b - θ -closed.*

Definition 1. A topological space X is said to be b -regular [7] if for each $F \in BC(X)$ and each $x \notin F$, there exist disjoint b -open sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 3 (see [7]). *For a topological space X , the following properties are equivalent:*

- (i) X is b -regular;
- (ii) For each $U \in BO(X)$ and each $x \in U$, there exists $V \in BO(X)$ such that $x \in V \subseteq b\text{cl}(V) \subseteq U$;
- (iii) For each $U \in BO(X)$ and each $x \in U$, there exists $V \in BR(X)$ such that $x \in V \subseteq U$.

Definition 2. A function $f : X \rightarrow Y$ is said to be b -irresolute [6] if $f^{-1}(V) \in BO(X)$ for every $V \in BO(Y)$.

3 b - θ -open sets

Remark 1. It is easy to prove that

- (i) the intersection of an arbitrary collection of b - θ -closed sets is b - θ -closed.
- (ii) X and \emptyset are b - θ -closed sets.

Remark 2. The following example shows that an union of any two b - θ -closed sets of X is not necessarily b - θ -closed in X .

Example 1. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a, b\}, X\}$. Clearly, $\{a\}, \{b\}$ are b - θ -closed sets in X , but their union $\{a, b\}$ is not b - θ -closed in X .

Lemma 1 (see [7]). *Let A be a subset of a topological space (X, τ) . The following hold:*

- (i) *If $A \in BO(X)$, then $b\text{cl}(A)$ is b -regular and $b\text{cl}(A) = b\text{cl}_\theta(A)$;*

- (ii) A is b -regular if and only if A is b - θ -closed and b - θ -open;
- (iii) A is b -regular if and only if A is $b \text{ int}(b \text{ cl}(A))$.

Lemma 2. *For any subset A of a topological space (X, τ) , $b \text{ cl}_\theta(A)$ is b - θ -closed.*

Definition 3. A subset S of a topological space (X, τ) is said to be θ -complement b -open (briefly θ - c - b -open) provided there exists a subset A of X for which $X - S = b \text{ cl}_\theta(A)$. We call a set θ -complement b -closed if its complement is θ - c - b -open.

Remark 3. It should be mentioned that by Lemma 2, $X - S = b \text{ cl}_\theta(A)$ is b - θ -closed and S is b - θ -open. Therefore, the equivalence of θ - c - b -open and b - θ -open is obvious from the definition.

Theorem 4. *If $A \subseteq X$ is b -open, then $b \text{ int}(b \text{ cl}_\theta(A))$ is b - θ -open.*

Proof. Since $X - b \text{ int}(b \text{ cl}_\theta(A)) = b \text{ cl}(X - b \text{ cl}_\theta(A))$, then by complements $b \text{ int}(b \text{ cl}_\theta(A)) = (X - b \text{ cl}(X - b \text{ cl}_\theta(A)))$. Since $X - b \text{ cl}(A)$ ($= B$, say) is b -open, $b \text{ cl}(B) = b \text{ cl}_\theta(B)$ from Lemma 1. Therefore, there exists a subset $B = X - b \text{ cl}(A)$ for which $X - b \text{ int}(b \text{ cl}_\theta(A)) = b \text{ cl}_\theta(B)$. Hence $b \text{ int}(b \text{ cl}_\theta(A))$ is b - θ -open. \square

Corollary 1. *If $A \subseteq X$ is b -regular, then A is b - θ -open.*

Proof. Obvious by Lemma 1, since A is b -regular if and only if $A = b \text{ int}(b \text{ cl}(A))$. \square

Theorem 5. *b - θ -open is equivalent to b -regular if and only if $b \text{ cl}_\theta(A)$ is b -regular for every set $A \subseteq X$.*

Proof. Let X be a topological space. Assume b - θ -open is equivalent to b -regular and let $A \subseteq X$. Then by Lemma 2, $X - b \text{ cl}_\theta(A)$ is b - θ -open which implies that $b \text{ cl}_\theta(A)$ is b -regular. Conversely, assume $b \text{ cl}_\theta(A)$ is b -regular for every set A . Suppose U is b - θ -open and let $A \subseteq X$ such that $X - U = b \text{ cl}_\theta(A)$. That is, $U = X - b \text{ cl}_\theta(A)$. Then, $b \text{ cl}_\theta(A)$ is b -regular and U is b -regular. Therefore, b - θ -open is equivalent to b -regular. \square

Theorem 6. *If $B \subseteq X$ is b - θ -open, then B is an union of b -regular sets.*

Proof. Let B be b - θ -open and $x \in B$. Since B is b - θ -open, then there exists a set $A \subseteq X$ such that $B = X - b \text{ cl}_\theta(A)$. Because $x \notin b \text{ cl}_\theta(A)$, there exists a b -open set W for which $x \in W$ and $b \text{ cl}(W) \cap A = \emptyset$. Hence $x \in b \text{ int}(b \text{ cl}(W)) \subseteq X - b \text{ cl}_\theta(A)$, where $b \text{ int}(b \text{ cl}(W))$ ($= V$ (say)) $\in BR(X)$, that is, $B = \bigcup\{V : V \subseteq B, V \in BR(X)\}$. \square

Corollary 2. *If B is b - θ -closed, then B is the intersection of b -regular sets.*

4 On b - θ - D_i (resp. b - θ - T_i) topological spaces

Now, we study some classes of topological spaces in terms of the concept of b - θ -open sets. The relations with other notions, directly or indirectly connected with these classes are investigated.

Definition 4. A subset A of a topological space (X, τ) is called a b - θ - D -set if there are two sets $U, V \in B_\theta O(X)$ such that $U \neq X$ and $A = U - V$.

It is true that every b - θ -open set U different from X is a b - θ - D set if $A = U$ and $V = \emptyset$.

Definition 5. A topological space (X, τ) is called b - θ - D_0 if for any distinct pair of points x and y of X , there exists a b - θ - D -set of X containing one of the points but not the other.

Definition 6. A topological space (X, τ) is called b - θ - D_1 if for any distinct pair of points x and y of X , there exists a b - θ - D -set F of X containing x but not y and a b - θ - D set G of X containing y but not x .

Definition 7. A topological space (X, τ) is called b - θ - D_2 if for any distinct pair of points x and y of X , there exists disjoint b - θ - D -sets G and E of X containing x and y respectively.

Definition 8. A topological space (X, τ) is called b - θ - T_0 if for any distinct pair of points in X , there exists a b - θ -open set containing one of the points but not the other.

Definition 9. A topological space (X, τ) is called b - θ - T_1 if for any distinct pair of points x and y in X , there exists a b - θ -open set U in X containing x but not y and a b - θ -open set V in X containing y but not x .

Definition 10. A topological space (X, τ) is called b - θ - T_2 if for any distinct pair of points x and y in X , there exist b - θ -open sets U and V in X containing x and y , respectively, such that $U \cap V = \emptyset$.

Remark 4. From Definitions 4 to 10, we obtain the following diagram:

$$\begin{array}{ccc} b\text{-}\theta\text{-}T_2 & \Rightarrow & b\text{-}\theta\text{-}T_1 & \Rightarrow & b\text{-}\theta\text{-}T_0 \\ \downarrow & & \downarrow & & \downarrow \\ b\text{-}\theta\text{-}D_2 & \Rightarrow & b\text{-}\theta\text{-}D_1 & \Rightarrow & b\text{-}\theta\text{-}D_0 \end{array}$$

Theorem 7. If a topological space (X, τ) is b - θ - T_0 , then it is b - θ - T_2 .

Proof. For any points $x \neq y$, let V be a b - θ -open set such that $x \in V$ and $y \notin V$. Then, there exists $U \in BO(X)$ such that $x \in U \subseteq b\text{cl}(U) \subseteq V$. By Lemma 1, $b\text{cl}(U) \in BR(X)$. Then $b\text{cl}(U)$ is b - θ -open and also $X - b\text{cl}(U)$ is a b - θ -open set containing y . Therefore, X is b - θ - T_2 . \square

Theorem 8. For a topological space (X, τ) , the six properties in the diagram are equivalent.

Proof. By Theorem 7, we have that $b\text{-}\theta\text{-}T_0$ implies $b\text{-}\theta\text{-}T_2$. Now we prove that $b\text{-}\theta\text{-}D_0$ implies $b\text{-}\theta\text{-}T_0$. Let (X, τ) be $b\text{-}\theta\text{-}D_0$ so that for any distinct pair of points x and y of X , one of them belongs to a $b\text{-}\theta\text{-}D$ set A . Therefore, we choose $x \in A$ and $y \notin A$. Suppose $A = U - V$ for which $U \neq X$ and $U, V \in B_\theta O(X)$. This implies that $x \in U$. For the case that $y \notin A$ we have (i) $y \notin U$, (ii) $y \in U$ and $y \in V$. For (i), the space X is $b\text{-}\theta\text{-}T_0$ since $x \in U$ but $y \notin U$. For (ii), the space X is also $b\text{-}\theta\text{-}T_0$ since $y \in V$ but $x \notin V$. \square

Let x be a point of X and V a subset of X . The set V is called a $b\text{-}\theta$ -neighbourhood of x in X if there exists a $b\text{-}\theta$ -open set A of X such that $x \in A \subseteq V$.

Definition 11. A point $x \in X$ which has only X as the $b\text{-}\theta$ -neighbourhood is called a point common to all $b\text{-}\theta$ -closed sets (briefly $b\text{-}\theta\text{-}cc$).

Theorem 9. If a topological space (X, τ) is $b\text{-}\theta\text{-}D_1$, then (X, τ) has no $b\text{-}\theta\text{-}cc$ -point.

Proof. Since (X, τ) is $b\text{-}\theta\text{-}D_1$, so each point x of X is contained in a $b\text{-}\theta\text{-}D$ set $A = U - V$ and thus in U . By definition $U \neq X$ and this implies that x is not a $b\text{-}\theta\text{-}cc$ -point. \square

Definition 12. A subset A of a topological space (X, τ) is called a quasi $b\text{-}\theta$ -closed (briefly qbt -closed) set if $b\text{cl}_\theta(A) \subseteq U$ whenever $A \subseteq U$ and U is $b\text{-}\theta$ -open in (X, τ) .

Lemma 3. [7] Let A be any subset of a topological space X . Then $x \in b\text{cl}_\theta(A)$ if and only if $V \cap A = \emptyset$ for every $V \in BR(X, x)$.

Theorem 10. For a topological space (X, τ) , the following properties hold:

- (i) For each pair of points x and y in X , $x \in b\text{cl}_\theta(\{y\})$ implies $y \in b\text{cl}_\theta(\{x\})$;
- (ii) For each $x \in X$, the singleton $\{x\}$ is qbt -closed in (X, τ) .

Proof. (i): Let $y \notin b\text{cl}_\theta(\{x\})$. This implies that there exists $V \in BO(X, y)$ such that $b\text{cl}(V) \cap \{x\} = \emptyset$ and $X - b\text{cl}(V) \in BR(X, x)$ which means that $x \notin b\text{cl}_\theta(\{y\})$. (ii): Suppose that $U \in B_\theta O(X)$. This implies that there exists $V \in BO(X)$ such that $x \in V \subseteq b\text{cl}(V) \subseteq U$. Now we have $b\text{cl}_\theta(\{x\}) \subseteq b\text{cl}_\theta(V) = b\text{cl}(V) \subseteq U$. \square

Definition 13. A topological space (X, τ) is said to be $b\text{-}\theta\text{-}T_{1/2}$ if every qbt -closed set is $b\text{-}\theta$ -closed.

Theorem 11. For a topological space (X, τ) , the following are equivalent:

- (i) (X, τ) is $b\text{-}\theta\text{-}T_{1/2}$;
- (ii) (X, τ) is $b\text{-}\theta\text{-}T_1$.

Proof. (i) \Rightarrow (ii): For distinct points x, y of X , $\{x\}$ is qbt -closed by Theorem 10. By hypothesis, $X - \{x\}$ is b - θ -open and $y \in X - \{x\}$. By the same token, $x \in X - \{y\}$ and $X - \{y\}$ is b - θ -open. Therefore, (X, τ) is b - θ - T_1 .

(ii) \Rightarrow (i): Suppose that A is a qbt -closed set which is not b - θ -closed. There exists $x \in b\text{cl}_\theta(A) - A$. For each $a \in A$, there exists a b - θ -open set V_a such that $a \in V_a$ and $x \notin V_a$. Since $A \subseteq \bigcup_{a \in V_a} V_a$ and $\bigcup_{a \in V_a} V_a$ is b - θ -open, we have $b\text{cl}_\theta(A) \subseteq \bigcup_{a \in V_a} V_a$. Since $x \in b\text{cl}_\theta(A)$, there exists $a_0 \in A$ such that $x \in V_{a_0}$. But this is a contradiction. \square

Recall that a topological space (X, τ) is called b - T_2 [2] if for any distinct pair of points x and y in X , there exist b -open sets U and V in X containing x and y respectively such that $U \cap V = \emptyset$.

Theorem 12. *For a topological space (X, τ) , the following are equivalent:*

(i) (X, τ) is b - θ - T_2 ;

(ii) (X, τ) is b - T_2 .

Proof. (i) \Rightarrow (ii): This is obvious since every b - θ -open set is b -open.

(ii) \Rightarrow (i): Let x and y be distinct points of X . There exist b -open sets U and V such that $x \in U$, $y \in V$ and $b\text{cl}(U) \cap b\text{cl}(V) = \emptyset$. Since $b\text{cl}(U)$ and $b\text{cl}(V)$ are b -regular, then they are b - θ -open and hence (X, τ) is b - θ - T_2 . \square

Definition 14. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be weak b -irresolute [8] if for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists a $U \in BO(X, x)$ such that $f(U) \subseteq b\text{cl}(V)$.

Remark 5. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is weak b -irresolute if and only if $f^{-1}(V)$ is b - θ -closed (resp. b - θ -open) in (X, τ) for every b - θ -closed (resp. b - θ -open) set V in (Y, σ) .

Theorem 13. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a weak b -irresolute surjective function and E is a b - θ - D set in Y , then the inverse image of E is a b - θ - D set in X .*

Proof. Let E be a b - θ - D -set in Y . Then there are b - θ -open sets U and V in Y such that $E = U - V$ and $U \neq Y$. By weak b -irresoluteness of f , $f^{-1}(U)$ and $f^{-1}(V)$ are b - θ -open in X . Since $U \neq Y$, we have $f^{-1}(U) \neq X$. Hence $f^{-1}(E) = f^{-1}(U) - f^{-1}(V)$ is a b - θ - D -set in X . \square

Theorem 14. *If (Y, σ) is a b - θ - D_1 space and $f : (X, \tau) \rightarrow (Y, \sigma)$ is a weak b -irresolute bijection, then (X, τ) is b - θ - D_1 .*

Proof. Suppose that Y is a b - θ - D_1 space. Let x and y be any pair of distinct points in X . Since f is injective and Y is b - θ - D_1 , there exists b - θ - D sets U and V of Y containing $f(x)$ and $f(y)$, respectively such that $f(y) \notin U$ and $f(x) \notin V$. By Theorem 13, $f^{-1}(U)$ and $f^{-1}(V)$ are b - θ - D sets in X containing x and y , respectively such that $y \notin f^{-1}(U)$ and $x \notin f^{-1}(V)$. This implies that X is a b - θ - D_1 space. \square

Theorem 15. For a topological space (X, τ) , the following statements are equivalent:

- (i) (X, τ) is $b\text{-}\theta\text{-}D_1$;
- (ii) For each pair of distinct points $x, y \in X$, there exists a weak b -irresolute surjective function $f : (X, \tau) \rightarrow (Y, \sigma)$, where Y is a $b\text{-}\theta\text{-}D_1$ space such that $f(x)$ and $f(y)$ are distinct.

Proof. (i) \Rightarrow (ii): For every pair of distinct points of X , it suffices to take the identity function $f : (X, \tau) \rightarrow (X, \tau)$.

(ii) \Rightarrow (i): Let x and y be any pair of distinct points in X . By hypothesis, there exists a surjective weak b -irresolute function f of the space X into a $b\text{-}\theta\text{-}D_1$ space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint $b\text{-}\theta\text{-}D$ sets U and V of Y containing $f(x)$ and $f(y)$, respectively such that $f(y) \notin U$ and $f(x) \notin V$. Since f is weak b -irresolute and surjective, by Theorem 13, $f^{-1}(U)$ and $f^{-1}(V)$ are $b\text{-}\theta\text{-}D$ sets in X containing x and y , respectively such that $y \notin f^{-1}(U)$ and $x \notin f^{-1}(V)$. Hence X is a $b\text{-}\theta\text{-}D_1$ space. \square

5 Further properties

Definition 15. Let A be a subset of a topological space (X, τ) . The $b\text{-}\theta$ -kernel of $A \subseteq X$ denoted by $bker_\theta(A)$, is defined to be the set

$$\bigcap \{O : O \in B_\theta O(X, \tau) \text{ and } A \subseteq O\} = \{x : bcl_\theta(\{x\}) \cap A \neq \emptyset\}.$$

Definition 16. A topological space (X, τ) is said to be slightly $b\text{-}\theta\text{-}R_0$ if $\bigcap \{bcl_\theta(\{x\}) : x \in X\} = \emptyset$.

Theorem 16. A topological space (X, τ) is slightly $b\text{-}\theta\text{-}R_0$ if and only if $bker_\theta(\{x\}) \neq X$ for any $x \in X$.

Proof. Necessity. Let the space (X, τ) be slightly $b\text{-}\theta\text{-}R_0$. Assume that there is a point y in X such that $bker_\theta(\{y\}) = X$. Then $y \notin O$ which is some proper $b\text{-}\theta$ -open subset of X . This implies that $y \in \bigcap \{bcl_\theta(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency. Now assume that $bker_\theta(\{x\}) \neq X$ for any $x \in X$. If there exists a point y in X such that $y \in \bigcap \{bcl_\theta(\{x\}) : x \in X\}$, then every $b\text{-}\theta$ -open set containing y must contain every point of X . This implies that the space X is the unique $b\text{-}\theta$ -open set containing y . Hence $bcl_\theta(\{x\}) = X$ which is a contradiction. Therefore, (X, τ) is slightly $b\text{-}\theta\text{-}R_0$. \square

Theorem 17. If the topological space X is slightly $b\text{-}\theta\text{-}R_0$ and Y is any topological space, then the product $X \times Y$ is slightly $b\text{-}\theta\text{-}R_0$.

Proof. By showing that $\bigcap \{bcl_\theta(\{x, y\}) : (x, y) \in X \times Y\} = \emptyset$ we are done. We have $\bigcap \{bcl_\theta(\{x, y\}) : (x, y) \in X \times Y\} \subseteq \bigcap \{bcl_\theta(\{x\}) \times bcl_\theta(\{y\}) : (x, y) \in X \times Y\} = \bigcap \{bcl_\theta(\{x\}) : x \in X\} \times \bigcap \{bcl_\theta(\{y\}) : y \in Y\} \subseteq \emptyset \times Y = \emptyset$. \square

Definition 17. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is R -continuous (resp. θ - R - b -continuous, R - b -continuous) if for each $x \in X$ and each b -open subset V of Y containing $f(x)$, there exists an open subset U of X containing x such that $\text{cl}(f(U)) \subseteq V$ (resp. $b\text{cl}_\theta(f(U)) \subseteq V$, $b\text{cl}(f(U)) \subseteq V$).

Definition 18. A function $f : X \rightarrow Y$ is said to be b -open [6] if $f(U)$ is b -open in Y for every open set U of X .

Remark 6. (i): Since $A \subseteq b\text{cl}(A) \subseteq b\text{cl}_\theta(A)$ for any set A , θ - R - b -continuity implies R - b -continuity.

(ii): Since the b -closure and b - θ -closure operate agree on b -open sets (Lemma 1) it follows that if $f : (X, \tau) \rightarrow (Y, \sigma)$ is R - b -continuous and b -open, then f is θ - R - b -continuous.

Definition 19. The graph $G(f)$ of a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be strongly b - θ -closed if for each point $(x, y) \in (X \times Y) - G(f)$, there exists subsets $U \in BO(X, x)$ and $V \in B_\theta O(Y, y)$ such that $(b\text{cl}(U) \times V) \cap G(f) = \emptyset$.

Lemma 4. *The graph $G(f)$ of $f : (X, \tau) \rightarrow (Y, \sigma)$ is strongly b - θ -closed in $X \times Y$ if and only if for each point $(x, y) \in (X \times Y) - G(f)$, there exist $U \in BO(X, x)$ and $V \in B_\theta O(Y, y)$ such that $f(b\text{cl}(U)) \cap V = \emptyset$.*

Proof. It follows immediately from Definition 19. \square

Recall that a topological space (X, τ) is called b - T_1 [2] if for any distinct pair of points x and y in X , there is a b -open set U in X containing x but not y and a b -open set V in X containing y but not x .

Theorem 18. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is θ - R - b -continuous, weak b -irresolute and Y is b - T_1 , then $G(f)$ is strongly b - θ -closed.*

Proof. Assume $(x, y) \in (X \times Y) - G(f)$. Since $y \neq f(x)$ and Y is b - T_1 , there exists a b -open set V of Y such that $f(x) \in V$ and $y \notin V$. The θ - R - b -continuity of f implies the existence of an open subset U of X containing x such that $b\text{cl}_\theta(f(U)) \subseteq V$. Therefore, $(x, y) \in b\text{cl}(U) \times (Y - b\text{cl}_\theta f(U))$ which is disjoint from $G(f)$ because if $a \in b\text{cl}(U)$, then since f is a weak b -irresolute function, $f(a) \in f(b\text{cl}(U)) \subseteq b\text{cl}_\theta f(U)$. Note that $Y - b\text{cl}_\theta(f(U))$ is b - θ -open. \square

Theorem 19. *Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a weak b -irresolute function. Then f is θ - R - b -continuous if and only if for each $x \in X$ and each b -closed subset F of Y with $f(x) \notin F$, there exists an open subset U of X containing x and a b - θ -open subset V of Y with $F \subseteq V$ such that $f(b\text{cl}(U)) \cap V = \emptyset$.*

Proof. Necessity. Let $x \in X$ and F be a b -closed subset of Y with $f(x) \in Y - F$. Since F is θ - R - b -continuous, there exists an open subset U of X containing x such that $b\text{cl}_\theta(f(U)) \subseteq Y - F$. Let $V = Y - b\text{cl}_\theta(f(U))$. Then V is b - θ -open and $F \subseteq V$.

Since f is weak b -irresolute, $f(b\text{cl}(U)) \subseteq b\text{cl}_\theta(f(U))$. Therefore $f(b\text{cl}(U)) \cap V = \emptyset$.

Sufficiency. Let $x \in X$ and let V be a b -open subset of Y with $f(x) \in V$. Let $F = Y - V$. Since $f(x) \notin F$ there exists an open subset U of X containing x and a b - θ -open subset W of Y with $F \subseteq W$ such that $f(b\text{cl}(U)) \cap W = \emptyset$. Then $f(b\text{cl}(U)) \subseteq Y - W$, thus $b\text{cl}_\theta(f(U)) \subseteq b\text{cl}_\theta(Y - W) = Y - W \subseteq Y - F = V$. Therefore, f is θ - R - b -continuous. \square

Corollary 3. *Let X and Y be topological spaces and $f : (X, \tau) \rightarrow (Y, \sigma)$ be a weak b -irresolute function. Then f is θ - R - b -continuous if and only if for each $x \in X$ and each b -open subset V of Y containing $f(x)$, there exists an open subset U of X containing x such that $b\text{cl}_\theta(f(b\text{cl}(U))) \subseteq V$.*

Proof. Assume f is θ - R - b -continuous. Let $x \in X$ and let V be a b -open subset of Y with $f(x) \in V$. Then there exists an open subset U of X containing x such that $b\text{cl}_\theta(f(U)) \subseteq V$. By hypothesis of f , we have $b\text{cl}_\theta(f(b\text{cl}(U))) \subseteq b\text{cl}_\theta(b\text{cl}_\theta(f(U))) = b\text{cl}_\theta(f(U)) \subseteq V$. Thus, $b\text{cl}_\theta(f(b\text{cl}(U))) \subseteq V$. The converse implication is immediate. \square

Definition 20. A topological space (X, τ) is said to be b - R_1 if for $x, y \in X$ with $b\text{cl}(\{x\}) \neq b\text{cl}(\{y\})$, there exist disjoint b -open sets U and V such that $b\text{cl}(\{x\}) \subseteq U$ and $b\text{cl}(\{y\}) \subseteq V$.

Lemma 5. *A topological space X is b - R_1 if and only if $b\text{cl}_\theta(\{x\}) = b\text{cl}(\{x\})$ for all $x \in X$.*

Proof. Necessity. Generally we have $b\text{cl}(\{x\}) \subseteq b\text{cl}_\theta(\{x\})$ for all $x \in X$. Suppose that $y \notin b\text{cl}(\{x\})$ for any $x \in X$. Then there exists $A \in BO(X, y)$ such that $A \cap \{x\} = \emptyset$. Since X is b - R_1 and $b\text{cl}(\{x\}) \neq b\text{cl}(\{y\})$, there exist b -open sets U and V such that $b\text{cl}(\{x\}) \subseteq U$, $b\text{cl}(\{y\}) \subseteq V$ and $U \cap V = \emptyset$. Since $U \in BO(X, x)$ and $V \in BO(X, y)$, then $b\text{cl}(U) \cap b\text{cl}(V) = \emptyset$. This implies $b\text{cl}(\{x\}) \cap b\text{cl}(V) = \emptyset$ and hence $\{x\} \cap b\text{cl}(V) = \emptyset$. Therefore $y \notin b\text{cl}_\theta(\{x\})$ and thus $b\text{cl}_\theta(\{x\}) \subseteq b\text{cl}(\{x\})$.

Sufficiency. Let $x, y \in X$ with $b\text{cl}(\{x\}) \neq b\text{cl}(\{y\})$. Then there exists a $k \in b\text{cl}(\{x\})$ such that $k \notin b\text{cl}(\{y\})$. Since $k \in b\text{cl}(\{x\}) = b\text{cl}_\theta(\{x\})$, then $U \cap \{x\} \neq \emptyset$ for every $U \in BR(X, k)$ and hence $b\text{cl}(\{x\}) \subseteq U$. Since $k \notin b\text{cl}(\{y\}) = b\text{cl}_\theta(\{y\})$, there exists $U \in BR(X, k)$ such that $U \cap \{y\} = \emptyset$. Since $U \in BO(X, k)$, $U \cap b\text{cl}(\{y\}) = \emptyset$ and hence $b\text{cl}(\{y\}) \subseteq X \setminus U$. Therefore, there exists disjoint b -open sets U and $X \setminus U$ such that $b\text{cl}(\{x\}) \subseteq U$ and $b\text{cl}(\{y\}) \subseteq X \setminus U$. \square

Proposition 1. *A space X is b - R_1 if and only if for each b -open set A and each $x \in A$, $b\text{cl}_\theta(\{x\}) \subseteq A$.*

Proof. Necessity. Assume X is b - R_1 . Suppose that A is a b -open subset of X and $x \in A$. Let y be an arbitrary element of $X - A$. Since X is b - R_1 , then $b\text{cl}_\theta(\{y\}) = b\text{cl}(\{y\}) \subseteq X - A$. Hence we have that $x \notin b\text{cl}_\theta(\{y\})$ and so $y \notin b\text{cl}_\theta(\{x\})$. It

follows that $b\text{cl}_\theta(\{x\}) \subseteq A$.

Sufficiency. Assume now that $y \in b\text{cl}_\theta(\{x\}) - b\text{cl}(\{x\})$ for some $x \in X$. Then there exists a b -open set A containing y such that $b\text{cl}(A) \cap \{x\} \neq \emptyset$ but $A \cap \{x\} = \emptyset$. Then $b\text{cl}_\theta(\{y\}) \subseteq A$ and $b\text{cl}_\theta(\{y\}) \cap \{x\} = \emptyset$. Hence $x \notin b\text{cl}_\theta(\{y\})$. Thus $y \notin b\text{cl}_\theta(\{x\})$. By this contradiction, we obtain $b\text{cl}_\theta(\{x\}) = b\text{cl}(\{x\})$ for each $x \in X$. Thus, X is b - R_1 . \square

Theorem 20. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a θ - R - b -continuous surjection, then (Y, σ) is a b - R_1 space.*

Proof. Let V be a b -open subset of Y and $y \in V$. Let $x \in X$ such that $y = f(x)$. Since f is θ - R - b -continuous, there exists an open subset U of X containing x such that $b\text{cl}_\theta(f(U)) \subseteq V$. Then $b\text{cl}_\theta(\{y\}) \subseteq b\text{cl}_\theta(f(U)) \subseteq V$. Therefore, by Proposition 1, Y is b - R_1 . \square

We give some basic properties of θ - R - b -continuous functions concerning composition and restriction.

Theorem 21. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is continuous and $g : (Y, \sigma) \rightarrow (Z, \gamma)$ is θ - R - b -continuous, then $g \circ f : (X, \tau) \rightarrow (Z, \gamma)$ is θ - R - b -continuous.*

Proof. Let $x \in X$ and W be a b -open subset of Z containing $g(f(x))$. Since g is θ - R - b -continuous, there exists an open subset V of Y containing $f(x)$ such that $b\text{cl}_\theta(g(V)) \subseteq W$. Since f is continuous, there exists an open subset U of X containing x , $f(U) \subseteq V$; hence $b\text{cl}_\theta(g(f(U))) \subseteq W$. Therefore $g \circ f$ is θ - R -continuous. \square

Theorem 22. *Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \gamma)$ be functions. If $g \circ f : (X, \tau) \rightarrow (Z, \gamma)$ is θ - R - b -continuous and f is an open surjection, then g is θ - R - b -continuous.*

Proof. Let $y \in Y$ and W be a b -open subset of Z containing $g(y)$. Since f is surjective, there exists $x \in X$ such that $y = f(x)$. Since $g \circ f$ is θ - R - b -continuous, there exists an open subset U of X containing x such that $b\text{cl}_\theta(g(f(U))) \subseteq W$. Note that $f(U)$ is an open set containing y . Therefore g is θ - R - b -continuous. \square

Theorem 23. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is θ - R - b -continuous and $A \subseteq X$, then $f|_A : A \rightarrow Y$ is θ - R - b -continuous.*

Proof. Let $x \in A$ and let V be any b -open subset of Y containing $f(x)$ ($= f|_A(x)$). Since f is θ - R - b -continuous, there exists an open subset U of X containing x such that $b\text{cl}_\theta(f(U)) \subseteq V$. Put $O = U \cap A$, then O is an open subset of A containing x such that $b\text{cl}_\theta(f|_A(O)) = b\text{cl}_\theta(f(O)) \subseteq b\text{cl}_\theta(f(U)) \subseteq V$. Therefore $f|_A : A \rightarrow Y$ is θ - R - b -continuous. \square

References

- [1] ANDRIJEVIC D. *On b-open sets* Math. Vesnik, 1996, **48**, 59–64.
- [2] CALDAS M., JAFARI S., NOIRI T. *On \wedge_b -sets and the associated topology τ^{\wedge_b}* . Acta Math. Hungar., 2006, No. 110(4), 337–345.
- [3] EKICI E. *On γ -US-spaces*. Indian J. Math., 2005, **47**, No. 2-3, 131–138.
- [4] EKICI E. *On R-spaces*. Int. J. Pure. Appl. Math., 2005, **25(2)**, 163–172.
- [5] EKICI E., CALDAS M. *Slightly γ -continuous functions*. Bol. Soc. Paran. Mat., 2004, **(3s)**, No. 22(2), 63–74.
- [6] EL-ATIK A. A. *A study of some types of mappings on topological spaces*. Master's Thesis, Faculty of Science, Tanta University, Tanta, Egypt, 1997.
- [7] PARK J. H. *Strongly θ -b-continuous functions* Acta Math. Hungar., 2006, **110(4)**, 347–359.
- [8] RAJESH N. *On Weakly b-irresolute functions* (submitted).

N. RAJESH
 Department of Mathematics
 Kongu Engineering College
 Perundurai, Erode-638 052
 TamilNadu, India
 E-mail: *nrajesh_topology@yahoo.co.in*

Received February 19, 2008

Z. SALLEH
 Institute for Mathematical Research
 University Putra Malaysia, 43400 UPM, Serdang
 Selangor, Malaysia
 E-mail: *bidisalleh@yahoo.com*