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A lower bound for a quotient of roots of factorials
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Abstract. With the aid of asymptotic properties of polygamma functions a new
lower bound is established for the quotient φ(r + 1)/φ(r) where φ(r) = (r!)1/r.
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1 Introduction

In 1965, H. Minc and L. Sathre [12] have given one of the first estimations of the
expression

φ (r) = (r!)1/r .

Inequalities involving the function φ (r) are of interest in themselves, but they also
have important applications in the theory of (0, 1)-matrices.

The permanent of an n-by-n matrix A = (aij) is defined as

Per (A) =
∑

a1σ(1)a2σ(2) · . . . · anσ(n),

where the sum goes over every permutation σ of the set {1, 2, . . . , n}. Although it
looks similar to the determinant of matrices, the permanent is much harder to be
computed. The literature on bounds for permanents is quite extensive. It was first
conjectured by H.Minc [10], then proved by L.M. Brégman [4] that for a (0, 1)-matrix
with row sums r1, r2, . . . , rn, the following upper bound holds:

Per (A) ≤

n
∏

i=1

φ (ri) .

This kind of bounds and some others, see [5, 9, 11, 14], motivated many au-

thors [12, 15, 16, 17] to introduce new inequalities involving (r!)1/r , or the ratio
φ (r + 1) /φ (r) .

H.Minc and L. Sathre [13, Cor. 2] proved that for every positive integer r:

1 <
φ (r + 1)

φ (r)
< 1 +

1

r
. (1.1)

c© Cristinel Mortici, 2009

64



A LOWER BOUND FOR A QUOTIENT OF ROOTS OF FACTORIALS 65

One of the main results of this paper is the following new inequality, for every x ≥ 1,

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≥

(4x+ 4)1/(x+1)

(4x)1/x

(

1 +
1

x

)

> 1.

Since Γ(r + 1) = r! for the positive integer r, this improves the estimation from the
left-hand side of (1.1).

2 The Results

In the early 18th century, famous Swiss mathematician Leonhard
Euler (1707 – 1783), introduced the function

Γ (x) =

∫

∞

0
tx−1e−tdt , x > 0,

now known as the Euler’s gamma function. It is the natural extension of the factorial
function to every positive real number (or more exactly to CrZ−), since Γ (n+ 1) =
n!, for every counting number n. The famous Bohr-Mollerup theorem [2, 3] states
that the gamma function extends uniquely the factorial function, as f = Γ is the
only solution of the functional equation

f (x+ 1) = xf (x) , f (1) = 1

in the class of log-convex functions f : (0, 1) → (0, 1). (Another result of this kind
says, that f = Γ also in the case where there is such a g : (0, 1) → R that the
function g ◦ f is convex in an interval (γ, 1), γ > 0, and g(x) = a lnx + b, x → ∞,
with some a > 0 and b ∈ R, cf. [6]). The psi or digamma function is defined as

ψ (x) =
d

dx
ln Γ (x) =

Γ′ (x)

Γ (x)
,

while the derivatives ψ′, ψ′′, ψ′′′, . . . are called the tri-, tetra-, pentagamma functions,
or simply the polygamma functions. In what follows, we use the following integral
representations [1, 13, 18]

ψ(n) (x) = (−1)n+1
∫

∞

0

tn

1 − e−t
e−txdt (2.1)

and for every ω > 0,
1

xω
=

1

Γ (ω)

∫

∞

0
tω−1e−txdt. (2.2)

Recall that a function z is said to be completely monotonic on (0,∞) if it has
derivatives of all orders and for every positive integer k and x ≥ 0, we have

(−1)k z(k) (x) ≥ 0.
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This notion was introduced in 1921 by F. Hausdorff [8], under the name ’total
monoton’. J.Dubourdieu [7] proved that every non-constant, completely monotonic
function satisfies (−1)k z(k) (x) > 0. According with the well-known Hausdorff–
Bernstein–Widder theorem in [18, Theorem 12a, p. 160], a function z on (0,∞) is
completely monotonic if and only if there exists a non-negative measure µ (t) such
that for every x ≥ 0,

z (x) =

∫

∞

0
e−xtdµ (t) , (2.3)

such that the integral converges for all x > 0. Completely monotonic functions
involving the gamma function are very useful, since they produce sharp bounds
for the polygamma functions. They also play a basic role in probability theory, or
asymptotic and numerical analysis and in physics.

Motivated by the right-hand inequality of (1.1), we introduce the function
h : (0,∞) → R, by the formula

h (x) = x (x+ 1) ln
xΓ (x+ 1)1/(x+1)

(x+ 1) Γ (x)1/x
.

Theorem 2.1. The function h′ is completely monotonic.

Proof. We have

h (x) = x ln Γ (x+ 1) − (x+ 1) ln Γ (x) −
(

x2 + x
)

ln

(

1 +
1

x

)

.

Then

h′ (x) = 2 + lnx− (2x+ 1) ln

(

1 +
1

x

)

− ψ (x) (2.4)

and

h′′ (x) =
2

x
+

1

x+ 1
− 2 ln

(

1 +
1

x

)

− ψ′ (x) (2.5)

and

h′′′ (x) =
2

x
−

2

x+ 1
−

2

x2
−

1

(x+ 1)2
− ψ′′ (x) . (2.6)

Using (2.1)–(2.2), we have

h′′′ (x) =

∫

∞

0
2e−txdt −

∫

∞

0
2e−t(x+1)dt−

−

∫

∞

0
2te−txdt−

∫

∞

0
te−t(x+1)dt+

∫

∞

0

t2

1 − e−t
e−txdt,

or

h′′′ (x) =

∫

∞

0
ϕ (t)

e−t(x+1)

et − 1
dt,

where
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ϕ (t) = t2e2t −
(

et − 1
) (

2 + t− 2et + 2tet
)

=

=
∞
∑

n=3

2n−2
(

n2 − 5n+ 8
)

+ n− 4

n!
tn > 0.

Next we use the fact that

lim
x→∞

(ψ (x) − lnx) = lim
x→∞

ψ′ (x) = lim
x→∞

ψ′′ (x) = 0,

as it results from the asymptotic expansions of the polygamma functions, e.g.,

[1, p. 259 – Rel. 6.3.18; p. 260 – Rel. 6.4.12 and 6.4.13]. Thus, from (2.4)–(2.6),
we have

lim
x→∞

h′ (x) = lim
x→∞

h′′ (x) = lim
x→∞

h′′′ (x) = 0.

Now, from h′′′ > 0, it results that h′′ is strictly increasing. As limx→∞ h′′ (x) = 0,
we have h′′ < 0. Further, h′ is strictly decreasing, with limx→∞ h′ (x) = 0, so h′ > 0.
Finally, from (2.3) it results that h′ is completely monotonic. �

Corollary 2.1. For every x ≥ 1, we have:

Γ (x+ 1)1/(x+1)

Γ (x)1/x
≥ 4

−1
x(x+1)

(

1 +
1

x

)

> 1, (2.7)

where the constant 4 is best possible.

Proof. The function h′ is positive, so h is strictly increasing. In consequence, for
every x ≥ 1, we have h (1) ≤ h (x) . As h (1) = − ln 4, we obtain

− ln 4 ≤ x (x+ 1) ln
xΓ (x+ 1)1/(x+1)

(x+ 1) Γ (x)1/x
.

By exponentiating, we get

4
−1

x(x+1) ≤
x

x+ 1
·
Γ (x+ 1)1/(x+1)

Γ (x)1/x
,

which is the conclusion. �

By using the recurrence Γ (y + 1) = yΓ (y) in (2.7), we can state the following

Corollary 2.2. For every x ≥ 1, we have:

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≥

(4x+ 4)1/(x+1)

(4x)1/x

(

1 +
1

x

)

> 1,

where the constant 4 is best possible.
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As a consequence, this inequality can be used as a good approximation

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≈

(4x+ 4)1/(x+1)

(4x)1/x

(

1 +
1

x

)

,

as we can see from numerical computations:

x Γ(x+2)1/(x+1)

Γ(x+1)1/x

(4x+4)1/(x+1)

(4x)1/x

(

1 + 1
x

)

10 1. 084 021 393 1. 072 979 624

50 1. 019 047 171 1. 018 278 181

125 1. 007 818 486 1. 007 666 066

350 1. 002 829 804 1. 002 806 159

500 1. 001 985 892 1. 001 973 593

2500 1. 000 399 307 1. 000 398 686
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