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On preradicals associated to principal
functors of module categories. 11

A. 1. Kashu

Abstract. Continuing part I (see [1]) the classes of modules and preradicals deter-
mined by the functor U ®s-: S-Mod — Ab are studied, the relations between them
are established and the conditions of coincidence of some preradicals are shown.
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Introduction

In the first part of this work [1] the classes of modules and preradicals associated
to the functor H = Homg(U,-) : R-Mod — Ab (grU € R-Mod) are studied. Now
we will use the same methods for the investigation of similar questions for the functor
of tensor product:

T=U®gs-:5-Mod — Ab,

where Uy is a fixed right S-module. The preradicals determined in S-Mod by Uy and
T are elucidated, their properties and relations between them are shown. Moreover,
some conditions for the coincidence of “near” preradicals are indicated. We remark
that there exists a partial duality between these results and those of part I for the
functor H = Homp(U,-). The main general facts on preradicals and torsions in
modules can be found in the books [3-6].

1 Preradicals defined by the functor T

Let S be a ring with unity and S-Mod is the category of unitary left S-modules.
We fix a right S-module Ug and consider the functor of tensor product, defined
by Us:

T=T"=U ®g-:S-Mod — Ab,

where Ab is the category of abelian groups.
In S-Mod we consider the following class of modules:

FUs)={M € S-Mod|U @sm=01in U @5 M implies m = 0},

where U®sm = {u®@sm € URsM |u € U} for m € M. A direct verification proves
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Proposition 1.1. F(Us) is a pretorsionfree class (i.e. is closed under submo-

dules and direct products), therefore it defines a radical t, in S-Mod such that

P(ty) & F(Us). For every module sM we have:

ty(M)={meM|U®sm=0inU ®@s M}. O

Having the module Ug and respective functor T'= T, we denote:

KerT = {M € S-Mod|T(M) = 0}.

Proposition 1.2. Ker T is a torsion class (i.e. is closed under homomorphic
images, direct sums and extensions), therefore it defines an idempotent radical t, in

S-Mod such that R(t,) X KerT. For every module M € S-Mod we have:

ty(M)=>{Noy CM|N, € KerT}.
!

The corresponding torsionfree class is P(ty) = (KerT)

Proof. From properties of the functor 7' (which is right exact and preserves direct
sums) follows that KerT is a torsion class. For example, any short exact sequence
in S-Mod

0— M 2 M-" M —0

with M’, M" € Ker T implies in Ab the exact sequence

(p) T(r)
— —

T(M') T(M) T(M") = 0

with T(M') = T(M") = 0, therefore T(M) = 0. Thus the class KerT is closed
under extensions. The rest of statements are also obvious. O

Next we clarify the relation between the preradicals t;; and t;;. For that we study
the connections between the associated classes of modules.
Proposition 1.3. F(Us) C (KerT)".
Proof. Let N € F(Us). Y M € KerT and f € Homg(M, N), then for the morphism
T(f): U®s M — U®g N and for every m € M we have U®sm =0in U®sM = 0.
Therefore U ®g f(m) =0 in U ®g N, and from the assumption N € F(Us) now it

follows f(m) = 0. Thus f = 0 and Homgs(M,N) = 0 for every M € KerT, i.e.
M e (KerT)". O

Proposition 1.4. (9’"(US))T = KerT.

Proof. (C) Let M € (?(Us))T, ie. Homg(M,N) = 0 for every N € F(Ug). Since
ty is a radical, for every M € S-Mod we have:

M/ty(M) € P(ty) = F(Us).
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From the assumption it follows Homy (M, M/t,(M)) = 0, therefore M /t, (M) = 0,
ie. M =t,(M). This means that U ® s m = 0 in U ®¢ M for every m € M, thus
U®s M =0.

(2) By Proposition 1.3 F(Us) C (KerT)", therefore

(9’"(U5))T 2 (KerT)lT = KerT,

the last relation beeng true since KerT is a torsion class (Proposition 1.2). O

Proposition 1.5. For every module Us we have the relation ty; >ty and ty is the
greatest idempotent radical contained in the radical t .

Proof. By Proposition 1.3 F(Us) C (KerT)', ie. P(ty) € P(iy), therefore
ty > ty. Moreover, from Proposition 1.4 it follows (rJ"(US))Tl = (Ker T)l and, since
F(Us) = P(ty) and (KerT)' = P(L,), we obtain (P(t,)) = P(E,). Thus P(L,) is
the least torsionfree class, containing P(t,), which is equivalent with the assertion
of proposition. O

Further we will show the necessary and sufficient conditions for coincidence of
these two “neighbour” preradicals t;; and t;;. We will need the following notion.

Definition 1. A module Ugs will be called weakly flat if the functor T = U ®g-
preserves the short exact sequences of the form

0 — ty (M) ? M —”? M /ty(M) —0
C na
for every module M € S-Mod (i.e. T'(i) is a monomorphism for every ¢M).

Proposition 1.6. For module Ug the following conditions are equivalent:
1) ty = tu;
2) radical ty is idempotent;
3) F(Us) = (KerT)l;
4) Us is weakly flat.

Proof. 1) & 2) < 3) follow from Proposition 1.5.
2) = 4). If t, is idempotent, then t, (M) = t, (tU(M)) for every module ¢M,
therefore
ty(M) € R(ty) = R(Fy) = KerT,

thus T'(ty(M)) = 0. So T(i) = 0 and T'(i) is mono, where i is the inclusion
tu(M) C M.

4) = 2). Let Us be a weakly flat module. Let m € t,(M), ie. U®gm =0
in U ®s M. Since the subset U @5 m C U ®g t,(M) pass by T(i) on U ®5 i(m) =
U®sm = 0in U®g M, and by assumption 7'(i) is a monomorphism, we have
U®sm =0in U®gty(M). Therefore m € ty (ty(M)) and t,(M) C ty (ty(M)), ie.
ty is idempotent. O
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Now we will consider the stronger condition to radical t;: the requirement to be
a torsion (i.e. hereditary radical).

Definition 2. The module Ug will be called t-hereditary if from U ® 3 M = 0 it
follows U ®s N = 0 for every submodule N C M.

From the previous results and definitions follows

Proposition 1.7. For module Ug the following conditions are equivalent:
1) radical ty is a torsion;
2) ty =ty and class Ker T is hereditary;
3) ty =1y and class (KerT)" is stable;
4) Us is weakly flat and t-hereditary. O

Corollary 1.8. If module Ug is flat then the radical ty is a torsion.

Proof. If Ug is flat then by definition it is weakly flat. Let U ®s M = 0 and N é M.
Then T'(7) is monomorphism, so U @4 N = 0, i.e. Uy is t-hereditary. O

2 Relations between (t,,t,) and preradicals defined by ideal
J=(0:Us)

As before we fix a module Ug which defines the radical ¢, (Section 1). Acting
by t, to sS we obtain the ideal:

J (sS)={se€S|U®ss=0in U®sS}

The isomorphism U ®¢ S = U show that the relation U ®g s = 0 in U ®¢ S means
that Us = 0, therefore the ideal

J=(0:Us)={seS|Us=0}

is the annihilator of module Ug. As every ideal of a ring, J determines in S-Mod
the following classes of modules [1,2,7]:

;IT={M € S-Mod| JM = M},

F={M € S-Mod|m € M,Jm =0=m = 0};

A(J) ={M € S-Mod| JM = 0}.
We remind briefly form some facts on these classes of modules.

Proposition 2.1. 1) ;T is a torsion class, therefore it determines an idempotent

radical r’ such that R(r”) & ;T and so P(r’) = ST

2) ,F is a torsionfree and stable class, therefore it determines a torsion r; such
that P(r;) & ,F and so R(r,) = ,F;

3) A(J) is a pretorsion and hereditary class, therefore it determines a pretorsion
() such that R(r(,) = A(J);
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4) A(J) is a pretorsionfree and cohereditary class, therefore it determines a
cohereditary radical r') such that P (r(‘])) ﬁ.A(J). O

Proposition 2.2. 1) r/ < ) and v’ is the greatest idempotent radical contained
in r().
2) 1, 21y and v, is the least idempotent radical (torsion) containing 7. O

Proposition 2.3. The following conditions are equivalent:
1) r/ = r();
r) is idempotent;
A(T) = 4T
Ty = T
(5 18 a radical
A() = ,5;
J=J> O

T W N
—_ D D D

~N

Next we will study the relations between the preradicals defined by ideal J < S
and preradicals ¢, from Section 1. For that purpose it is sufficient to clarify the
connections between the respective classes of modules.

Proposition 2.4. F(Us) C A(J) (i.e. P(ty) CP(r)), soty >l
Proof. Let M € F(Us). For every j € J and m € M we have:
U®s(jm)=(Uj)@sm=0®sm in U®sM,

thus by assumption it follows jm = 0. Therefore JM =0, i.e. M € A(J). O
Proposition 2.5. ;7 C KerT (i.e. R(r’) C R(ty), so r’/ <ity).

Proof. If M € ;T, then JM = M and we have
thus M € KerT. O

From the last statement it follows that

" 2 St'(UvS)v

/T2 (KerT)' = (F(Us)
ie. P(r’) 2 P(ty) 2 P(ty), which means that
r’ <ty <ty.

In this way, we obtain the following scheme, which illustrates the relations between
preradicals studied above:
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ty

Figure 1.

The question of coincidence of all these preradicals is more complicated than in
the case of functor H [1]. We remark, in particular, that the relations t, = r) or
t, = r’ are not sufficient for the coincidence of all preradicals of Figure 1.

The relation r/ = ?, is equivalent to the inclusion KerT C ;T; the relation
r(7) = t,, is equivalent to the inclusion A(J) C F(Us). Finally, the stronger relation
r, =ty is equivalent to the inclusion ,T" C F(Us).

The general situation on classes of modules in this case is shown in Figure 2 (see
next page).

3 Supplement to the case of functor H

In the part I of this work [1] we noted the fact that for the functor H is not
obtained the symmetric statements for the preradicals (7‘ 17 ( 1))- Now we supplement
the results of [1], using the above constructions for the functor 7.

We remind that in part I [1] is studied the functor

H = H" = Homg(U,-) : R-Mod — Ab

for a fixed module RU € R-Mod. We have the idempotent preradical ¥ in R-
Mod with R(rY) = Gen (gU) and the idempotent radical 7V with P(7V) = Ker H.
Moreover, the trace of rU in R, i.e. the ideal I = rY(zR), determines two pairs of
preradicals of different types: (7‘] i )) and (7‘,, 7‘(])). We obtained the situation
Pr< U <7, ol <) <Y

studying the conditions of coincidence of these preradicals.

Now we will construct two preradicals t,, and t,,, which are related similarly with
the pair (r;,7(;)). With this purpose for our fixed module zU € R-Mod we denote:

VR — HOTTLR(U, R),
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- p

KerT = (3(Us))' = R(tv)

R(ry) =
S~ JF =AY

Figure 2.
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the dual module of rU, which is a right R-module. For this module we consider the
functor
T=T"=V ®Qg-: R-Mod — Ab,

which determines the associated preradicals t,, and t,, of R-Mod, where:

1) ty is a radical of R-Mod with P(ty,) def F(Vz) =

={M € R-Mod|V ®@zm=0 in V®;M=m=0};

2) ty is an idempotent radical of R-Mod such that R(t, )  KerT v, therefore
P(,) = (KerT")".

From Section 1 it follows that F(Vi) € KerTV)' (Proposition 1.3), thus ¢, >
t,. Moreover, (3'" (VR))T = KerTV, therefore t, is the greatest idempotent radical
contained in t, (Proposition 1.5).

Now we will combine this situation with the corresponding situation defined
in R-Mod by module zU and ideal I [1]. The purpose is to clarify the relations
between preradicals studied in part I [1] and preradicals (t,,%,). As usual, we study
the connections between the corresponding classes of modules.

Proposition 3.1. KerT"V C A(I).

Proof. Every element v € U determines the morphism ¢, : V ®; M — M by

the rule ¢, (f ® m) et [(w)f] - m, where f € Homgz(U,R) and m € M. We have

Imy, = [(u)V]- M and
S Impy = S [(W)V]- M = ( ) Imf) "M =M.
uelU uelU fiU=R

If M € KerTV, then V®;M = 0 and ¢, = 0 for every u € U, therefore Y  Imp, =
uelU
IM=0. O

Proposition 3.2. ;F C F(Vy).

Proof. Let M € 5, ie. fromI-m =0 (m € M) it follows m = 0. Suppose that
Vgm=0inV ®z M. Then as in the preceding proof, for every u € U we have
the morphism ¢, : V ®z M — M such that

ou(V @ m) = [(u)V]-m=0.

Therefore
2. pu(V@rm) =2 [(WV]-m=1I-m=0
uelU uelU
and from the assumption M € ;JF it follows m = 0. So M € F(Vy). O

We remark that from Proposition 1.3 we have also the inclusion:

F(Vy) C (KerT")'.

Corollary 3.3. &, <7y and r; >ty.
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Proof. Since Ker TV = R(&y) and A(I) = R(r¢;), from Proposition 3.1 we have
R(ty) C fR(r(I)), thus ¢y < 7.

Similarly, since ;F = P(r;) and F(Vz) = P(ty), from Proposition 3.2 it follows
P(r;) € P(ty), therefore r; >ty . O

In this way, for the functor H we have the following relations between the asso-
ciated preradicals:
U

T rr

ty

7‘1 fv

Figure 3. Figure 4.

The conditions of coincidence of preradicals from Figure 3 are shown in part I
([1], Proposition 4.4). A similar result is true for preradicals from Figure 4.

Proposition 3.4. The following conditions are equivalent:

1) tv = TI;
2) ty =rp;
3) tv =71();
4) ty = 7‘(]);
5) VI=V.

Proof. The equivalence of conditions 1)—4) can be verified similarly to the proof of
Proposition 4.4 of part I [1].
1) = 5). Let ty, = r;. Then P(ty) = P(r;), ie. F(Vgx) = ;F. Therefore

A
(ff"(‘/ﬁ))T = ,F' where (F(Vz)) = KerTV, thus KerT" = ,F'. From the relations
KerTV C A(I) C ,F'

we obtain A(I) = KerT". Since R/I € A(I), we have R/I € KerTV, ie.
Ver (R/I)=V/VI =0, thus V = V1.

5) = 1). Let VI =V. It is sufficient to show that F(V;) = 7, i.e. the inclusion
F(Vz) C [ F. If M €F(Vg) and I-m = 0 for some m € M, then:

From the assumption M € F(Vy) now it follows m = 0. So M € ;F. O
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