# On preradicals associated to principal functors of module categories. II

### A. I. Kashu

**Abstract.** Continuing part I (see [1]) the classes of modules and preradicals determined by the functor  $U \otimes_{S^-} : S - Mod \to Ab$  are studied, the relations between them are established and the conditions of coincidence of some preradicals are shown.

Mathematics subject classification: 16D90, 16S90, 16D40. Keywords and phrases: Tensor product, preradical, torsion, torsion class, flat module.

### Introduction

In the first part of this work [1] the classes of modules and preradicals associated to the functor  $H = Hom_R(U, -) : R-Mod \to Ab \quad (_RU \in R-Mod)$  are studied. Now we will use the same methods for the investigation of similar questions for the functor of tensor product:

 $T = U \otimes_{S^{-}} : S \text{-} Mod \to \mathcal{A}b,$ 

where  $U_S$  is a fixed right S-module. The preradicals determined in S-Mod by  $U_S$  and T are elucidated, their properties and relations between them are shown. Moreover, some conditions for the coincidence of "near" preradicals are indicated. We remark that there exists a partial duality between these results and those of part I for the functor  $H = Hom_R(U, -)$ . The main general facts on preradicals and torsions in modules can be found in the books [3–6].

### 1 Preradicals defined by the functor T

Let S be a ring with unity and S-Mod is the category of unitary left S-modules. We fix a right S-module  $U_S$  and consider the functor of tensor product, defined by  $U_S$ :

$$T = T^U = U \otimes_{S^{-}} : S \text{-} Mod \to \mathcal{A}b,$$

where  $\mathcal{A}b$  is the category of abelian groups.

In S-Mod we consider the following class of modules:

$$\mathfrak{F}(U_S) = \{ M \in S \text{-} Mod \, | \, U \otimes_S m = 0 \text{ in } U \otimes_S M \text{ implies } m = 0 \},\$$

where  $U \otimes_S m = \{u \otimes_S m \in U \otimes_S M \mid u \in U\}$  for  $m \in M$ . A direct verification proves

<sup>©</sup> A.I.Kashu, 2009

**Proposition 1.1.**  $\mathcal{F}(U_S)$  is a pretorsionfree class (i.e. is closed under submodules and direct products), therefore it defines a <u>radical</u>  $t_U$  in S-Mod such that  $\mathcal{P}(t_U) \stackrel{\text{def}}{=} \mathcal{F}(U_S)$ . For every module  $_SM$  we have:

$$t_U(M) = \{ m \in M \mid U \otimes_S m = 0 \text{ in } U \otimes_S M \}.$$

Having the module  $U_s$  and respective functor  $T = T^U$ , we denote:

$$KerT = \{ M \in S \operatorname{-Mod} | T(M) = 0 \}.$$

**Proposition 1.2.** Ker T is a torsion class (i.e. is closed under homomorphic images, direct sums and extensions), therefore it defines an <u>idempotent radical</u>  $\overline{t}_U$  in S-Mod such that  $\Re(\overline{t}_U) \stackrel{\text{def}}{=} Ker T$ . For every module  $M \in S$ -Mod we have:

$$\overline{t}_U(M) = \sum \{ N_\alpha \subseteq M \, | \, N_\alpha \in Ker \, T \}.$$

The corresponding torsionfree class is  $\mathfrak{P}(\overline{t}_U) = (Ker T)^{\downarrow}$ .

*Proof.* From properties of the functor T (which is right exact and preserves direct sums) follows that Ker T is a torsion class. For example, any short exact sequence in S-Mod

$$0 \to M' \xrightarrow{\varphi} M \xrightarrow{\pi} M'' \to 0$$

with  $M', M'' \in Ker T$  implies in Ab the exact sequence

$$T(M') \xrightarrow{T(\varphi)} T(M) \xrightarrow{T(\pi)} T(M'') \to 0$$

with T(M') = T(M'') = 0, therefore T(M) = 0. Thus the class Ker T is closed under extensions. The rest of statements are also obvious.

Next we clarify the relation between the preradicals  $t_U$  and  $\overline{t}_U$ . For that we study the connections between the associated classes of modules.

# **Proposition 1.3.** $\mathfrak{F}(U_s) \subseteq (KerT)^{\downarrow}$ .

Proof. Let  $N \in \mathcal{F}(U_S)$ . If  $M \in Ker T$  and  $f \in Hom_S(M, N)$ , then for the morphism  $T(f): U \otimes_S M \to U \otimes_S N$  and for every  $m \in M$  we have  $U \otimes_S m = 0$  in  $U \otimes_S M = 0$ . Therefore  $U \otimes_S f(m) = 0$  in  $U \otimes_S N$ , and from the assumption  $N \in \mathcal{F}(U_S)$  now it follows f(m) = 0. Thus f = 0 and  $Hom_S(M, N) = 0$  for every  $M \in KerT$ , i.e.  $M \in (KerT)^{\downarrow}$ .

**Proposition 1.4.**  $(\mathfrak{F}(U_S))^{\dagger} = KerT.$ 

*Proof.* ( $\subseteq$ ) Let  $M \in (\mathcal{F}(U_S))^{\dagger}$ , i.e.  $Hom_S(M, N) = 0$  for every  $N \in \mathcal{F}(U_S)$ . Since  $t_U$  is a radical, for every  $M \in S$ -Mod we have:

$$M/t_U(M) \in \mathfrak{P}(t_U) = \mathfrak{F}(U_S).$$

### A.I. KASHU

From the assumption it follows  $Hom_R(M, M/t_U(M)) = 0$ , therefore  $M/t_U(M) = 0$ , i.e.  $M = t_U(M)$ . This means that  $U \otimes_S m = 0$  in  $U \otimes_S M$  for every  $m \in M$ , thus  $U \otimes_S M = 0$ .

 $(\supseteq)$  By Proposition 1.3  $\mathcal{F}(U_S) \subseteq (KerT)^{\downarrow}$ , therefore

$$\left(\mathfrak{F}(U_S)\right)^{\uparrow} \supseteq \left(KerT\right)^{\downarrow\uparrow} = KerT,$$

the last relation being true since KerT is a torsion class (Proposition 1.2).

**Proposition 1.5.** For every module  $U_s$  we have the relation  $t_U \ge \overline{t}_U$  and  $\overline{t}_U$  is the greatest idempotent radical contained in the radical  $t_U$ .

*Proof.* By Proposition 1.3  $\mathcal{F}(U_S) \subseteq (KerT)^{\downarrow}$ , i.e.  $\mathcal{P}(t_U) \subseteq \mathcal{P}(\overline{t}_U)$ , therefore  $t_U \geq \overline{t}_U$ . Moreover, from Proposition 1.4 it follows  $(\mathcal{F}(U_S))^{\uparrow\downarrow} = (KerT)^{\downarrow}$  and, since  $\mathcal{F}(U_S) = \mathcal{P}(t_U)$  and  $(KerT)^{\downarrow} = \mathcal{P}(\overline{t}_U)$ , we obtain  $(\mathcal{P}(t_U))^{\uparrow\downarrow} = \mathcal{P}(\overline{t}_U)$ . Thus  $\mathcal{P}(\overline{t}_U)$  is the least torsionfree class, containing  $\mathcal{P}(t_U)$ , which is equivalent with the assertion of proposition.

Further we will show the necessary and sufficient conditions for coincidence of these two "neighbour" preradicals  $t_U$  and  $\overline{t}_U$ . We will need the following notion.

**Definition 1.** A module  $U_s$  will be called *weakly flat* if the functor  $T = U \otimes_s$ -preserves the short exact sequences of the form

$$0 \to t_U(M) \xrightarrow{i} M \xrightarrow{\pi} M / t_U(M) \to 0$$

for every module  $M \in S$ -Mod (i.e. T(i) is a monomorphism for every  $_{S}M$ ).

**Proposition 1.6.** For module  $U_s$  the following conditions are equivalent:

- 1)  $t_U = \overline{t}_U;$
- 2) radical  $t_U$  is idempotent;
- 3)  $\mathfrak{F}(U_S) = (KerT)^{\downarrow};$
- 4)  $U_s$  is weakly flat.

*Proof.* 1)  $\Leftrightarrow$  2)  $\Leftrightarrow$  3) follow from Proposition 1.5.

2)  $\Rightarrow$  4). If  $t_U$  is idempotent, then  $t_U(M) = t_U(t_U(M))$  for every module  $_SM$ , therefore

$$t_U(M) \in \Re(t_U) = \Re(\overline{r}_U) = KerT,$$

thus  $T(t_U(M)) = 0$ . So T(i) = 0 and T(i) is mono, where *i* is the inclusion  $t_U(M) \subseteq M$ .

4)  $\Rightarrow$  2). Let  $U_S$  be a weakly flat module. Let  $m \in t_U(M)$ , i.e.  $U \otimes_S m = 0$ in  $U \otimes_S M$ . Since the subset  $U \otimes_S m \subseteq U \otimes_S t_U(M)$  pass by T(i) on  $U \otimes_S i(m) = U \otimes_S m = 0$  in  $U \otimes_S M$ , and by assumption T(i) is a monomorphism, we have  $U \otimes_S m = 0$  in  $U \otimes_S t_U(M)$ . Therefore  $m \in t_U(t_U(M))$  and  $t_U(M) \subseteq t_U(t_U(M))$ , i.e.  $t_U$  is idempotent. Now we will consider the stronger condition to radical  $t_U$ : the requirement to be a *torsion* (i.e. hereditary radical).

**Definition 2.** The module  $U_S$  will be called *t*-hereditary if from  $U \otimes_S M = 0$  it follows  $U \otimes_S N = 0$  for every submodule  $N \subseteq M$ .

From the previous results and definitions follows

**Proposition 1.7.** For module  $U_s$  the following conditions are equivalent:

- 1) radical  $t_U$  is a torsion;
- 2)  $t_U = \overline{t}_U$  and class Ker T is hereditary;
- 3)  $t_U = \overline{t}_U$  and class  $(Ker T)^{\downarrow}$  is stable;
- 4)  $U_s$  is weakly flat and t-hereditary.

**Corollary 1.8.** If module  $U_S$  is flat then the radical  $t_U$  is a torsion.

*Proof.* If  $U_s$  is flat then by definition it is weakly flat. Let  $U \otimes_s M = 0$  and  $N \subseteq M$ . Then T(i) is monomorphism, so  $U \otimes_s N = 0$ , i.e.  $U_s$  is t-hereditary.

# 2 Relations between $(t_U, \overline{t}_U)$ and preradicals defined by ideal $J = (0: U_S)$

As before we fix a module  $U_S$  which defines the radical  $t_U$  (Section 1). Acting by  $t_U$  to  $_SS$  we obtain the ideal:

$$J \stackrel{\text{def}}{=} t_U({}_SS) = \{ s \in S \, | \, U \otimes_S s = 0 \text{ in } U \otimes_S S \}.$$

The isomorphism  $U \otimes_S S \cong U$  show that the relation  $U \otimes_S s = 0$  in  $U \otimes_S S$  means that Us = 0, therefore the ideal

$$J = (0: U_S) = \{s \in S \mid Us = 0\}$$

is the annihilator of module  $U_s$ . As every ideal of a ring, J determines in S-Mod the following classes of modules [1, 2, 7]:

 ${}_{J}\mathfrak{T} = \{M \in S\text{-}Mod | JM = M\};$  ${}_{J}\mathfrak{F} = \{M \in S\text{-}Mod | m \in M, Jm = 0 \Rightarrow m = 0\};$  $\mathcal{A}(J) = \{M \in S\text{-}Mod | JM = 0\}.$ 

We remind briefly form some facts on these classes of modules.

**Proposition 2.1.** 1)  ${}_{J}\mathcal{T}$  is a torsion class, therefore it determines an <u>idempotent</u> <u>radical</u>  $r^{J}$  such that  $\mathcal{R}(r^{J}) \stackrel{\text{def}}{=} {}_{J}\mathcal{T}$  and so  $\mathcal{P}(r^{J}) = {}_{J}\mathcal{T}^{\downarrow}$ ;

2)  $_{J}\mathcal{F}$  is a torsion free and stable class, therefore it determines a <u>torsion</u>  $r_{J}$  such that  $\mathcal{P}(r_{J}) \stackrel{def}{=} _{J}\mathcal{F}$  and so  $\mathcal{R}(r_{J}) = _{J}\mathcal{F}^{\uparrow}$ ;

3)  $\mathcal{A}(J)$  is a pretorsion and hereditary class, therefore it determines a pretorsion  $r_{(J)}$  such that  $\mathcal{R}(r_{(J)}) = \mathcal{A}(J)$ ;

A.I. KASHU

4)  $\mathcal{A}(J)$  is a pretorsionfree and cohereditary class, therefore it determines a cohereditary radical  $r^{(J)}$  such that  $\mathcal{P}(r^{(J)}) \stackrel{def}{=} \mathcal{A}(J)$ .

**Proposition 2.2.** 1)  $r^{J} \leq r^{(J)}$  and  $r^{J}$  is the greatest idempotent radical contained in  $r^{(J)}$ .

2)  $r_J \ge r_{(J)}$  and  $r_J$  is the least idempotent radical (torsion) containing  $r_{(J)}$ .

Proposition 2.3. The following conditions are equivalent:

- 1)  $r^{J} = r^{(J)};$ 2)  $r^{(J)}$  is idempotent; 3)  $\mathcal{A}(J) = {}_{J}\mathcal{T}^{\downarrow};$
- 4)  $r_J = r_{(J)};$
- 5)  $r_{(J)}$  is a radical

6) 
$$\mathcal{A}(J) = {}_J \mathcal{F}^{\dagger};$$
  
7)  $J = J^2.$ 

Next we will study the relations between the preradicals defined by ideal  $J \triangleleft S$  and preradicals  $t_U, \overline{t}_U$  from Section 1. For that purpose it is sufficient to clarify the connections between the respective classes of modules.

**Proposition 2.4.**  $\mathfrak{F}(U_S) \subseteq \mathcal{A}(J)$  (*i.e.*  $\mathfrak{P}(t_U) \subseteq \mathfrak{P}(r^{(J)})$ , so  $t_U \ge r^{(J)}$ .

*Proof.* Let  $M \in \mathfrak{F}(U_S)$ . For every  $j \in J$  and  $m \in M$  we have:

$$U \otimes_S (j m) = (Uj) \otimes_S m = 0 \otimes_S m$$
 in  $U \otimes_S M$ ,

thus by assumption it follows j m = 0. Therefore JM = 0, i.e.  $M \in \mathcal{A}(J)$ .

**Proposition 2.5.**  $_{J}\mathfrak{T} \subseteq KerT$  (*i.e.*  $\mathfrak{R}(r^{J}) \subseteq \mathfrak{R}(\overline{t}_{U})$ , so  $r^{J} \leq \overline{t}_{U}$ ).

*Proof.* If  $M \in {}_J \mathcal{T}$ , then JM = M and we have

$$U \otimes_{S} M = U \otimes_{S} (JM) = UJ \otimes_{S} M = 0 \otimes_{S} M = 0,$$

thus  $M \in KerT$ .

From the last statement it follows that

$$_{J}\mathfrak{T}^{\downarrow}\supseteq\left(KerT
ight)^{\downarrow}=\left(\mathfrak{F}(U_{S})
ight)^{\uparrow\downarrow}\supseteq\mathfrak{F}(U_{S}),$$

i.e.  $\mathfrak{P}(r^J) \supseteq \mathfrak{P}(\overline{t}_U) \supseteq \mathfrak{P}(t_U)$ , which means that

$$r^J \leq \overline{t}_U \leq t_U.$$

In this way, we obtain the following scheme, which illustrates the relations between preradicals studied above:

46



The question of coincidence of all these preradicals is more complicated than in the case of functor H [1]. We remark, in particular, that the relations  $t_U = r^{(J)}$  or  $\overline{t}_U = r^J$  are not sufficient for the coincidence of all preradicals of Figure 1.

The relation  $r^J = \overline{t}_U$  is equivalent to the inclusion  $Ker T \subseteq {}_J \mathcal{T}$ ; the relation  $r^{(J)} = t_U$  is equivalent to the inclusion  $\mathcal{A}(J) \subseteq \mathcal{F}(U_S)$ . Finally, the stronger relation  $r_J = t_U$  is equivalent to the inclusion  ${}_J \mathcal{T}^{\downarrow} \subseteq \mathcal{F}(U_S)$ .

The general situation on classes of modules in this case is shown in Figure 2 (see next page).

### 3 Supplement to the case of functor H

In the part I of this work [1] we noted the fact that for the functor H is not obtained the symmetric statements for the preradicals  $(r_I, r_{(I)})$ . Now we supplement the results of [1], using the above constructions for the functor T.

We remind that in part I [1] is studied the functor

$$H = H^U = Hom_R(U, -) : R - Mod \to Ab$$

for a fixed module  $_{R}U \in R$ -Mod. We have the idempotent preradical  $r^{U}$  in R-Mod with  $\Re(r^{U}) = Gen(_{R}U)$  and the idempotent radical  $\overline{r}^{U}$  with  $\Re(\overline{r}^{U}) = Ker H$ . Moreover, the trace of  $_{R}U$  in R, i.e. the ideal  $I = r^{U}(_{R}R)$ , determines two pairs of preradicals of different types:  $(r^{I}, r^{(I)})$  and  $(r_{I}, r_{(I)})$ . We obtained the situation

$$r^{I} \leq r^{U} \leq \overline{r}^{U}, \quad r^{I} \leq r^{(I)} \leq \overline{r}^{U},$$

studying the conditions of coincidence of these preradicals.

Now we will construct two preradicals  $t_V$  and  $\overline{t}_V$ , which are related similarly with the pair  $(r_I, r_{(I)})$ . With this purpose for our fixed module  $_R U \in R$ -Mod we denote:

$$V_R = Hom_R(U, R),$$



Figure 2.

the dual module of RU, which is a right *R*-module. For this module we consider the functor

$$T = T^V = V \otimes_R - : R - Mod \to Ab,$$

which determines the associated preradicals  $t_V$  and  $\overline{t}_V$  of *R*-Mod, where:

- 1)  $t_V$  is a radical of *R*-Mod with  $\mathcal{P}(t_V) \stackrel{\text{def}}{=} \mathcal{F}(V_R) =$ = { $M \in R\text{-Mod} | V \otimes_R m = 0$  in  $V \otimes_R M \Rightarrow m = 0$ };

2)  $\overline{t}_V$  is an *idempotent radical* of *R*-Mod such that  $\Re(\overline{t}_V) \stackrel{\text{def}}{=} Ker T^V$ , therefore  $\mathfrak{P}(\overline{t}_V) = (KerT^V)^{\downarrow}.$ 

From Section 1 it follows that  $\mathcal{F}(V_R) \subseteq KerT^V)^{\downarrow}$  (Proposition 1.3), thus  $t_V \geq$  $\overline{t}_V$ . Moreover,  $(\mathcal{F}(V_R))^{\dagger} = KerT^V$ , therefore  $\overline{t}_V$  is the greatest idempotent radical contained in  $t_V$  (Proposition 1.5).

Now we will combine this situation with the corresponding situation defined in R-Mod by module  $_{R}U$  and ideal I [1]. The purpose is to clarify the relations between preradicals studied in part I [1] and preradicals  $(t_V, \overline{t_V})$ . As usual, we study the connections between the corresponding classes of modules.

## **Proposition 3.1.** $KerT^{V} \subseteq \mathcal{A}(I)$ .

*Proof.* Every element  $u \in U$  determines the morphism  $\varphi_u : V \otimes_R M \to M$  by the rule  $\varphi_u(f \otimes m) \stackrel{\text{def}}{=} [(u)f] \cdot m$ , where  $f \in Hom_R(U,R)$  and  $m \in M$ . We have  $Im \varphi_u = [(u)V] \cdot M$  and

$$\sum_{u \in U} \operatorname{Im} \varphi_u = \sum_{u \in U} [(u)V] \cdot M = \Big(\sum_{f: U \to R} \operatorname{Im} f\Big) \cdot M = I M.$$

If  $M \in KerT^V$ , then  $V \otimes_R M = 0$  and  $\varphi_u = 0$  for every  $u \in U$ , therefore  $\sum_{u \in U} Im \varphi_u =$ \_\_\_\_\_\_\_ IM = 0.

### **Proposition 3.2.** $_{I}\mathfrak{F} \subseteq \mathfrak{F}(V_{R}).$

*Proof.* Let  $M \in {}_{I}\mathcal{F}$ , i.e. from  $I \cdot m = 0 \quad (m \in M)$  it follows m = 0. Suppose that  $V \otimes_R m = 0$  in  $V \otimes_R M$ . Then as in the preceding proof, for every  $u \in U$  we have the morphism  $\varphi_u: V \otimes_R M \to M$  such that

$$\varphi_u(V \otimes_R m) = [(u)V] \cdot m = 0.$$

Therefore

$$\sum_{u \in U} \varphi_u(V \otimes_R m) = \sum_{u \in U} [(u)V] \cdot m = I \cdot m = 0$$

and from the assumption  $M \in {}_{I}\mathcal{F}$  it follows m = 0. So  $M \in \mathcal{F}(V_{R})$ .

We remark that from Proposition 1.3 we have also the inclusion:

$$\mathfrak{F}(V_R) \subseteq (KerT^V)^{\downarrow}.$$

Corollary 3.3.  $\overline{t}_V \leq r_{(I)}$  and  $r_I \geq t_V$ .

#### A.I. KASHU

*Proof.* Since  $Ker T^V = \Re(\overline{t}_V)$  and  $\mathcal{A}(I) = \Re(r_{(I)})$ , from Proposition 3.1 we have  $\Re(\overline{t}_V) \subseteq \Re(r_{(I)})$ , thus  $\overline{t}_V \leq r_{(I)}$ .

Similarly, since  ${}_{I}\mathfrak{F} = \mathfrak{P}(r_{I})$  and  $\mathfrak{F}(V_{R}) = \mathfrak{P}(t_{V})$ , from Proposition 3.2 it follows  $\mathfrak{P}(r_{I}) \subseteq \mathfrak{P}(t_{V})$ , therefore  $r_{I} \geq t_{V}$ .

In this way, for the functor H we have the following relations between the associated preradicals:



The conditions of coincidence of preradicals from Figure 3 are shown in part I ([1], Proposition 4.4). A similar result is true for preradicals from Figure 4.

**Proposition 3.4.** The following conditions are equivalent:

1)  $t_V = r_I;$ 2)  $\overline{t}_V = r_I;$ 3)  $\overline{t}_V = r_{(I)};$ 4)  $t_V = r_{(I)};$ 5) VI = V.

*Proof.* The equivalence of conditions 1)–4) can be verified similarly to the proof of Proposition 4.4 of part I [1].

1)  $\Rightarrow$  5). Let  $t_V = r_I$ . Then  $\mathcal{P}(t_V) = \mathcal{P}(r_I)$ , i.e.  $\mathcal{F}(V_R) = {}_I\mathcal{F}$ . Therefore  $\left(\mathcal{F}(V_R)\right)^{\dagger} = {}_I\mathcal{F}^{\dagger}$  where  $\left(\mathcal{F}(V_R)\right)^{\dagger} = KerT^V$ , thus  $KerT^V = {}_I\mathcal{F}^{\dagger}$ . From the relations

$$KerT^{V} \subseteq \mathcal{A}(I) \subseteq {}_{I}\mathcal{F}^{^{+}}$$

we obtain  $\mathcal{A}(I) = KerT^{V}$ . Since  $R/I \in \mathcal{A}(I)$ , we have  $R/I \in KerT^{V}$ , i.e.  $V \otimes_{R} (R/I) \cong V/VI = 0$ , thus V = VI.

5)  $\Rightarrow$  1). Let V I = V. It is sufficient to show that  $\mathcal{F}(V_R) = {}_I \mathcal{F}$ , i.e. the inclusion  $\mathcal{F}(V_R) \subseteq {}_I \mathcal{F}$ . If  $M \in \mathcal{F}(V_R)$  and  $I \cdot m = 0$  for some  $m \in M$ , then:

$$V \otimes_R m = VI \otimes_R m = V \otimes_R (Im) = 0$$
 in  $V \otimes_R M$ .

From the assumption  $M \in \mathcal{F}(V_R)$  now it follows m = 0. So  $M \in {}_I\mathcal{F}$ .

### References

- KASHU A. I., On preradicals associated to principal functors of modulle categories. I. Bul. A.Ş,R.M. Matematica, 2009, No. 2(60), 62–72.
- [2] KASHU A. I., Functors and torsions in categories of modules. Acad. of Sciences of RM, Inst. of Math., Chişinău, 1997 (in Russian).
- [3] BICAN L., KEPKA P., NEMEC P. Rings, modules and preradicals. Marcel Dekker, New York, 1982.
- [4] GOLAN J. S. Torsion theories. Longman Sci. Techn., New York, 1986.
- [5] KASHU A. I. Radicals and torsions in modules. Chişinău, Știința, 1983 (In Russian).
- [6] STENSTRÖM B. Rings of quotients. Springer Verlag, Berlin, 1975.
- [7] KASHU A. I. On some bijections between ideals, classes of modules and preradicals of R-Mod. Bul. A.Ş,R.M. Matematica, 2001, No. 2(36), 101–110.

A. I. KASHU Institute of Mathematics and Computer Science Academy of Sciences of Moldova 5 Academiei str., Chişinău, MD-2028 Moldova E-mail: kashuai@math.md Received April 7, 2009