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On preradicals associated to principal
functors of module categories. II

A. I.Kashu

Abstract. Continuing part I (see [1]) the classes of modules and preradicals deter-
mined by the functor U ⊗S - : S-Mod → Ab are studied, the relations between them
are established and the conditions of coincidence of some preradicals are shown.
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Introduction

In the first part of this work [1] the classes of modules and preradicals associated
to the functor H = HomR(U, -) : R-Mod → Ab (RU ∈ R-Mod) are studied. Now
we will use the same methods for the investigation of similar questions for the functor
of tensor product:

T = U ⊗S - : S-Mod → Ab,

where US is a fixed right S-module. The preradicals determined in S-Mod by US and
T are elucidated, their properties and relations between them are shown. Moreover,
some conditions for the coincidence of “near” preradicals are indicated. We remark
that there exists a partial duality between these results and those of part I for the
functor H = HomR(U, -). The main general facts on preradicals and torsions in
modules can be found in the books [3–6].

1 Preradicals defined by the functor T

Let S be a ring with unity and S-Mod is the category of unitary left S-modules.
We fix a right S-module US and consider the functor of tensor product, defined
by US:

T = T U = U ⊗S - : S-Mod → Ab,

where Ab is the category of abelian groups.
In S-Mod we consider the following class of modules:

F(US) = {M ∈ S-Mod |U ⊗S m = 0 in U ⊗S M implies m = 0},

where U ⊗S m = {u⊗S m ∈ U ⊗S M |u ∈ U} for m ∈ M . A direct verification proves
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Proposition 1.1. F(US) is a pretorsionfree class (i.e. is closed under submo-

dules and direct products), therefore it defines a radical tU in S-Mod such that

P(tU)
def
== F(US). For every module SM we have:

tU(M) = {m ∈ M |U ⊗S m = 0 in U ⊗S M}. �

Having the module US and respective functor T = T U , we denote:

KerT = {M ∈ S-Mod |T (M) = 0}.

Proposition 1.2. Ker T is a torsion class (i.e. is closed under homomorphic

images, direct sums and extensions), therefore it defines an idempotent radical tU in

S-Mod such that R(tU)
def
== Ker T . For every module M ∈ S-Mod we have:

tU(M) =
∑

{Nα ⊆ M |Nα ∈ Ker T}.

The corresponding torsionfree class is P(tU) = (Ker T )
↓

.

Proof. From properties of the functor T (which is right exact and preserves direct
sums) follows that Ker T is a torsion class. For example, any short exact sequence
in S-Mod

0 → M ′ ϕ
−→ M

π
−→ M ′′ → 0

with M ′,M ′′ ∈ Ker T implies in Ab the exact sequence

T (M ′)
T (ϕ)
−−−→ T (M)

T (π)
−−−→ T (M ′′) → 0

with T (M ′) = T (M ′′) = 0, therefore T (M) = 0. Thus the class Ker T is closed
under extensions. The rest of statements are also obvious.

Next we clarify the relation between the preradicals tU and tU . For that we study
the connections between the associated classes of modules.

Proposition 1.3. F(US) ⊆ (KerT )
↓

.

Proof. Let N ∈ F(US). If M ∈ Ker T and f ∈ HomS(M,N), then for the morphism
T (f): U ⊗S M → U ⊗S N and for every m ∈ M we have U ⊗S m = 0 in U ⊗S M = 0.
Therefore U ⊗S f(m) = 0 in U ⊗S N , and from the assumption N ∈ F(US) now it
follows f(m) = 0. Thus f = 0 and HomS(M,N) = 0 for every M ∈ KerT , i.e.

M ∈ (Ker T )
↓

.

Proposition 1.4.
(

F(US)
)↑

= KerT .

Proof. (⊆) Let M ∈
(

F(US)
)↑

, i.e. HomS(M,N) = 0 for every N ∈ F(US). Since
tU is a radical, for every M ∈ S-Mod we have:

M/tU(M) ∈ P(tU) = F(US).
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From the assumption it follows HomR

(

M,M/tU(M)
)

= 0, therefore M/tU(M) = 0,
i.e. M = tU(M). This means that U ⊗S m = 0 in U ⊗S M for every m ∈ M , thus
U ⊗S M = 0.

(⊇) By Proposition 1.3 F(US) ⊆ (KerT )
↓

, therefore

(

F(US)
)↑

⊇ (KerT )
↓↑

= KerT,

the last relation beeng true since KerT is a torsion class (Proposition 1.2).

Proposition 1.5. For every module US we have the relation tU ≥ tU and tU is the

greatest idempotent radical contained in the radical tU .

Proof. By Proposition 1.3 F(US) ⊆ (KerT )
↓

, i.e. P(tU) ⊆ P(tU), therefore

tU ≥ tU . Moreover, from Proposition 1.4 it follows
(

F(US)
)↑↓

= (Ker T )
↓

and, since

F(US) = P(tU) and (Ker T )
↓

= P(tU), we obtain
(

P(tU)
)↑↓

= P(tU). Thus P(tU) is
the least torsionfree class, containing P(tU), which is equivalent with the assertion
of proposition.

Further we will show the necessary and sufficient conditions for coincidence of
these two “neighbour” preradicals tU and tU . We will need the following notion.

Definition 1. A module US will be called weakly flat if the functor T = U ⊗S -
preserves the short exact sequences of the form

0 → tU(M)
i
−→
⊆

M
π

−−→
nat

M /tU(M) → 0

for every module M ∈ S-Mod (i.e. T (i) is a monomorphism for every SM).

Proposition 1.6. For module US the following conditions are equivalent :

1) tU = tU ;

2) radical tU is idempotent ;

3) F(US) = (KerT )
↓

;

4) US is weakly flat.

Proof. 1) ⇔ 2) ⇔ 3) follow from Proposition 1.5.

2) ⇒ 4). If tU is idempotent, then tU(M) = tU

(

tU(M)
)

for every module SM ,
therefore

tU(M) ∈ R(tU) = R(rU) = KerT,

thus T
(

tU(M)
)

= 0. So T (i) = 0 and T (i) is mono, where i is the inclusion
tU(M) ⊆ M .

4) ⇒ 2). Let US be a weakly flat module. Let m ∈ tU(M), i.e. U ⊗S m = 0
in U ⊗S M . Since the subset U ⊗S m ⊆ U ⊗S tU(M) pass by T (i) on U ⊗S i(m) =
U ⊗S m = 0 in U ⊗S M , and by assumption T (i) is a monomorphism, we have
U ⊗S m = 0 in U ⊗S tU(M). Therefore m ∈ tU

(

tU(M)
)

and tU(M) ⊆ tU

(

tU(M)
)

, i.e.
tU is idempotent.
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Now we will consider the stronger condition to radical tU : the requirement to be
a torsion (i.e. hereditary radical).

Definition 2. The module US will be called t-hereditary if from U ⊗S M = 0 it
follows U ⊗S N = 0 for every submodule N ⊆ M .

From the previous results and definitions follows

Proposition 1.7. For module US the following conditions are equivalent :

1) radical tU is a torsion;

2) tU = tU and class Ker T is hereditary ;

3) tU = tU and class (Ker T )
↓

is stable;

4) US is weakly flat and t-hereditary. �

Corollary 1.8. If module US is flat then the radical tU is a torsion.

Proof. If US is flat then by definition it is weakly flat. Let U ⊗S M = 0 and N
i
⊆ M .

Then T (i) is monomorphism, so U ⊗S N = 0, i.e. US is t-hereditary.

2 Relations between (tU , tU ) and preradicals defined by ideal
J = (0 : US)

As before we fix a module US which defines the radical tU (Section 1). Acting
by tU to SS we obtain the ideal:

J
def
== tU(SS) = {s ∈ S |U ⊗S s = 0 in U ⊗S S}.

The isomorphism U ⊗S S ∼= U show that the relation U ⊗S s = 0 in U ⊗S S means
that Us = 0, therefore the ideal

J = (0 : US) = {s ∈ S |Us = 0}

is the annihilator of module US. As every ideal of a ring, J determines in S-Mod
the following classes of modules [1, 2, 7]:

JT = {M ∈ S-Mod |JM = M};

JF = {M ∈ S-Mod |m ∈ M,Jm = 0 ⇒ m = 0};

A(J) = {M ∈ S-Mod |JM = 0}.
We remind briefly form some facts on these classes of modules.

Proposition 2.1. 1) JT is a torsion class, therefore it determines an idempotent

radical rJ such that R(rJ)
def
== JT and so P(rJ) = JT

↓

;

2) JF is a torsionfree and stable class, therefore it determines a torsion rJ such

that P(rJ)
def
== JF and so R(rJ) = JF

↑

;

3) A(J) is a pretorsion and hereditary class, therefore it determines a pretorsion

r(J) such that R(r(J)) = A(J);
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4) A(J) is a pretorsionfree and cohereditary class, therefore it determines a

cohereditary radical r(J) such that P
(

r(J)
) def

== A(J). �

Proposition 2.2. 1) rJ ≤ r(J) and rJ is the greatest idempotent radical contained

in r(J).

2) rJ ≥ r(J) and rJ is the least idempotent radical (torsion) containing r(J). �

Proposition 2.3. The following conditions are equivalent :

1) rJ = r(J);

2) r(J) is idempotent ;

3) A(J) = JT
↓

;

4) rJ = r(J);

5) r(J) is a radical

6) A(J) = JF
↑

;

7) J = J2. �

Next we will study the relations between the preradicals defined by ideal J ⊳ S
and preradicals tU , tU from Section 1. For that purpose it is sufficient to clarify the
connections between the respective classes of modules.

Proposition 2.4. F(US) ⊆ A(J) (i.e. P(tU) ⊆ P
(

r(J)
)

, so tU ≥ r(J).

Proof. Let M ∈ F(US). For every j ∈ J and m ∈ M we have:

U ⊗S (j m) = (Uj) ⊗S m = 0 ⊗S m in U ⊗S M,

thus by assumption it follows j m = 0. Therefore JM = 0, i.e. M ∈ A(J).

Proposition 2.5. JT ⊆ KerT (i.e. R(rJ) ⊆ R(tU), so rJ ≤ tU).

Proof. If M ∈ JT, then JM = M and we have

U ⊗S M = U ⊗S (JM) = UJ ⊗S M = 0 ⊗S M = 0,

thus M ∈ KerT .

From the last statement it follows that

JT
↓

⊇ (KerT )
↓

=
(

F(US)
)↑↓

⊇ F(US),

i.e. P(rJ) ⊇ P(tU) ⊇ P(tU), which means that

rJ ≤ tU ≤ tU .

In this way, we obtain the following scheme, which illustrates the relations between
preradicals studied above:
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Figure 1.

The question of coincidence of all these preradicals is more complicated than in
the case of functor H [1]. We remark, in particular, that the relations tU = r(J) or
tU = rJ are not sufficient for the coincidence of all preradicals of Figure 1.

The relation rJ = tU is equivalent to the inclusion Ker T ⊆ JT; the relation
r(J) = tU is equivalent to the inclusion A(J) ⊆ F(US). Finally, the stronger relation

rJ = tU is equivalent to the inclusion JT
↓

⊆ F(US).

The general situation on classes of modules in this case is shown in Figure 2 (see
next page).

3 Supplement to the case of functor H

In the part I of this work [1] we noted the fact that for the functor H is not
obtained the symmetric statements for the preradicals

(

rI , r(I)

)

. Now we supplement
the results of [1], using the above constructions for the functor T .

We remind that in part I [1] is studied the functor

H = HU = HomR(U, -) : R-Mod → Ab

for a fixed module RU ∈ R-Mod. We have the idempotent preradical rU in R-
Mod with R(rU) = Gen (RU) and the idempotent radical r U with P(r U) = KerH.
Moreover, the trace of RU in R, i.e. the ideal I = rU(RR), determines two pairs of
preradicals of different types:

(

rI , r(I)
)

and
(

rI , r(I)

)

. We obtained the situation

rI ≤ rU ≤ r U , rI ≤ r(I) ≤ r U ,

studying the conditions of coincidence of these preradicals.

Now we will construct two preradicals tV and tV , which are related similarly with
the pair (rI , r(I)). With this purpose for our fixed module RU ∈ R-Mod we denote:

VR = HomR(U,R),
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Figure 2.
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the dual module of RU , which is a right R-module. For this module we consider the
functor

T = T V = V ⊗R - : R-Mod → Ab,

which determines the associated preradicals tV and tV of R-Mod, where:

1) tV is a radical of R-Mod with P(tV )
def
== F(VR) =

= {M ∈ R-Mod |V ⊗R m = 0 in V ⊗R M ⇒ m = 0};

2) tV is an idempotent radical of R-Mod such that R(tV )
def
== Ker T V , therefore

P(tV ) = (KerT V )
↓

.

From Section 1 it follows that F(VR) ⊆ KerT V )
↓

(Proposition 1.3), thus tV ≥

tV . Moreover,
(

F(VR)
)↑

= KerT V , therefore tV is the greatest idempotent radical
contained in tV (Proposition 1.5).

Now we will combine this situation with the corresponding situation defined
in R-Mod by module RU and ideal I [1]. The purpose is to clarify the relations
between preradicals studied in part I [1] and preradicals (tV , tV ). As usual, we study
the connections between the corresponding classes of modules.

Proposition 3.1. KerT V ⊆ A(I).

Proof. Every element u ∈ U determines the morphism ϕu : V ⊗R M → M by

the rule ϕu(f ⊗ m)
def
== [(u)f ] · m, where f ∈ HomR(U,R) and m ∈ M . We have

Im ϕu = [(u)V ] · M and

∑

u∈U

Im ϕu =
∑

u∈U

[(u)V ] · M =
(

∑

f :U→R

Im f
)

· M = I M.

If M ∈ KerT V , then V ⊗RM = 0 and ϕu = 0 for every u ∈ U , therefore
∑

u∈U

Im ϕu =

I M = 0.

Proposition 3.2. IF ⊆ F(VR).

Proof. Let M ∈ IF, i.e. from I · m = 0 (m ∈ M) it follows m = 0. Suppose that
V ⊗R m = 0 in V ⊗R M . Then as in the preceding proof, for every u ∈ U we have
the morphism ϕu : V ⊗R M → M such that

ϕu(V ⊗R m) = [(u)V ] · m = 0.

Therefore
∑

u∈U

ϕu(V ⊗R m) =
∑

u∈U

[(u)V ] · m = I · m = 0

and from the assumption M ∈ IF it follows m = 0. So M ∈ F(VR).

We remark that from Proposition 1.3 we have also the inclusion:

F(VR) ⊆ (KerT V )
↓

.

Corollary 3.3. tV ≤ r(I) and rI ≥ tV .
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Proof. Since Ker T V = R(tV ) and A(I) = R
(

r(I)

)

, from Proposition 3.1 we have
R(tV ) ⊆ R

(

r(I)

)

, thus tV ≤ r(I).
Similarly, since IF = P(rI) and F(VR) = P(tV ), from Proposition 3.2 it follows

P(rI) ⊆ P(tV ), therefore rI ≥ tV .

In this way, for the functor H we have the following relations between the asso-
ciated preradicals:
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Figure 3. Figure 4.

The conditions of coincidence of preradicals from Figure 3 are shown in part I
([1], Proposition 4.4). A similar result is true for preradicals from Figure 4.

Proposition 3.4. The following conditions are equivalent :
1) tV = rI ;
2) tV = rI ;
3) tV = r(I);
4) tV = r(I);
5) V I = V .

Proof. The equivalence of conditions 1)–4) can be verified similarly to the proof of
Proposition 4.4 of part I [1].

1) ⇒ 5). Let tV = rI . Then P(tV ) = P(rI), i.e. F(VR) = IF. Therefore
(

F(VR)
)↑

= IF
↑

where
(

F(VR)
)↑

= KerT V , thus KerT V = IF
↑

. From the relations

KerT V ⊆ A(I) ⊆ IF
↑

we obtain A(I) = KerT V . Since R/I ∈ A(I), we have R/I ∈ KerT V , i.e.
V ⊗R (R/I) ∼= V/V I = 0, thus V = V I.

5) ⇒ 1). Let V I = V . It is sufficient to show that F(VR) = IF, i.e. the inclusion
F(VR) ⊆ IF. If M ∈ F(VR) and I · m = 0 for some m ∈ M , then:

V ⊗R m = V I ⊗R m = V ⊗R (Im) = 0 in V ⊗R M.

From the assumption M ∈ F(VR) now it follows m = 0. So M ∈ IF.
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Moldova

E-mail: kashuai@math.md

Received April 7, 2009


