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Flow of an Unsteady Dusty Visco-Elastic Fluid

Between Two Moving Plates in Frenet-Frame

Field System
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Abstract. The present investigation deals with the study of an unsteady motion of
a dusty viscoelastic conducting fluid under arbitrary pressure gradient between two
infinite moving parallel plates. The influence of time dependent pressure gradients, i.e.
impulsive, transition and motion for a finite time is considered along with the effect of
the movement of the plates and the presence of uniform magnetic field. Expressions
for the velocities of the fluid and particles are obtained by using the Laplace transform
technique. Results are presented in graphical form. Finally the skin friction at the
boundaries is calculated.
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1 Introduction

The presence of dust particles in fluids has certain influence on the motion of
the fluids, and such situations arise, for instance in the movement of dust-laden air,
in fluidization, in the use of dust in gas cooling systems, and in sedimentation in
tidal waves, powder technology, acoustics, performance of solid fuel rocket nozzles,
rainerosion, guided missiles, paint spraying, etc.

The stability of the laminar flow of a dusty gas in which the dust particles
are uniformly distributed has been discussed by P. G. Saffman [18] and the basic
equations for the flow of dusty fluid were formulated. T.M.Nabil [16] studied the
effect of couple stresses on pulsatile hydromagnetic Poiseuille flow. N. Datta [5]
obtained the solutions for Pulsatile flow of heat transfer of a dusty fluid through an
infinitely long annular pipe. Girish Kumar, R.K. S.Chaudhary and K.K. Singh [9]
have discussed the unsteady flow of conducting dusty visco-elastic liquid through a
channel, and N. C.Ghosh, B. C.Ghosh and L.Debnath [10] obtained the results
for the hydromagnetic flow of a dusty visco-elastic fluid between two infinite parallel
plates.

Some researchers like Kanwal [12], Truesdell [19], Indrasena [11], Purushotham
[17], Bagewadi and Gireesha [1, 2] have applied differential geometry techniques to
investigate the kinematical properties of fluid flows in the field of fluid mechanics.
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Further, recently the authors [6–8] have studied dusty fluid flow in Frenet frame field
system under varying time dependent pressure gradients.

The present investigation deals with the study of an electrically conducting dusty
viscoelastic fluid flow between two infinitely extended non-conducting parallel plates
in Frenet frame field system. Initially, the fluid and dust particles are assumed to
be at rest. The motion of fluid is due to the influence of time dependent pressure
gradient along with movement of the plates and applied uniform magnetic field. The
analytical expressions are obtained for velocities of fluid and dust particles in three
cases. For each case the skin friction at boundaries is obtained. The changes in
the velocity profiles for different Hartmann numbers are shown graphically. section-
Frenet Frame Field System

Let −→s ,−→n ,
−→
b be triply orthogonal unit vectors tangent, principal normal, binor-

mal respectively to the spatial curves of congruences formed by fluid phase velocity
and dusty phase velocity lines respectively as shown in Figure 1.

Figure 1. Frenet Frame Field System

Geometrical relations are given by Frenet formulae [3]

i)
∂−→s

∂s
= ks

−→n ,
∂−→n

∂s
= τs

−→
b − ks

−→s ,
∂
−→
b

∂s
= −τs

−→n ;

ii)
∂−→n

∂n
= k′

n

−→s ,
∂
−→
b

∂n
= −σ′

n

−→s ,
∂−→s

∂n
= σ′

n

−→
b − k′

n

−→n ; (1)

iii)
∂
−→
b

∂b
= k′′

b

−→s ,
∂−→n

∂b
= −σ′′

b

−→s ,
∂−→s

∂b
= σ′′

b

−→n − k′′

b

−→
b ;

iv) ∇.−→s = θns + θbs; ∇.−→n = θbn − ks; ∇.
−→
b = θnb,

where ∂/∂s, ∂/∂n and ∂/∂b are the intrinsic differential operators along fluid phase
velocity (or dust phase velocity) lines, principal normal and binormal. The functions
(ks, k

′

n, k′′

b
) and (τs, σ

′

n, σ′′

b
) are the curvatures and torsion of the above curves and
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θns and θbs are normal deformations of these spatial curves along their principal
normal and binormal respectively.

2 Formulation and Solution of the Problem

The present discussion considers a dusty visco-elastic fluid bounded by two infi-
nite flat moving plates separated by a distance h in the absence of body force. Both
the fluid and the dust particle clouds are supposed to be static at the beginning.
The dust particles are assumed to be spherical in shape and uniform in size. The
number density of the dust particles is taken as a constant throughout the flow. It
is assumed that the dust particles are electrically nonconducting and neutral. The
flow is due to the influence of time dependent pressure gradient along with motion of
plates and due to magnetic field of uniform strength B0. Under these assumptions
the flow will be a parallel flow in which the streamlines are along the tangential
direction as shown in Figure 2.

Figure 2. Geometry of the flow

For the above described flow the velocities of fluid and dust are of the form

−→u = us
−→s , −→v = vs,

−→s (2)

i.e., un = ub = 0 and vn = vb = 0, where (us, un, ub) and (vs, vn, vb) denote the
velocity components of fluid and dust respectively.

Since the flow is in between two moving plates, we can assume the velocity of
both fluid and dust particles do not vary along tangential direction. Suppose the
fluid extends to infinity in the principal normal direction, then the velocities of both
may be neglected in this direction.

The modified Saffman’s [18] equations for the dusty visco-elastic fluid with the
help of equation (1) are given by:

∂us

∂t
= −

1

ρ

∂p

∂s
+

(

α + β
∂

∂t

)(

∂2us

∂b2
− Crus

)

+
kN

ρ
(vs − us) −

σB2

0

ρ
us; (3)
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∂vs

∂t
=

k

m
(us − vs). (4)

We have the following nomenclature:
ρ−density of the gas, p−pressure of the fluid, N−number of density of dust

particles, k = 6πaµ− Stoke’s resistance (drag coefficient), a−spherical radius of dust
particle, m−mass of the dust particle, B0−the intensity of the imposed transverse
magnetic field, σ−electrical conductivity of the fluid, m/k−relaxation time of the
dust particles, α & β are the kinematic coefficients of visco-elasticity of the fluid,
t−time, and Cr = (σ′2

b
+ k′2

n + k′2

b
+ σ′′2

b
) is called the curvature term [2].

Introducing the nondimensional quantities

x′ = x/h, y′ = y/h, t′ = αt/h2, p′ = ph2/α2ρ, u′

s = ush/α, v′s = vsh/α

in equations (3) and (4) and dropping the primes one can get

∂us

∂t
= −

∂p

∂s
+

(

1 + E
∂

∂t

)(

∂2us

∂b2
− Crus

)

+
l

w
(vs − us) − M2us; (5)

∂vs

∂t
=

1

w
(us − vs) (6)

where E = β/h2 is the elastic parameter, l = mN/ρ, w = mα/kh2, M =
B0h

√

σ/µ (Hartmann number).
Equations (5) and (6) are to be solved subject to the initial and boundary con-

ditions in nondimensional form as:

Initial condition; at t = 0; us = 0, vs = 0

Boundary condition; for t > 0;us = f(t), at b = 0 (7)

and us = g(t) at b = 1

Let P (t) be the time dependent pressure gradient to be impressed on the system for
t > 0. So we can write

−
∂p

∂s
= P (t).

We define Laplace transformations of us and vs as

U =

∞
∫

0

e−xtusdt and V =

∞
∫

0

e−xtvsdt. (8)

Applying the Laplace transform to equations (5) and (6) and to boundary con-
ditions, then by using initial conditions one obtains

xU = P (x) + (1 + xE)

(

∂2U

∂b2
− CrU

)

+
l

w
(V − U) − M2U ; (9)

xV =
1

w
(U − V ); (10)
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U = F (x), at b = 0 and U = G(x) at b = 1, (11)

where F (x), G(x) and P (x) are Laplace transforms of f(t), g(t) and P (t)
respectively.

Eliminating V from (9) and (10) we obtain the following equation

d2U

db2
− Q2U = −

P (x)

1 + xE
, (12)

where Q2 =

(

Cr +
x

1 + xE
+

M2

1 + xE
+

xl

(1 + xE)(1 + xw)

)

.

CASE 1. Impulsive Motion: Consider the case of impulsive motion, in which

f(t) = u0δ(t) at b = 0,

g(t) = u1δ(t) at b = 1,

P (t) = p0δ(t),

where δ(t) is the Dirac delta function and u0, u1 & p0 are constants.
The velocities of fluid and dust particle are obtained by solving the equation (12)

subjected to the boundary conditions (11) as follows:

U =

[

u1 sinh(Qb) − u0 sinh(Q(b − 1))

sinh(Q)

]

+

+
p0

Q2(1 + xE)

[

sinh(Q(b − 1)) − sinh(Qb)

sinh(Q)
+ 1

]

.

Using U in (10) we obtain V as

V =
1

(1 + xw)

[

u1 sinh(Qb) − u0 sinh(Q(b − 1))

sinh(Q)

]

+

+
p0

Q2(1 + xE)(1 + xw)

[

sinh(Q(b − 1)) − sinh(Qb)

sinh(Q)
+ 1

]

.

By taking the inverse Laplace transform to U and V, one can obtain

us = 2π

∞
∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1

+
eα2t(1 + α2E)2(1 + α2w)2

δ2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1

+
eα2t(1 + Eα2)(1 + wα2)

2

δ2

]

+
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+

[

u1 sinh(Xb) − u0 sinh(X(b − 1))

sinh(X)

]

+

+
p0

X2

[

sinh(X(b − 1)) − sinh(Xb)

sinh(X)
+ 1

]

;

vs = 2π

∞
∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)

δ1

+
eα2t(1 + α2E)2(1 + α2w)

δ2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)

δ1

+
eα2t(1 + Eα2)(1 + wα2)

δ2

]

+

+

[

u1 sinh(Xb) − u0 sinh(X(b − 1))

sinh(X)

]

+

+
p0

X2

[

sinh(X(b − 1)) − sinh(Xb)

sinh(X)
+ 1

]

.

Shear stress (Skin friction): The expression for shear stress at the plates
b = 0 and b = 1 are respectively given by:

D0 = 2π2µ
∞
∑

r=0

r2[u0 − u1(−1)r] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1

+
eα2t(1 + α2E)2(1 + α2w)2

δ2

]

+

+ 2p0µ

∞
∑

r=0

[(−1)r − 1]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1

+
eα2t(1 + Eα2)(1 + wα2)

2

δ2

]

×

× µX

[

u1 − u0 cosh(X)

sinh(X)

]

+
µp0

X

[

cosh(X) − 1

sinh(X)

]

;

D1 = 2π2µ

∞
∑

r=0

r2[u0(−1)r − u1] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1

+
eα2t(1 + α2E)2(1 + α2w)2

δ2

]

+

+ 2p0µ

∞
∑

r=0

[1 − (−1)r]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1

+
eα2t(1 + Eα2)(1 + wα2)

2

δ2

]

×

× µX

[

u1 cosh(X) − u0

sinh(X)

]

+
µp0

X

[

1 − cosh(X)

sinh(X)

]

.
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CASE 2. Transition Motion: We consider the case of transition motion in
which

f(t) = u0H(t)e−λt at b = 0,

g(t) = u1H(t)e−λt at b = 1,

P (t) = p0H(t)e−λt λ > 0,

where H(t) is the Heaviside unit step function.
Now we obtain the expressions for velocities of both fluid and dust phase as

us = 2π
∞

∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)2

δ2(α2 + λ)

]

+

+ e−λt

[

u1 sinh(Y b) − u0 sinh(Y (b − 1))

sinh(Y )

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2(α2 + λ)

]

+

+
p0e

−λt

(1 − λE)Y 2

[

sinh(Y (b − 1)) − sinh(Y b) + sinh(Y )

sinh(Y )

]

;

vs = 2π
∞

∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)

δ2(α2 + λ)

]

+

+ e−λt

[

u1 sinh(Y b) − u0 sinh(Y (b − 1))

sinh(Y )(1 − λw)

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb) ×

×

[

eα1t(1 + Eα1)(1 + wα1)

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)

δ2(α2 + λ)

]

+

+
p0e

−λt

(1 − λE)Y 2

[

sinh(Y (b − 1)) − sinh(Y b) + sinh(Y )

sinh(y)(1 − λw)

]

.

Shear stress (Skin friction): The shear stress at the plates b = 0 and b = 1
for transition motion are, respectively, given by:

D0 = 2π2µ

∞
∑

r=0

r2[u0 − u1(−1)r] ×



FLOW OF AN UNSTEADY DUSTY VISCO-ELASTIC FLUID · · · 37

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)2

δ2(α2 + λ)

]

+

+ µY e−λt

[

u1 − u0 cosh(Y )

sinh(Y )

]

+
p0µe−λt

(1 − λE)Y

[

cosh(Y ) − 1

sinh(Y )

]

+

+ 2µp0

∞
∑

r=0

[(−1)r − 1]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2(α2 + λ)

]

;

D1 = 2π2µ

∞
∑

r=0

r2[u0(−1)r − u1] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2

δ1(α1 + λ)
+

eα2t(1 + α2E)2(1 + α2w)2

δ2(α2 + λ)

]

+

+ Y µe−λt

[

u1 cosh(Y ) − u0

sinh(Y )

]

+
p0µe−λt

(1 − λE)Y

[

1 − cosh(Y )

sinh(Y )

]

+

+ 2µp0

∞
∑

r=0

[1 − (−1)r]

[

eα1t(1 + Eα1)(1 + wα1)
2

δ1(α1 + λ)
+

eα2t(1 + Eα2)(1 + wα2)
2

δ2(α2 + λ)

]

.

CASE 3. Motion for a finite time. This case considers the motion of the
plates and the pressure gradient get ceased after a finite time, Hence it can be taken
as

f(t) = u0[H(t) − H(t − T )] at b = 0,

g(t) = u1[H(t) − H(t − T )] at b = 1,

P (t) = p0[H(t) − H(t − T )] λ > 0,

where H(t) is the Heaviside unit step function. For this case the expressions for
velocities of both fluid and dust phase are obtained as

us = 2π
∞
∑

r=0

r[u0 − u1(−1)r] sin(rπb) ×

×

[

eα1t(1 + α1E)2(1 + α1w)2(1 − e−α1T )

δ1α1

+

+
eα2t(1 + α2E)2(1 + α2w)2(1 − e−α2T )

δ2α2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb)

[

eα1t(1 + Eα1)(1 + wα1)
2(1 − e−α1T )

δ1α1

+

+
eα2t(1 + Eα2)(1 + wα2)

2(1 − e−α2T )

δ2α2

]

;

vs = 2π

∞
∑

r=0

r([u0 − u1(−1)r] sin(rπb) ×
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×

[

eα1t(1 + α1E)2(1 + α1w)(1 − e−α1T )

δ1α1

+

+
eα2t(1 + α2E)2(1 + α2w)(1 − e−α2T )

δ2α2

]

+

+
2p0

π

∞
∑

r=0

[(−1)r − 1]

r
sin(rπb)

[

eα1t(1 + Eα1)(1 + wα1)(1 − e−α1T )

δ1α1

+

+
eα2t(1 + Eα2)(1 + wα2)(1 − e−α2T )

δ2α2

]

.

Shear stress (Skin friction): The shear stress at the plates b = 0 and b = 1
for this flow are, respectively, given by:

D0 = 2µπ2

∞
∑

r=0

r2[u0 − u1(−1)r] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2(1 − e−α1T )

δ1α1

+

+
eα2t(1 + α2E)2(1 + α2w)2(1 − e−α2T )

δ2α2

]

+

+ 2µp0

∞
∑

r=0

[(−1)r − 1]

[

eα1t(1 + Eα1)(1 + wα1)
2(1 − e−α1T )

δ1α1

+

+
eα2t(1 + Eα2)(1 + wα2)

2(1 − e−α2T )

δ2α2

]

;

D1 = 2µπ2

∞
∑

r=0

r2[u0(−1)r − u1] ×

×

[

eα1t(1 + α1E)2(1 + α1w)2(1 − e−α1T )

δ1α1

+

+
eα2t(1 + α2E)2(1 + α2w)2(1 − e−α2T )

δ2α2

]

+

+ 2µp0

∞
∑

r=0

[1 − (−1)r]

[

eα1t(1 + Eα1)(1 + wα1)
2(1 − e−α1T )

δ1α1

+

+
eα2t(1 + Eα2)(1 + wα2)

2(1 − e−α2T )

δ2α2

]

,

where

a1 =
[

(Cr + r2π2)E + 1
]

w, b1 = Cr(w + E) + 1 + M2w + l + r2π2(w + E);

c1 = Cr + M2 + r2π2, α1 =
−b1 +

√

b2

1
− 4a1c1

2a1

, α2 =
−b1 −

√

b2

1
− 4a1c1

2a1

;

Y =

√

Cr(1 − Eλ)(1 − λw) + (M2 − λ)(1 − λw) − lλ

(1 − Eλ)(1 − λw)
, X = Cr + M2;
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δ1 = (1 − M2E)(1 + α1w)2 + l(1 − α2

1
Ew);

δ2 = (1 − M2E)(1 + α2w)2 + l(1 − α2

2Ew).

3 Conclusions

Figures 3 to 5 show the parabolic nature of velocity profiles for the fluid and
dust particles for all three cases.
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Figure 3. Variation of fluid and dust phase velocity with b (for Case 1)
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Figure 4. Variation of fluid and dust phase velocity with b (for Case 2)

According to Frenet approximation of a curve in the osculating plane the path
of the curve near origin is parabolic. Hence the results obtained here are analogous
to [3]. It is concluded that the velocity of fluid particles is parallel to velocity of
dust particles. Also it is evident from the graphs that, as we increase the strength
of the magnetic field, it has an appreciable effect on the velocities of fluid and dust
particles. Further one can observe that if the magnetic field is zero then the results
are in agreement with the plane Couette flow. The velocities for fluid and dust
particles decreases for large values of t. We observe that if the dust is very fine then
the velocities of both fluid and dust particles will be the same.
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Figure 5. Variation of fluid and dust phase velocity with b (for Case 3)

References

[1] Bagewadi C. S, Gireesha B. J. A study of two-dimensional steady dusty fluid flow under

varying temperature. Int. Journal of Appl. Mech. and Eng., 2004, 09, 647–653.

[2] Bagewadi C. S, Gireesha B. J. A study of two-dimensional unsteady dusty fluid flow under

varying pressure gradient. Tensor. N.S., 2003, 64, 232–240.

[3] Barret O’ Nell. Elementary Differential Geometry. Academic Press, New York–London,
1966.

[4] Baral M. C. Plane parallel flow of conducting dusty gas. Jour. Phys. Soc. of Japan, 1968, 25,
1701–1702.

[5] Datta N, Dalal D. C. Pulsatile flow of heat transfer of a dusty fluid through an infinitly

long annular pipe. Int. J. Multiphase flow, 1995, 21(3), 515–528.

[6] Gireesha B. J., Bagewadi C. S., Prasannakumara B.C. Flow of unsteady dusty fluid

between two parallel plates under constant pressure gradient. Tensor.N.S., 2007, 68, 1701–1702.

[7] Gireesha B. J., Bagewadi C. S., Prasannakumara B.C. Unsteady dusty fluid Flow

through Rectangular Channel in Frenet Frame Field System. Int. Jour. Pure and Appl. Math.,
2007, 34(4), 525–535.

[8] Gireesha B. J., Bagewadi C. S., Prasannakumara B.C. A study of unsteady dusty gas

flow in Frenet Frame Field. Indian Journal Pure Appl. Math., 2000, 31, 1405–1420.

[9] Girish Kumar, Chaudhary R.K. S., Singh K. K. Unsteady flow of conducting dusty visco-

elastic liquid through a channel. Proc. Nat. Acad. Sci. India., 1990, 60(A), IV, 393–400.

[10] Ghosh N.C., Ghosh B.C., Debnath L. The hydromagnetic flow of a dusty visco-elastic

fluid between two infinite parallel plates. Comp. Math. App., 2000, 39, 103–116.

[11] Indrasena. Steady rotating hydrodynamic-flows. Tensor, N.S., 1978, 32, 350–354.

[12] Kanwal R. P. Variation of flow quantities along streamlines, principal normals and bi-normals

in three-dimensional gas flow. J.Math., 1957, 6, 621–628.

[13] Liu J. T.C. Flow induced by an oscillating infinite plat plate in a dusty gas Phys. Fluids, 1966,
9, 1716–1720.

[14] Lokenath Debnath, Ghosh A.K. Unsteady hydromagnetic flows of a study fluid between

two oscillating plates. Journal of Appl. Scientific Research, 1988, 45, 353–365.

[15] Michael D.H, Miller D. A. Plane parallel flow of a dusty gas. Mathematika, 1966, 13,
97–109.



FLOW OF AN UNSTEADY DUSTY VISCO-ELASTIC FLUID · · · 41

[16] Nabil T. M., EL-Dabe., Salwa M.G., EL-Mohandis. Effect of couple stresses on pulsatile

hydromagnetic poiseuille flow. Fluid Dynamic Research., 1995, 15, 313–324.

[17] Purushotham G, Indrasena. On intrinsic properties of steady gas flows. Appl.Sci. Res.,
1965, A15, 196–202.

[18] Saffman P. G. On the stability of laminar flow of a dusty gas. Journal of Fluid Mechanics,
1962, 13, 120–128.

[19] Truesdell C. Intrinsic equations of spatial gas flows. Z. Angew. Math. Mech., 1960, 40,
9–14.

B. J. Gireesha, C. S.Vishalakshi, C. S.Bagewadi

Department of P.G. Studies and Research in Mathematics
Kuvempu University, Shankaraghatta-577451
Shimoga, Karnataka, India

E-mail: bjgireesu@rediffmail.com

vishalasen@gmail.com

prof bagewadi@yahoo.co.in

T.Nirmala

Department of Mathematics
JNN College of Engineering, Shimoga
Karnataka, India

E-mail: dr.nirmala29@rediffmail.com

Received September 21, 2009


