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Abstract. A multicriteria variant of a well known combinatorial MINMAX location
problem with Pareto and lexicographic optimality principles is considered. Necessary
and sufficient conditions of an optimal solution stability of such problems to the initial
data perturbations are formulated in terms of binary relations. Numerical examples
are given.
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1 Introduction

Many problems of design, planning and management in technical and organi-
zational systems have a pronounced multicriteria character. Multiobjective models
appeared in these cases are reduced to the choice of ”best” (in a certain sense)
values of variable parameters from some discrete aggregate of the given quantities.
Therefore recent interest of mathematicians in multicriteria discrete optimization
problems keeps very high, as confirmed by the intensive publishing activity (see,
e.g., bibliography [1], which contains 234 references).

While solving practical optimization problems, it is necessary to take into account
various kinds of uncertainty such as lack of input data, inadequacy of mathematical
models to real processes, rounding off, calculation errors, etc. Therefore widespread
use of discrete optimization models in the last decades stimulated many experts to
investigate various aspects of incorrect problems theory and, in particular, to the
questions of stability. The most important results in this topic are concerned with
postoptimal and parametric behavior analysis of the solutions of the optimization
problems with respect to variation of their input data. Generally the technique of
such analysis is based on using the properties of multi-valued functions. Such re-
search methods are elaborated in detail and covered in literature about optimization
problems with a continuous set of feasible solutions. Numerous articles are devoted
to the analysis of conditions when problem possesses some property of invariance
under the problem parameters perturbations (see, e. g., [2–5]).

The main difficulty while studying stability of discrete optimization problems
is the essential complexity of discrete models. They behave unpredictable even for
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small changes of initial data. There are a lot of papers (see, e. g., [6–15]) devoted to
the analysis of scalar and vector (multicriteria) discrete optimization problems sen-
sitivity to parameters perturbations. The present work continues our investigations
of different stability types of such problems with various partial criteria and optimal-
ity principles (see, e. g., [16–23]). The here multicriteria variant of the well-known
center location problem (p-center problem) is considered. Some necessary and suf-
ficient conditions of lexicographic and Pareto optima stability under perturbations
of initial data are obtained. Numerical examples are given.

2 Basic definitions and notations

Problems of finding the ”best” location of equipment and facilities abound in
practical situations. Often such problems are formulated as extreme problems in
graphs and networks. In particular, if a graph represents a road network with its
vertices representing communities, one may have the problem of locating optimally
a hospital, fire station or any other emergency service facility. The criterion of
optimality may justifiably be taken to be the minimization of the distance (traveling
time or other costs) from the facility to the most remote vertex of the graph, i. e.
the optimization of the worst-case. In a more general problem, a large number of
such facilities may be required to be located. For instance, in the problems which
involve the location of emergency facilities it is required to minimize the largest
travel distance to any consumer from its nearest facility (center). If there are several
costs criteria which have to be minimized, the vector variant of the center location
problem arises. Let us consider this problem in the following formulation.

Let Nm = {1, 2, . . . ,m} be the set of possible points (centers) of suppliers
(equipment, storehouses, facility, etc.) location, Nn be consumers (clients) loca-
tion, A = (aijk) ∈ R

m×n×s be the cost matrix aijk. The cost is connected with
delivery of required quantity of products from point i ∈ Nm to point j ∈ Nn with
criterion k ∈ Ns.

On the set T of nonempty subsets (trajectories) T ⊂ 2Nm , |T | ≥ 2, let the vector
function

f(t, A) = (f1(t, A), f2(t, A), . . . , fs(t, A))

be defined with ”bottle neck” (MINMAX) criteria:

fk(t, A) = max
j∈Nn

min
i∈t

aijk → min
t∈T

, k ∈ Ns.

We give the traditional definition of the set of Pareto optimal trajectories:

P s(A) = {t ∈ T : ∀t′ ∈ T\{t} (t ≻
A,P

t′)},

where

t ≻
A,P

t′ ⇔ f(t, A) ≥ f(t′, A)&f(t, A) 6= f(t′, A),
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and the sign ≻
A,P

is a negation of the relation ≻
A,P

. The set P s(A) is nonempty for

any matrix A ∈ R
m×n×s as 1 < |T | < ∞.

The set of lexicographically optimal trajectories is denoted by the formula:

Ls(A) = {t ∈ T : ∀t′ ∈ T (t ≻
A,L

t′)},

where

t ≻
A,L

t′ ⇔ ∃ l ∈ Ns (fl(t, A) > fl(t
′, A) & l = min{k ∈ Ns : fk(t, A) 6= fk(t

′, A)}),

and the sign ≻
A,L

is a negation of the relation ≻
A,L

. It is easy to see that Ls(A) ⊆ P s(A)

for any matrix A ∈ R
m×n×s.

Thus, two multicriteria center location problems appear: with Pareto principle
of optimality, i. e. the problem of finding the set P s(A), and with lexicographic
principle of optimality, i. e. the problem of finding the set Ls(A).

In particular in scalar case (s = 1) we get the well-known p-center problem
[24–27], i.e. minimax location problem:

max
j∈Nn

min
i∈t

aij → min

t ∈ T, |t| = p,

where p is an integer number, which satisfies the inequalities 1 ≤ p ≤ m−1. Thereby
in this problem the situation is modeled, when it is required to locate p facilities in
Nm possible points to minimize the largest travel distance to any consumer from its
nearest facility.

It is known (see, e. g., [28]), that the set of lexicographically optimal trajectories
Ls(A) can be defined as the result of solving the sequence of s scalar problems

Ls
k(A) = Argmin{fk(t, A) | t ∈ Ls

k−1(A)}, k ∈ Ns, (1)

where Ls
0(A) = T , Argmin{·} is the set of all optimal trajectories of the correspond-

ing scalar optimization problem. Hence the following inclusions

T ⊇ Ls
1(A) ⊇ Ls

2(A) ⊇ . . . ⊇ Ls
s(A) = Ls(A) (2)

are true.

Perturbations of the vector criterion f(t, A) parameters are modeled by adding
matrix A to the matrices of the set

Ω(ε) = {A′ ∈ R
m×n×s : ||A′|| < ε},

where ε > 0, ||A′|| = max{|a′ijk| : (i, j, k) ∈ Nm × Nn × Ns}, A′ = (a′ijk). The set
Ω(ε) is called the set of perturbing matrices.
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Pareto optimal trajectory t ∈ P s(A) is called stable if

∃ε > 0 ∀A′ ∈ Ω(ε) (t ∈ P s(A + A′)).

Lexicographically optimal trajectory t is called stable if

∃ε > 0 ∀A′ ∈ Ω(ε) (t ∈ Ls(A + A′)).

To prove stability criteria, we consider a number of evident properties and also
formulate and prove 4 lemmas.

3 Properties

Directly from definitions of the binary relations t ≻
A,P

t′ and t ≻
A,L

t′ follows

Property 1. If t ≻
A,P

t′, then t ≻
A,L

t′.

For any indexes k ∈ Ns, j ∈ Nn and trajectory t put

Njk(t, A) = {l ∈ t : fk(t, A) = gjk(t, A) = aljk},

Jk(t, A) = {j ∈ Nn : fk(t, A) = gjk(t, A)},

where

gjk(t, A) = min
i∈t

aijk.

Next properties directly follow from these notions.

Property 2. If q ∈ Jk(t, A), then fk(t, A) = gqk(t, A).

Property 3. If q ∈ Jk(t, A) and p ∈ Nqk(t, A), then fk(t, A) = gqk(t, A) = apqk.

Property 4. Njk(t, A) 6= ∅ if and only if j ∈ Jk(t, A).

Property 5. If Njk(t, A) = ∅, then gjk(t, A) < fk(t, A).

Property 6. If gjk(t, A) > gjk(t
′, A), then there exists an index p ∈ t′\t such that

gjk(t
′, A) = gjk(t

′\t, A) = apjk.

For any index k ∈ Ns we define several binary relations on the set of trajectories T

t ⊢
A,k

t′ ⇔ t |∼
A,k

t′ |≈
A,k

t,

t |∼
A,k

t′ ⇔ ∀j ∈ Jk(t, A) (Njk(t, A) ⊇ Njk(t
′, A)),

t′ |≈
A,k

t ⇔ Jk(t
′, A) ⊇ Jk(t, A).
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Furthermore, we will use binary relations

t ⊢
A

t′ ⇔ ∀k ∈ Ns (t ⊢
A,k

t′),

t ∼
A

t′ ⇔ f(t, A) = f(t′, A).

By virtue of continuity of the function gjk(t, A) in parameters space R
m from

the relations Njk(t, A) ⊇ Njk(t
′, A) 6= ∅ the formula follows

∃ε > 0 ∀A′ ∈ Ω(ε) (gjk(t, A + A′) ≤ gjk(t
′, A + A′)). (3)

Therefore the following property holds

Property 7. If for any index k ∈ Ns the relation t |∼
A,k

t′ holds, then

∃ε > 0 ∀A′ ∈ Ω(ε) ∀k ∈ Ns ∀j ∈ Jk(t, A + A′) (gjk(t, A + A′) ≤ gjk(t
′, A + A′)).

Property 8. If t ⊢
A

t′, then

∃ε > 0 ∀A′ ∈ Ω(ε) ∀k ∈ Ns (fk(t, A + A′) ≤ fk(t
′, A + A′)).

Property 9. If t ⊢
A

t′, then there exists a number ε > 0 such that for any perturbing

matrix A′ ∈ Ω(ε) the following relation holds

t ≻
A+A′,P

t′.

Property 10. If any of the following conclusions holds for trajectories t and t′

(i) f1(t
′, A) > f1(t, A),

(ii) ∃r ∈ Ns−1 (fr+1(t
′, A) > fr+1(t, A) & ∀k ∈ Nr (t ⊢

A,k
t′)),

then the formula

∃ε > 0 ∀A′ ∈ Ω(ε) (t ≻
A+A′,L

t′) (4)

is true

Proof. If f1(t
′, A) > f1(t, A), then in view of continuity of the function fk(t, A) in

parameters space R
m×n we have

∃ε > 0 ∀A′ ∈ Ω(ε) (f1(t
′, A + A′) > f1(t, A + A′)).

Hence (4) holds.
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Now let condition (ii) hold. Then, using t |∼
A,k

t′, k ∈ Nr, in view of (3) we get

∃ε′ > 0 ∀A′ ∈ Ω(ε′) ∀k ∈ Nr ∀j ∈ Jk(t, A + A′) (gjk(t, A + A′) ≤ gjk(t
′, A + A′)).

Therefore

∃ε′ > 0 ∀A′ ∈ Ω(ε′) ∀k ∈ Nr (fk(t, A + A′) ≤ fk(t
′, A + A′)). (5)

In addition, since fr+1(t
′, A) > fr+1(t, A) it follows that

∃ε′′ > 0 ∀A′ ∈ Ω(ε′′) (fr+1(t
′, A + A′) > fr+1(t, A + A′)). (6)

Assuming ε = min{ε′, ε′′}, we derive (4) from (5) and (6).

4 Lemmas

Set
P s(A) = T \ P s(A).

Lemma 1. If t0 ∈ P s(A), t0 ∼
A

t and there exists an index r ∈ Ns such that t |≈
A,r

t0,

then the trajectory t0 is not stable.

Proof. From t |≈
A,r

t0 it follows that there exists an index q ∈ Jr(t
0, A)\Jr(t, A). There-

fore according to property 4 Nqr(t, A) = ∅. Hence using property 5 we have
gqr(t, A) < fr(t, A) and applying property 2 we derive fr(t

0, A) = gqr(t
0, A). Thus,

taking into account t0 ∼
A

t we obtain gqr(t
0, A) > gqr(t, A). Hence in view of property

6 there exists an index p ∈ t\t0, such that

gqr(t, A) = gqr(t\t
0, A) = apqr. (7)

For any number ε > 0 we build elements of the perturbing matrix A0 = (a0
ijk) ∈

Ω(ε) of size m × n × s by the rule

a0
ijk =

{

α, if i ∈ t0, j = q, k = r,

0 otherwise,

where 0 < α < ε. We show that t0 ∈ P s(A+A0). According to the matrix construc-
tion the following equalities hold

gqr(t
0, A + A0) = gqr(t

0, A) + α,

gjr(t
0, A + A0) = gjr(t

0, A) for j 6= q,

gjr(t, A + A0) = gjr(t, A) for j 6= q,

and by (7) it follows that

gqr(t, A + A0) = gqr(t, A).
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Hence we derive

fr(t
0, A+ A0) = max

j∈Nn

gjr(t
0, A+ A0) = max{gqr(t

0, A+ A0), max
j 6=q

gjr(t
0, A+ A0)} =

= max{gqr(t
0, A) + α, max

j 6=q
min
i∈t0

aijq} = fr(t
0, A) + α,

fr(t, A + A0) = max
j∈Nn

gjr(t, A + A0) = max{gqr(t, A), max
j 6=q

min
i∈t

aijr} = fr(t, A).

It follows from these equalities that

fr(t
0, A + A0) > fr(t, A + A0). (8)

Furthermore, taking into account the construction of the perturbing matrix A0 and
the relation t0 ∼

A
t the following equalities are evident

fk(t
0, A + A0) = fk(t, A + A0) for k 6= r. (9)

Therefore

t0 ≻
A+A0,P

t.

Thus we have

∀ε > 0 ∃A0 ∈ Ω(ε) (t0 ∈ P s(A + A0)), (10)

i. e. trajectory t0 is not stable.

Lemma 2. If t0 ∈ P s(A), t0 ∼
A

t and there exists an index r ∈ Ns such that t0 |∼
A,r

t,

then trajectory t0 is not stable.

Proof. We assume that t |≈
A,r

t0. Otherwise t0 is not stable by virtue of Lemma 1.

Since t0 |∼
A,r

t, then in view of t |≈
A,r

t0 there exists an index q ∈ Jr(t, A) ⊇ Jr(t
0, A)

such that p ∈ Nqr(t, A)\Nqr(t
0, A).

For any number ε > 0 we build elements of the perturbing matrix A0 = (a0
ijk) ∈

Ω(ε) of size m × n × s by the rule

a0
ijk =







−α, if i = p, j = q, k = r,

−α, if i ∈ t, j ∈ Nn\{q}, k = r,

0 otherwise,

where 0 < α < ε.

Let us prove that t0 ∈ P s(A + A0). It suffices to prove that relations (8) and (9)
are valid. Taking into account the construction of matrix A0 and the relation t0 ∼

A
t

equalities (9) are evident.
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Further let us prove inequalities (8). Since p ∈ Nqr(t, A), then using properties
2 and 3 we obtain fr(t, A) = gqr(t, A) = apqr. Hence according to the construction
of matrix A0 it follows that

gqr(t, A + A0) = gqr(t, A) − α = fr(t, A) − α,

gjr(t, A + A0) = gjr(t, A) − α for j 6= q.

Therefore we derive

fr(t, A + A0) = max
j 6=Nn

gjr(t, A + A0) = max{gqr(t, A + A0), max
j 6=q

gjr(t, A + A0)} =

= max{fr(t, A) − α, max
j 6=q

(gjr(t, A) − α)} = fr(t, A) − α = fr(t
0, A) − α. (11)

Further let us prove that fr(t
0, A + A0) = fr(t

0, A).
Taking into account the construction of matrix A0 the following inequalities are

evident
gjr(t

0, A + A0) ≤ gjr(t
0, A), j ∈ Nn.

Furthermore, using p 6∈ Nqr(t
0, A) and q ∈ Jr(t

0, A), we have

gqr(t
0, A + A0) = gqr(t

0, A) = fr(t
0, A).

Thus in view of fr(t
0, A) ≥ gjr(t

0, A) ≥ gjr(t
0, A + A0) for j ∈ Nn we derive

fr(t
0, A + A0) = max

j∈Nn

gjr(t
0, A + A0) =

= max{gqr(t
0, A), max

j 6=q
gjr(t

0, A + A0)} = fr(t
0, A).

(12)

Combining (11) and (12), we obtain inequality (8). Thus we derive formula (10).
Consequently the trajectory t0 is not stable.

Set
Ls(A) = T \ Ls(A).

Lemma 3. If t0 ∈ Ls(A) and there exist r ∈ Ns and t ∈ Ls
r(A) such that t |≈

A,r

t0,

then the trajectory t0 is not stable.

Proof. This lemma con be proved in analogous way as Lemma 1. It can be done
by constructing a perturbing matrix A0 the same way as in proof of lemma 1 and
repeating all arguments. Thus the inequality (8) is true.

Moreover, since t0, t ∈ Ls
r(A), then the following inequalities hold for r > 1

fk(t
0, A) = fk(t, A), k ∈ Nr−1.

Therefore, taking into account the construction of matrix A0, we obtain

fk(t
0, A + A0) = fk(t, A + A0), ∈ Nr−1. (13)
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Hence

t0 ≻
A+A0,L

t, (14)

Summarizing we derive the formula

∀ε > 0 ∃A0 ∈ Ω(ε) (t0 ∈ Ls(A + A0)), (15)

i. e. the trajectory t0 ∈ Ls(A) is not stable.

Lemma 4. If t0 ∈ Ls(A) and there exist r ∈ Ns and t ∈ Ls
r(A) such that t0 |∼

A,r

t,

then the trajectory t0 is not stable.

Proof. If we construct a matrix A0 by the same rules as in lemma 2 and carry out
the same reasoning, then we conclude that the inequalities (8) are true. Moreover,
taking into account t0, t ∈ Ls

r(A) we obtain equalities (13). Hence we have (14).

Thus, formula (15) is valid, i. e. the trajectory t0 ∈ Ls(A) is not stable.

5 Theorems

For any trajectory t0 set

Qs(t0, A) = {t ∈ T : t0 ∼
A

t}.

Theorem 1. A trajectory t0 ∈ P s(A) is stable if and only if the formula

∀t ∈ Qs(t0, A) (t0 ⊢
A

t) (16)

is valid.

Proof. Necessity. Let a trajectory t0 ∈ P s(A) be stable. Assume that formula (16)
is not true. Then there exist r ∈ Ns and t ∼

A
t0 such that t0⊢

A
t, i. e. one of the

following relations holds: t0 |∼
A,r

t or t |≈
A,r

t0. Therefore according to lemmas 1 and 2

the trajectory t0 is not stable. Contradiction.
Sufficiency. Let formula (16) hold. Let us show that trajectory t0 ∈ P s(A) is

stable. We consider two possible cases for an arbitrary trajectory t ∈ T .

Case 1. t ∈ Qs(t0, A). Then according to the theorem condition t0 ⊢
A

t. Hence

from property 9 it follows that the formula

∃ε(t) > 0 ∀A′ ∈ Ω(ε(t)) (t0 ≻
A+A′,P

t) (17)

is true.
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Case 2. t ∈ T \ Qs(t0, A). Therefore the relation t0 ∼
A

t does not hold. Then

there exists an index r ∈ Ns such that fr(t
0, A) < fr(t, A). Hence by virtue of

continuity of the function fr(t, A) in R
m×n there exists a number ε(t) such that

formula (17) is valid.
Summarizing both cases, we obtain

∃ε∗ > 0 ∀t ∈ T ∀A′ ∈ Ω(ε∗) (t0 ≻
A+A′,L

t),

where ε∗ = min{ε(t) : t ∈ T}, i. e. trajectory t0 ∈ Ls(A) is stable.

Theorem 2. A trajectory t0 ∈ Ls(A) is stable if and only if the formula

∀k ∈ Ns ∀t ∈ Ls
k(A) (t0 ⊢

A,k
t) (18)

is valid.

Proof. Necessity. Let a trajectory t0 ∈ Ls(A) be stable. Assume that formula (18)
does not hold. Then there exist r ∈ Ns and t ∈ Ls

r(A) such that t0 ⊢
A,r

t. Therefore

one of the following relations holds: t0 |∼
A,r

t or t |≈
A,r

t0. Further using Lemmas 3 and 4

we conclude that trajectory t0 ∈ Ls(A) is not stable. Contradiction.
Sufficiency. Let formula (18) hold. We show that a trajectory t0 ∈ Ls(A) is

stable. We consider two possible cases for an arbitrary trajectory t ∈ T .
Case 1. t ∈ Ls

1(A). First, let t ∈ Ls(A). Then according to the theorem
condition for any index k ∈ Ns the relation t0 ⊢

A,r
t is valid. Therefore from properties

1 and 9 it follows that the following formula holds

∃ε(t) > 0 ∀A′ ∈ Ω(ε(t)) (t0 ≻
A+A′,L

t). (19)

Now, let t ∈ Ls
1(A) \Ls(A). Then there exists an index r = r(t) ∈ Ns \ {1} such

that t 6∈ Ls
r(A) and t ∈ Ls

r(A) for k ∈ Nr−1. Hence we have

fr+1(t, A) > fr+1(t
0, A) & ∀k ∈ Nr−1 (t0 ⊢

A,k
t).

Taking into account these facts and property 10(ii), we conclude that the following
formula holds

∃ε(t) > 0 ∀A′ ∈ Ω(ε(t)) (t ≻
A+A′,L

t0).

Thus we obtain (19).
Case 2. t ∈ T \ Ls

1(A). Therefore the relation

f1(t, A) > f1(t
0, A)

is valid. Hence formula (19) follows from property 10(i).
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Summarizing both cases, we obtain

∃ε∗ > 0 ∀t ∈ T ∀A′ ∈ Ω(ε∗) (t0 ≻
A+A′,L

t),

where ε∗ = min{ε(t) : t ∈ T}, i. e. trajectory t0 ∈ Ls(A) is stable.

6 Corollaries

Next corollaries follow from Theorems 1 and 2.

Corollary 1. The equality Qs(t0, A) = {t0} is the sufficient condition for a trajec-
tory t0 ∈ P s(A) to be stable.

Corollary 2. The formula

∀t ∈ Qs(t0, A) ∀k ∈ Ns (t |≈
A,k

t0)

is the necessary condition for trajectory t0 ∈ P s(A) to be stable.

Corollary 3. A sufficient condition for a trajectory t0 ∈ P s(A) to be stable is that
for any trajectory t ∈ Qs(t0, A) and any index k ∈ Ns the following equalities hold

Jk(t
0, A) = Jk(t, A),

Njk(t
0, A) = Njk(t, A), j ∈ Jk(t0, A).

It is evident that the problem under consideration turns to the vector combi-
natorial problem with partial criteria of the form MINMIN for n = 1 (A ∈ R

m×s).
Hence the following well-known result follows from Theorem 1.

Corollary 4. [29] A trajectory t0 ∈ P s(A) of the problem with partial criteria of
the form MINMIN (n = 1) is stable if and only if the following formula holds

∀t ∈ Qs(t0, A) ∀k ∈ Ns (Nk(t
0, A) ⊇ Nk(t, A)),

where Nk(t, A) =Argmin{aik : i ∈ t}, A = (aik) ∈ R
m×s.

Corollary 5. If |t| = 1 for any trajectory t ∈ T (p = 1), then the equality
Qs(t0, A) = {t0} is the necessary and sufficient condition for trajectory of a vec-
tor 1-center problem t0 ∈ P s(A) to be stable.

Corollary 6. The equality Ls
1(A) = {t0} is the sufficient condition for a trajectory

t0 to be stable.

Corollary 7. If p = 1 (a vector 1-center problem), then the equality Ls
1(A) = {t0}

is the necessary and sufficient condition for trajectory t0 ∈ Ls(A) to be stable.
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Corollary 8. The formula

∀k ∈ Ns ∀t ∈ Ls
k(A) (t |≈

A,k

t0)

is the necessary condition for trajectory t0 ∈ Ls(A) to be stable.

Corollary 9. For a trajectory t0 ∈ Ls(A) to be stable it is sufficient for any index
k ∈ Ns and any trajectory t ∈ Ls

k(A) to have

Jk(t
0, A) = Jk(t, A),

Njk(t
0, A) = Njk(t, A), j ∈ Jk(t0, A).

Corollary 10. [30] A trajectory t0 ∈ Ls(A) of the problem with partial criteria of
the form MINMIN (n = 1) is stable if and only if the following formula holds

∀k ∈ Ns ∀t ∈ Ls
k(A) (Nk(t

0, A) ⊇ Nk(t, A)),

Nk(t, A) =Argmin{aik : i ∈ t}, A = (aik) ∈ R
m×s.

Corollary 11. A trajectory t0 ∈ Ls(A) is not stable if

∃k ∈ Ns ∃t ∈ Ls
k(A) (Jk(t0, A) ∩ Jk(t, A) = ∅).

Corollary 12. A trajectory t0 ∈ Ls(A) is not stable if

∃k ∈ Ns ∃t ∈ Ls
k(A) ∃j ∈ Jk(t

0, A) (Njk(t
0, A) 6⊇ Njk(t, A)).

7 Examples

Let us give several examples which illustrate results stated above. First, consider
the example of the problem, in which each Pareto optimal trajectory is stable.

Example 1. Let m = 2, n = 2, s = 2, T = {t1, t2, t3}, t1 = {1}, t2 = {1, 2},
t3 = {2} and

A1 =

(

−1 0
2 1

)

, A2 =

(

0 1
0 2

)

.

Then f(t1, A) = (0, 1), f(t2, A) = (0, 1), f(t3, A) = (2, 2). Hence P 2(A) = {t1, t2},
t1 ∼

A
t2. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {2},

J2(t
1, A) = J2(t

2, A) = {2},

N21(t
1, A) = N21(t

2, A) = {2},

N22(t
1, A) = N22(t

2, A) = {2}.
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Therefore we have

∀k ∈ N2 (t2 |∼
A,k

t1 |≈
A,k

t2),

∀k ∈ N2 (t1 |∼
A,k

t2 |≈
A,k

t1),

i. e. t2 ⊢
A

t1 ⊢
A

t2. Hence formula (16) is valid for trajectories t1 and t2. Thus, by

virtue of Theorem 1 trajectories t1 and t2 are stable.

The following example illustrates the situation when both stable and nonstable
trajectories exist among Pareto optimal trajectories.

Example 2. Let m = 3, n = 2, s = 2, T = {t1, t2, t3, t4}, t1 = {1, 2}, t2 =
{1, 3}, t3 = {2, 3}, t4 = {1} and

A1 =





−1 0
2 1
1 2



 , A2 =





2 1
1 0
−2 1



 .

Then f(t1, A) = (0, 1), f(t2, A) = (0, 1), f(t3, A) = (1, 0), f(t4, A) = (0, 2). There-
fore P 2(A) = {t1, t2, t3}, t1 ∼

A
t2, Q2(t3) = {t3}. Taking into account the last

equality and Corollary 1 we derive that trajectory t3 is stable. Further, we found
the sets

J1(t
1, A) = J1(t

2, A) = {2},

J2(t
1, A) = {1}, J2(t

2, A) = {2}.

Hence we conclude that there exists index k = 2 such that J2(t
1, A) 6⊆ J2(t

2, A)
and J2(t

2, A) 6⊆ J2(t
1, A). Hence t1 |≈

A,2

t2 |≈
A,2

t1, i. e. t2⊢
A
t1⊢

A
t2. Thus, by virtue of

Theorem 1 trajectories t1, t2 are not stable.

Further we consider the example of the problem in which each Pareto optimal
trajectory is nonstable.

Example 3. Let m = 3, n = 2, s = 2, T = {t1, t2, t3}, t1 = {1}, t2 = {2, 3},
t3 = {2} and

A1 =





−1 0
2 0
−1 1



 , A2 =





0 1
−2 1
0 2



 .

Then f(t1, A) = (0, 1), f(t2, A) = (0, 1), f(t3, A) = (2, 1). Therefore P 2(A) =
{t1, t2}, t1 ∼

A
t2. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {2},

J2(t
1, A) = J2(t

2, A) = {2},
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N21(t
1, A) = {1}, N21(t

2, A) = {2}.

Hence N21(t
1, A) 6⊆ N21(t

2, A), N21(t
2, A) 6⊆ N21(t

1, A), i. e. there exist k = 1 and

j = 2 such that t1 |∼
A,1

t2 |∼
A,1

t1. Therefore t1⊢
A
t2⊢

A
t1. Hence formula (16) is not valid for

trajectories t1 and t2. Thus, by virtue of Theorem 1 trajectories t1 and t2 are not
stable.

Now consider the example of the problem in which each lexicographically optimal
trajectory is stable.

Example 4. Let m = 3, n = 3, s = 2, T = {t1, t2, t3}, t1 = {1, 2}, t2 =
{2, 3}, t3 = {1, 2, 3} and

A1 =





−2 −1 0
2 −1 −1
−2 1 2



 , A2 =





−1 2 −2
1 −2 1
0 0 2



 .

Then f(t1, A) = (−1,−1), f(t2, A) = (−1, 1), f(t3, A) = (−1,−1). Therefore
L2

1(A) = {t1, t2, t3} = T , L2(A) = L2
2(A) = {t1, t2}. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = J1(t
3, A) = {2, 3},

J2(t
1, A) = J2(t

3, A) = {1}, J2(t
2, A) = {3},

{1, 2} = N21(t
1, A) = N21(t

3, A) ⊂ N21(t
2, A) = {2},

N31(t
1, A) = N31(t

2, A) = N31(t
3, A) = {2},

N12(t
1, A) = N12(t

3, A) = {1}.

Hence the following relations hold

t1 |∼
A,1

t2 |≈
A,1

t1, t1 |∼
A,1

t3 |≈
A,1

t1, t3 |∼
A,1

t1 |≈
A,1

t3, t3 |∼
A,1

t2 |≈
A,1

t3,

t1 |∼
A,2

t3 |≈
A,2

t1, t3 |∼
A,2

t1 |≈
A,2

t3.

Thus,

∀k ∈ N2 ∀t ∈ L2
k(A) (t1 ⊢

A
t),

∀k ∈ N2 ∀t ∈ L2
k(A) (t3 ⊢

A
t),

i. e. formula (18) is true. Therefore, by virtue of Theorem 2 trajectories t1, t3 are
stable.

Further, we consider the problem in which each lexicographically optimal trajec-
tory is not stable.
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Example 5. Let m = 2, n = 3, s = 2, T = {t1, t2}, t1 = {1}, t2 = {2} and

A1 =

(

0 −1 0
−2 −2 0

)

, A2 =

(

−1 −2 −1
−2 −2 −1

)

.

Then f(t1, A) = (0,−1), f(t2, A) = (0,−1). Therefore L2
1(A) = {t1, t2} = T ,

L2(A) = L2
2(A) = {t1, t2}. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {3},

{1, 3} = J2(t
1, A) 6⊆ J2(t

2, A) = {3},

N31(t
1, A) = {1}, N31(t

2, A) = {2}.

Hence we have

N31(t
1, A) 6⊆ N31(t

2, A), N31(t
2, A) 6⊆ N31(t

1, A),

i. e. t1 |∼
A,1

t2 |∼
A,1

t1, t2 |≈
A,1

t1. Therefore t1⊢
A
t2⊢

A
t1. Hence formula (18) is not valid for

both lexicographically optimal trajectories t1 and t2. Thus, in view of Theorem 2
they are not stable.

The following example illustrates situation when both stable and nonstable tra-
jectories exist among lexicographically optimal trajectories.

Example 6. Let m = 2, n = 3, s = 2, T = {t1, t2, t3}, t1 = {1}, t2 =
{1, 2}, t3 = {2} and

A1 =

(

−1 −1 −2
0 −1 −1

)

, A2 =

(

1 0 1
2 2 1

)

.

Then f(t1, A) = (−1, 1), f(t2, A) = (−1, 1), f(t3) = (0, 2). Therefore L2
1(A) =

{t1, t2}, L2(A) = L2
2(A) = {t1, t2}. Further, we found the sets

J1(t
1, A) = J1(t

2, A) = {1, 2},

J2(t
1, A) = J2(t

2, A) = {1, 3},

N11(t
1, A) = N11(t

2, A) = {1},

{1} = N21(t
1, A) ⊂ N21(t

2, A) = {1, 2},

N12(t
1, A) = N12(t

2, A) = {1},

{1} = N32(t
1, A) ⊂ N32(t

2, A) = {1, 2}.

Hence we derive
∀k ∈ N2 (t2 ⊢

A
t1).

Therefore formula (18) is valid and by virtue of Theorem 2 trajectory t2 is stable.
But

N21(t
1, A) 6⊇ N21(t

2, A),

i. e. there exist index k = 1 and trajectory t2 ∈ L2
1(A) such that t1 |∼

A,1

t2. Hence

t1⊢
A
t2. Thus, formula (18) does not hold and by virtue of Theorem 2 trajectory t1 is

nonstable.
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