On π -quasigroups isotopic to abelian groups

Parascovia Syrbu

Abstract. A π -quasigroup is a quasigroup satisfying one of the seven minimal identities from the V.Belousov's classification given in [1]. Some general results about π -quasigroups isotopic to groups are obtained by V. Belousov and A. Gwaramija in [1] and [2]. π -Quasigroups isotopic to abelian groups are investigated in this paper.

Mathematics subject classification: 20N05.

Keywords and phrases: π -quasigroups, C_3 -quasigroups, parastrophically equivalent identities, minimal identities, V. Belousov's classification, metabelian groups.

Let Q be a nonempty set and let $\Sigma(Q)$ be the set of all binary quasigroup operations defined on Q. V. Belousov (see [1]) found all nontrivial identities $w_1 = w_2$ in $Q(\Sigma)$ having the length $|w_1| + |w_2| = 5$ (|w| is the number of free elements in the word w), called minimal identities. He proved that, using transformation to inverse operations, every minimal identity can be transformed into the form:

$$A(x, B(x, C(x, y))) = y.$$

Using multiplication of operations, the last identity can be rewritten in abbreviated form as ABC = E, where $E(x, y) = y, \forall x, y \in Q$, is the right selector.

Minimal nontrivial identities imply the orthogonality of participating operations. It is known that two quasigroup operations A and B, defined on a set Q, are orthogonal if and only if there exists a quasigroup operation C on Q, such that $CBA^{-1} = E$ [1]. Hence, if $A, B, C \in Q(\Sigma)$ and ABC = E, we have $A \perp B^{-1}$, $B \perp C^{-1}$ and $C \perp A^{-1}$.

A quasigroup Q(A) is called a π -quasigroup of type $[\alpha, \beta, \gamma]$, where $\alpha, \beta, \gamma \in S_3$, if it satisfies the identity ${}^{\alpha}A^{\beta}A^{\gamma}A = E$.

V. Belousov considered the following transformations of types on S_3^3 : $f[\alpha, \beta, \gamma] = [\beta, \gamma, \alpha]$ and $h[\alpha, \beta, \gamma] = [r\gamma, r\beta, r\alpha]$, where r = (23). The transformations f and h generate the group $S^0 = \{\varepsilon, f, f^2, h, fh, f^2h\} \cong S_3$. Two types $T = [\alpha, \beta, \gamma]$ and $T' = [\alpha', \beta', \gamma']$ are called parastrophically equivalent if there exist $g \in S^0$ and $\theta \in S_3$ such that $T' = gT\theta$. If the types T and T' are parastrophically equivalent then we'll denote $T \sim T'$. The binary relation " \sim " is an equivalence on S_3^3 and S_3^3/\sim consists of 7 classes [1]. A system of representatives of the seven equivalence classes is:

$$T_1 = [\varepsilon, \varepsilon, \varepsilon], T_2 = [\varepsilon, \varepsilon, l], T_4 = [\varepsilon, \varepsilon, lr], T_6 = [\varepsilon, l, lr], T_{10} = [\varepsilon, lr, l], T_8 = [\varepsilon, rl, lr], T_{11} = [\varepsilon, lr, rl], \text{ where } l = (13), r = (23), s = (12).$$

Two minimal identities

$$^{\alpha}A(x,^{\beta}A(x,^{\gamma}A(x,y))) = y,$$

[©] Parascovia Syrbu, 2009

$${}^{\alpha'}A(x,{}^{\beta'}A(x,{}^{\gamma'}A(x,y))) = y,$$

where $A \in \Sigma(Q)$, are called parastrophically equivalent if the types $T = [\alpha, \beta, \gamma]$ and $T' = [\alpha', \beta', \gamma']$ are parastrophically equivalent.

Denoting $A = " \cdot "$ the following identities, which correspond to the seven types, respectively, were obtained by V. Belousov in [1]:

No.	Type	Identity in $Q(\cdot)$	
1	$T_1 = [\varepsilon, \varepsilon, \varepsilon]$	$x(x \cdot xy) = y$	
2	$T_2 = [\varepsilon, \varepsilon, l]$	$x(y \cdot yx) = y$	
3	$T_4 = [\varepsilon, \varepsilon, lr]$	$x \cdot xy = yx$	Stein's 1st law
4	$T_6 = [\varepsilon, l, lr]$	$xy \cdot x = y \cdot xy$	Stein's 2nd law
5	$T_{10} = [\varepsilon, lr, l]$	$xy \cdot yx = y$	Stein's 3d law
6	$T_8 = [\varepsilon, rl, lr]$	$xy \cdot y = x \cdot xy$	Schröder's 1st law
7	$T_{11} = [\varepsilon, lr, rl]$	$yx \cdot xy = y$	Schröder's 2nd law

The same classification was obtained independently by F. E. Bennett in 1989 (see, for example, [3] and [4]).

 π -Quasigroups isotopic to groups have been investigated by V. Belousov in [1] and by V. Belousov and A. Gwaramija in [2]. In particular, they proved that the groups which are isotopic to π -quasigroups of type $T_4 = [\varepsilon, \varepsilon, lr]$ (i.e. to Stein quasigroups) or to π -quasigroups of type $T_6 = [\varepsilon, l, lr]$, are metabelian. Also it is proved in [1] that if a group Q(+) is isotopic to a π -quasigroup of type $T_8 = [\varepsilon, rl, lr]$ then Q(+) is abelian of exponent 2. More, every finite group of exponent 2 is isotopic to a π -quasigroup of type T_8 . π -Quasigroups of other types, isotopic to groups, are considered in [1] as well. We'll consider below π -quasigroups isotopic to abelian groups.

Let $Q(\cdot)$ be a π -quasigroups of type $T_1 = [\varepsilon, \varepsilon, \varepsilon]$, i.e. a quasigroup satisfying the identity

$$x(x \cdot xy) = y. \tag{1}$$

Such quasigroups are also called C_3 -quasigroups. Suppose that $Q(\cdot)$ is isotopic to an abelian group, and for $a,b\in Q$ consider the LP-isotopes $(\cdot)^{(R_a^{-1},L_b^{-1},\varepsilon)}$ and $(+)=(\cdot)^{(R_0^{-1},L_{f_0}^{-1},\varepsilon)}$ where $0=b\cdot a$ and $f_0\cdot 0=0$. According to Albert's theorem, these two LP-isotopes are abelian groups (as loops which are isotopic to groups), so Q(+) where $x+y=R_0^{-1}(x)\cdot L_{f_0}^{-1}(y)$, for every $x,y\in Q$, is an abelian group with the neutral element $0=f_0\cdot 0$. Let denote now $L_{f_0}^{-1}$ by λ . Then $x+y=R_0^{-1}(x)\cdot \lambda(y)$ and $x\cdot y=R_0(x)+\lambda^{-1}(y)$, for every $x,y\in Q$, so the identity (1) takes the form $R_0(x)+\lambda^{-1}(R_0(x)+\lambda^{-1}(R_0(x)+\lambda^{-1}(y)))=y$ or, after replacing $R_0(x)$ by x:

$$x + \lambda^{-1}(x + \lambda^{-1}(x + \lambda^{-1}(y))) = y.$$
 (2)

Taking x = 0, from (2) it follows $\lambda^3 = \varepsilon$. Also the equality (2) implies $x + \lambda^{-1}(x + \lambda^{-1}(y)) = \lambda(I(x) + y)$ or, replacing $\lambda^{-1}(y)$ by y:

$$x + \lambda^{-1}(x+y) = \lambda(I(x) + \lambda(y)), \tag{3}$$

where $I: Q \to Q$, I(x) = -x (in the abelian group Q(+)). Taking y = 0, (3) implies

$$x + \lambda^{-1}(x) = \lambda I(x),\tag{4}$$

for every $x \in Q$, as $\lambda(0) = L_{f_0}^{-1}(0) = 0$.

Let consider now a new operation on Q denoted by " \circ " and defined as follows:

$$x \circ y = \lambda(x) + x + I(y), \tag{5}$$

 $\forall x, y \in Q$.

Proposition 1. The grupoid $Q(\circ)$ is a quasigroup isotopic to Q(+).

Proof. From (4) it follows $\lambda^{-1}(x) = \lambda I(x) + I(x)$, $\forall x \in Q$ so $\lambda^{-1}I(x) = \lambda(x) + x$, $\forall x \in Q$, and then $x \circ y = \lambda(x) + x + I(y) = \lambda^{-1}I(x) + I(y)$, $\forall x, y \in Q$, i.e. $(\circ) = (+)^{(\lambda^{-1}I,I,\varepsilon)}$.

Proposition 2. Let $Q(\cdot)$ be a π -quasigroup of type T_1 , isotopic to an abelian group and let Q(+) and $Q(\circ)$ be its isotopes defined above. The following conditions are equivalent:

- 1. $\lambda I = I\lambda$;
- 2. $\lambda \in AutQ(+)$;
- 3. $\lambda \in AutQ(\circ)$;
- 4. $I \in AutQ(\circ)$;
- 5. Q(+) satisfies the equality $\lambda^2(x) + \lambda(x) + x = 0, \forall x \in Q$;
- 6. $Q(\circ)$ is a medial quasigroup.

Proof. 1.⇒ 2.: If $\lambda I = I\lambda$ then from (3) and (4) it follows $x + \lambda^{-1}(x+y) = \lambda(I(x) + \lambda(y)) = \lambda I(x+I\lambda(y)) = \lambda I(x+\lambda I(y)) = \lambda I(x+y+\lambda^{-1}(y)) = x+y+\lambda^{-1}y+\lambda^{-1}(x+y+\lambda^{-1}(y)) = x+\lambda I(y) + \lambda^{-1}(x+\lambda I(y))$, so $\lambda^{-1}(x+y) = \lambda I(y) + \lambda^{-1}(x+\lambda I(y))$, which implies

$$\lambda^{-1}(x+y) + \lambda(y) = \lambda^{-1}(x+\lambda I(y)).$$

Denoting x + y by z, from the last equality it follows $\lambda^{-1}(z) + \lambda(y) = \lambda^{-1}(z + I(y) + \lambda I(y)) = \lambda^{-1}(z + \lambda^{-1}(y))$, so replacing y by $\lambda(y)$ and using the equality $\lambda^3 = \varepsilon$, we get: $\lambda^{-1}(z) + \lambda^{-1}(y) = \lambda^{-1}(z + y)$, $\forall z, y \in Q$, i.e. $\lambda \in \text{Aut}Q(+)$.

 $2.\Rightarrow 1.$: If $\lambda \in \text{Aut}Q(+)$ then $\lambda(-x) = -x, \forall x \in Q$, i.e. $\lambda I = I\lambda$.

 $1.\Rightarrow 3.$: Using Proposition 1, we get: $\lambda I = I\lambda \Rightarrow \lambda \in \operatorname{Aut}Q(+)$, so $\lambda(x \circ y) = \lambda(\lambda^{-1}I(x) + I(y)) = I(x) + \lambda I(y) = \lambda^{-1}I\lambda(x) + I\lambda(y) = \lambda(x) \circ \lambda(y)$, $\forall x, y \in Q$, so $\lambda \in \operatorname{Aut}Q(\circ)$.

 $3.\Rightarrow 1.: \lambda \in \operatorname{Aut}Q(\circ) \Leftrightarrow \lambda(x \circ y) = \lambda(x) \circ \lambda(y), \forall x, y \in Q \Leftrightarrow \lambda(\lambda^{-1}I(x) + I(y)) = \lambda^{-1}I\lambda(x) + I\lambda(y), \forall x, y \in Q.$ Taking x = 0, the last equality implies $\lambda I(y) = I\lambda(y), \forall y \in Q$, i.e. $\lambda I = I\lambda$.

1. \Leftrightarrow 5.: Using (4), we have: $\lambda I = I\lambda \Leftrightarrow x + \lambda^{-1}(x) = I\lambda(x), \ \forall x \in Q, \Leftrightarrow \lambda^{2}(x) + \lambda(x) + x = 0, \ \forall x \in Q.$

 $1.\Rightarrow 4.$: According to Proposition 1, $x \circ y = \lambda^{-1}I(x) + I(y)$, $\forall x, y \in Q$. If $\lambda I = I\lambda$, then $I(x \circ y) = I(\lambda^{-1}I(x) + I(y)) = \lambda^{-1}(x) + y$, $\forall x, y \in Q$, and $I(x) \circ I(y) = \lambda^{-1}I(I(x)) + I(I(y)) = \lambda^{-1}(x) + y$, $\forall x, y \in Q$, so $I(x \circ y) = I(x) \circ I(y)$, $\forall x, y \in Q$, i.e. $I \in \text{Aut}Q(\circ)$.

 $4. \Rightarrow 1.: \text{ If } I \in \operatorname{Aut}Q(\circ), \text{ then } I(x \circ y) = I(x) \circ I(y), \ \forall x,y \in Q, \ \Rightarrow I(\lambda^{-1}I(x) + I(y)) = \lambda^{-1} II(x) + I(I(y)) = \lambda^{-1}(x) + y, \ \Rightarrow I\lambda^{-1}I(x) + y = \lambda^{-1}(x) + y, \ \forall x,y \in Q, \ \Rightarrow I\lambda^{-1}I = \lambda^{-1}, \ \Rightarrow I\lambda = \lambda I.$

 $6.\Rightarrow 1.$: Remark that from (5) it follows $x \circ x = \lambda(x), \forall x \in Q$. If $Q(\circ)$ is a medial quasigroup, i.e. if $Q(\circ)$ satisfies the identity $(x \circ y) \circ (u \circ v) = (x \circ u) \circ (y \circ v)$, then $\lambda(x \circ y) = (x \circ y) \circ (x \circ y) = \lambda(x) \circ \lambda(y), \Rightarrow \lambda \in \text{Aut}Q(\circ) \Rightarrow \lambda I = I\lambda$.

 $1.\Rightarrow 6.$: If $\lambda I=I\lambda$, then $\lambda\in \mathrm{Aut}Q(+)$, so $\lambda I,I\in \mathrm{Aut}Q(+)$ where Q(+) is an abelian group and $(\lambda^{-1}I)I=\lambda^{-1}=I(\lambda^{-1}I)$, i.e. $Q(\circ)$, where $x\circ y=\lambda^{-1}I(x)+I(y)$, $\forall x,y\in Q$, is a medial quasigroup.

Proposition 3. Let $Q(\cdot)$ be an isotope of an abelian group, $0 \in Q$, $f_0 \cdot 0 = 0$, $\lambda = L_{f_0}^{-1}$, $(+) = (\cdot)^{(R_0^{-1},\lambda,\varepsilon)}$, and let $\lambda I = I\lambda$, where $I : Q \to Q, I(x) + x = 0$. Then $Q(\cdot)$ is a π -quasigroup of type T_1 if and only if Q(+) satisfies the condition $\lambda^2(x) + \lambda(x) + x = 0$, $\forall x \in Q$.

Proof. If $Q(\cdot)$ is a π -quasigroup of type T_1 , isotopic to an abelian group and $\lambda I = I\lambda$ then, according to Proposition 2, Q(+) satisfies the condition $\lambda^2(x) + \lambda(x) + x = 0$, $\forall x \in Q$.

Conversely, if $\lambda^2(x) + \lambda(x) + x = 0$, $\forall x \in Q$, then $\lambda \in \operatorname{Aut}Q(+)$ and $\lambda^2 + \lambda + \varepsilon = \omega$, where $\omega : Q \to Q$, $\omega(x) = 0$, $\forall x \in Q$, $\Rightarrow \lambda^3 - \varepsilon = (\lambda - \varepsilon)(\lambda^2 + \lambda + \varepsilon) = (\lambda_\varepsilon)\omega = \omega$ (in the ring of endomorphisms of Q(+)), as $\lambda^3 = \varepsilon$. Moreover, $\lambda^2(x) + \lambda(x) + x = 0$, $\forall x \in Q \Rightarrow \lambda^2(x) + \lambda(x) + x + y = y$, $\forall x, y \in Q$, $\Rightarrow x + \lambda^{-1}(x + \lambda^{-1}(x + \lambda^{-1}(y))) = y$, $\forall x, y \in Q$, $\Rightarrow x(x \cdot xy) = y$, $\forall x, y \in Q$ (see (2)), so $Q(\cdot)$ is a π -quasigroup of type T_1 . \square

Corollary. Let $Q(\cdot)$ be an isotope of an abelian group $Q(+) \cong Z_2^k$, for some positive integer k, with the isotopy $(R_0^{-1}, L_{f_0}^{-1}, \varepsilon)$, where 0 is the neutral element of Q(+) and $f_0 \cdot 0 = 0$. Then $Q(\cdot)$ is a π -quasigroup of type T_1 if and only if Q(+) satisfies the condition $\lambda^2(x) + \lambda(x) + x = 0$, $\forall x \in Q$, where $\lambda = L_{f_0}^{-1}$.

Proof. Indeed, in this case $I = \varepsilon$, so $\lambda I = I\lambda$.

Proposition 4. Let $Q(\cdot)$ be a π -quasigroup of type T_1 , isotopic to an abelian group Q(+), $(+) = (\cdot)^{(R_0^{-1},\lambda,\varepsilon)}$ where $0 \in Q$, $f_0 \cdot 0 = 0$, $\lambda = L_{f_0}^{-1}$. The following conditions are equivalent:

- 1. $Q(\cdot)$ has a left unit;
- 2. $Q(\circ)$, where " \circ " is defined in (5), is idempotent;
- 3. Q(+) satisfies the equality $x + x + x = 0, \forall x \in Q$.

Proof. 1. \Leftrightarrow 2.: According to the definition (5), $x \circ x = \lambda(x) + x + I(x)$, $\forall x \in Q$. So $x \circ x = x, \forall x \in Q \Leftrightarrow \lambda = \varepsilon \Leftrightarrow \lambda^{-1} = \varepsilon \Leftrightarrow L_{f_0}(x) = x, \forall x \in Q \Leftrightarrow f_0 \cdot x = x, \forall x \in Q$, i.e. $Q(\cdot)$ has the left unit f_0 .

 $2. \Leftrightarrow 3.: \ x \circ x = x, \forall x \in Q \Leftrightarrow \lambda = \varepsilon \Leftrightarrow x + x = x + \lambda^{-1}(x) = \lambda I(x) = I(x), \\ \forall x \in Q \text{ (see (4)), i.e. } x + x + x = 0, \forall x \in Q.$

Denote $IdQ(\circ) = \{x \in Q \mid x \circ x = x\}$, i.e. the set of all idempotents of $Q(\circ)$.

Proposition 5. If $\lambda I = I\lambda$, then $IdQ(\circ)$ is a subquasigroup of $Q(\circ)$.

Proof. If $\lambda I = I\lambda$, then $\lambda \in \operatorname{Aut}Q(+)$, so for every $x, y \in \operatorname{Id}Q(\circ)$ we have:

$$(x\circ y)\circ (x\circ y)=\lambda(x\circ y)=\lambda(x)\circ \lambda(y)=(x\circ x)\circ (y\circ y)=x\circ y,$$

i.e. $x \circ y \in \mathrm{Id}Q(\circ)$. Moreover, if $a,b \in \mathrm{Id}Q(\circ)$ and $a \circ x = b$, then (as $Q(\circ)$ is a medial quasigroup) we have:

$$a \circ (x \circ x) = (a \circ a) \circ (x \circ x) = (a \circ x) \circ (a \circ x) = b \circ b = b,$$

hence $x \circ x = x$, i.e. the solution x of the equation $a \circ x = b$ is in $IdQ(\circ)$, for every $a, b \in IdQ(\circ)$. Analogously we get that the solution of the equation $x \circ a = b$ belongs to $IdQ(\circ)$, for every $a, b \in IdQ(\circ)$.

Remark. If $\lambda I = I\lambda$, then $IdQ(\circ) \subseteq \{x \in Q \mid x + x + x = 0\}$.

Proof. Indeed, if $x \in \text{Id}Q(\circ)$, then $x = x \circ x = \lambda(x) + x + I(x) = \lambda(x)$, $\forall x \in Q$. On the other hand, from (4) it follows $x + x = x + \lambda^{-1}(x) = \lambda I(x) = I(x)$, $\forall x \in Q$ $\Rightarrow x + x + x = 0$, $\forall x \in Q$.

Proposition 6. If $|Q| < \infty$, then $IdQ(\circ) = \{0\}$ if and only if $\lambda I = I\lambda$.

Proof. If $\lambda I = I\lambda$ and $x \in \operatorname{Id}Q(\circ)\setminus\{0\}$, then x is an element of order 3 in Q(+) (see the remark above). But it is known that there exist the following possibilities for the order |Q| of a finite π -quasigroup of type T_1 : |Q| = 4, $|Q| \equiv 1$ or $4(\operatorname{mod}12)$, or $|Q| \equiv 1(\operatorname{mod}3)$, i.e. |Q| is not divisible by 3. Consequently, if $\lambda I = I\lambda$, then $\operatorname{Id}Q(\circ) = \{0\}$.

Conversely, let $\mathrm{Id}Q(\circ) = \{0\}$ and $|Q| < \infty$. As $\mathrm{Ker}(\lambda - \varepsilon) = \{x \in Q | \lambda(x) = x\}$ = $\{x \in Q | x \circ x = x\}$, we have: $(\lambda - \varepsilon)(x) = (\lambda - \varepsilon)(y) \Rightarrow \lambda(x - y) = x - y \Rightarrow x - y \in \mathrm{Ker}(\lambda - \varepsilon) \Rightarrow x - y = 0 \Rightarrow x = y$, hence $\lambda - \varepsilon$ is injective and, as Q is finite, it follows that $\lambda - \varepsilon$ is a bijection. On the other hand, $\lambda^3 = \varepsilon \Rightarrow \omega = \lambda^3 - \varepsilon = (\lambda - \varepsilon)(\lambda^2 + \lambda + \varepsilon)$ \Rightarrow \lambda^2 + \lambda + \varepsilon = (\lambda - \varepsilon)^{-1} \omega = \omega, where $\omega : Q \to Q$, $\omega(x) = 0$, $\forall x \in Q$, hence according to Proposition 2, $\lambda I = I\lambda$.

Example. The quasigroup $Q(\cdot)$, where $Q = \{0, 1, 2, 3\}$ and

	$0\ 1\ 2\ 3$
0	3 1 0 2
1	$0\ 2\ 3\ 1$
2	$1\ 3\ 2\ 0$
3	$2\ 0\ 1\ 3$

is a π -quasigroup of type T_1 and is isotopic to the Klein group $K_4 = Q(+)$ (0 is the neutral element of Q(+)): $x \cdot y = R_0(x) + \lambda^{-1}(y)$, where $R_0 = (0321), \lambda = (132)$. Remark that the quasigroup $Q(\circ)$, where $x \circ y = \lambda(x) + x + I(y)$, is defined by the following table:

$$\begin{array}{c|cccc} \circ & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 & 1 \\ 2 & 3 & 2 & 1 & 0 \\ 3 & 1 & 0 & 3 & 2 \\ \hline \end{array}$$

As $I = \varepsilon$ we have $\lambda I = I\lambda$, hence $\lambda \in \operatorname{Aut}Q(+)$ and $\lambda \in \operatorname{Aut}Q(\circ)$. The conditions $|Q| < \infty$ and $\lambda I = I\lambda$ give $\operatorname{Id}Q(\circ) = \{0\}$.

Proposition 7. If a π -quasigroup $Q(\cdot)$ of type $T_2 = [\varepsilon, \varepsilon, l]$ is isotopic to an abelian group $Q(\oplus)$, then for every $b \in Q$ there exists an isomorphic copy $Q(+) \cong Q(\oplus)$ such that $x \cdot y = IL_b^3(x) + L_b(y) + b$, $\forall x, y \in Q$, where $I : Q \to Q$, I(x) = -x, $\forall x \in Q$.

Proof. Let $Q(\cdot)$ be a π -quasigroup of type $T_2 = [\varepsilon, \varepsilon, l]$, isotopic to an abelian group. Then, for every $a, b \in Q$, the LP-isotope Q(+), where $x + y = R_a^{-1}(x) + L_b^{-1}(y)$, $\forall x, y \in Q$, is an abelian group as well. Denote its neutral element $b \cdot a$ by 0. The quasigroup $Q(\cdot)$ satisfies the identity

$$x(y \cdot yx) = y. \tag{6}$$

Using the definition of "+", the identity (6) takes the form $R_a(x) + L_b(R_a(y) + L_b(R_a(y) + L_b(x))) = y$ or, after replacing $y \to R_a^{-1}(y)$ and $x \to L_b^{-1}(x)$: $R_a L_b^{-1}(x) + L_b(y + L_b(y + x)) = R_a^{-1}(y)$, which implies:

$$L_b(y + L_b(y + x)) = R_a^{-1}(y) + IR_a L_b^{-1}(x).$$
(7)

Taking y=0 in (7) we get $L_b^2(x)=b+IR_aL_b^{-1}(x)\Rightarrow L_b^3(x)=b+IR_a(x), \forall x\in Q, \Rightarrow R_a(x)=b+IL_b^3(x), \forall x\in Q, x\cdot y=IL_b^3(x)+L_b(y)+b, \forall x,y\in Q.$

Proposition 8. A quasigroup $Q(\cdot)$, isotopic to a group $Q(\oplus)$ and having an idempotent 0, is a π -quasigroup of type $T_2 = [\varepsilon, \varepsilon, l]$ if and only if there exists an isomorphic copy $Q(+) \cong Q(\oplus)$ such that $x \cdot y = IL_0^3(x) + L_0(y)$ and $L_0(y + L_0(y + x)) = L_0^2(x) + L_0^{-3}I(y)$, for every $x, y \in Q$.

Proof. If $Q(\cdot)$ is a π -quasigroup of type $T_2 = [\varepsilon, \varepsilon, l]$ and 0 is an idempotent of $Q(\cdot)$, then the LP-isotope $(+) = (\cdot)^{(R_0^{-1}, L_0^{-1}, \varepsilon)}$ is a group with unit 0. Using the definition of "+" the identity $x(y \cdot yx) = y$ takes the form:

$$R_0(x) + L_0(R_0(y) + L_0(R_0(y) + L_0(x))) = y,$$

or, after replacing $R_0(y)$ by y and $L_0(x)$ by x:

$$L_0(y + L_0(y + x)) = IR_0L_0^{-1}(x) + R_0^{-1}(y).$$
(8)

For y=0 the last equality implies $L_0^2(x)=IR_0L_0^{-1}(x)$ for every $x\in Q$, so $R_0=IL_0^3$ and then (8) implies

$$L_0(y + L_0(y + x)) = L_0^2(x) + L_0^{-3}I(y).$$

At the same time we get that $x \cdot y = IL_0^3(x) + L_0(y)$.

Conversely, let $Q(\cdot)$ be the quasigroup defined by the last equality, where Q(+) is a group, 0 is an idempotent of $Q(\cdot)$ and let the equality $L_0(y+L_0(y+x))=L_0^2(x)+L_0^{-3}I(y)$ holds. Then $x(y\cdot yx)=IL_0^3(x)+L_0(IL_0^3(y)+L_0(IL_0^3(y)+L_0(x)))=IL_0^3(x)+L_0^3(x)+L_0^{-3}I^2L_0^3(y)=y$, i.e. $Q(\cdot)$ is a π -quasigroup of type T_2 .

It was proved in [2] by V.Belousov and A.Gwaramiya that every group G which is isotopic to a π -quasigroup of type $T_4 = [\varepsilon, \varepsilon, lr]$ (i.e. to a Stein quasigroup) is metabelian (i.e. $[x,y] \in Z$ for every $x,y \in G$). It was also proved by V.Belousov in [1] that if a group $Q(\cdot)$ is isotopic to a π -quasigroup of type $T_6 = [\varepsilon, l, lr]$, then $Q(\cdot)$ is metabelian.

Proposition 9. If a π -quasigroup $Q(\cdot)$ of type $T_6 = [\varepsilon, l, lr]$ is isotopic to an abelian group $Q(\oplus)$, then there exists an element $0 \in Q$ and an isomorphic copy $Q(+) \cong Q(\oplus)$ such that $x \cdot y = R_0(x) + \varphi R_0(y), \forall x, y \in Q$, where $\varphi \in AutQ(+)$.

Proof. Let $Q(\cdot)$ be a π -quasigroup of type $T_6 = [\varepsilon, l, lr]$, i.e. let $Q(\cdot)$ be a quasigroup with the identity

$$x \cdot yx = yx \cdot y. \tag{9}$$

Then for $y = f_x$, where $f_x x = x, \forall x \in Q$, we have $x^2 = x \cdot f_x \Rightarrow f_x = x \Rightarrow x = f_x \cdot x = x \cdot x$, i.e. $Q(\cdot)$ is idempotent. Let $0 \in Q$ and consider the LP-isotope $(+) = (\cdot)^{(R_0^{-1}, L_0^{-1}, \varepsilon)}$. It is clear that Q(+) is an abelian group with the neutral element $0 = 0 \cdot 0$. Now, using the equality $x \cdot y = R_0(x) + L_0(y)$, the identity (9) takes the form

$$R_0(x) + L_0(R_0(y) + L_0(x)) = R_0(R_0(y) + L_0(x)) + L_0(y),$$

 $\forall x, y \in Q$, hence replacing $R_0(y) \to y$ and $L_0(x) \to x$, we get

$$R_0L_0^{-1}(x) + L_0(y+x) = R_0(y+x) + L_0R_0^{-1}(y),$$

which implies

$$L_0(y+x) + IR_0(y+x) = IR_0L_0^{-1}(x) + L_0R_0^{-1}(y).$$
(10)

Taking x = 0 in (10) we get:

$$L_0(y) + IR_0(y) = L_0 R_0^{-1}(y)$$
(11)

for all $y \in Q$. For y = I(x), the equality (10) implies $0 = IR_0L_0^{-1}(x) + L_0R_0^{-1}I(x), \forall x \in Q$, i.e. $R_0L_0^{-1} = L_0R_0^{-1}I$. Denoting $L_0R_0^{-1}$ by φ , we get $\varphi I = \varphi^{-1}$ and $L_0 = \varphi R_0$, so $x \cdot y = R_0(x) + \varphi R_0(y), \forall x, y \in Q$. On the other hand, using (11), the equality (10) takes the form $L_0R_0^{-1}(y+x) = IR_0L_0^{-1}(x) + L_0R_0^{-1}(y)$, i.e. $\varphi(x+y) = I\varphi^{-1}(x) + \varphi(y) = I\varphi I(x) + \varphi(y), \forall x, y \in Q$.

As $\varphi(0) = L_0 R_0^{-1}(0)$, taking y = 0 in the last equality, we get $\varphi = I\varphi^{-1}$, so $\varphi(x+y) = \varphi(x) + \varphi(y), \forall x, y \in Q$, i.e. $\varphi \in \text{Aut}Q(+)$.

Proposition 10. Let Q(+) be an abelian group with the neutral element $0, \varphi \in AutQ(+)$ and $\varphi^2 = I$, where $I(x) = -x, \forall x \in Q$. If the isotope $Q(\cdot)$, where $(+) = (\cdot)^{(R_0^{-1}, R_0^{-1} \varphi^{-1}, \varepsilon)}$, is idempotent then $Q(\cdot)$ is a π -quasigroup of type T_6 .

Proof. Using the definition of "·", we have $x \cdot y = R_0(x) + \varphi R_0(y)$, $\forall x, y \in Q$. If $Q(\cdot)$ is idempotent then $z \cdot z = z, \forall z \in Q$, so $R_0(z) + \varphi R_0(z) = z, \Rightarrow z + IR_0(z) = \varphi R_0(z), \forall z \in Q$. Taking $z = y + \varphi(x)$ in the last equality, we get $y + \varphi(x) + IR_0(y + \varphi(x)) = \varphi R_0(y + \varphi(x)) \Rightarrow \varphi(x) + IR_0(y + \varphi(x)) = \varphi R_0(y + \varphi(x)) + I(y) \Rightarrow \varphi(x) + \varphi^2 R_0(y + \varphi(x)) = \varphi R_0(y + \varphi(x)) + \varphi^2(y) \Rightarrow x + \varphi R_0(y + \varphi(x)) = R_0(y + \varphi(x)) + \varphi(y), \forall x, y \in Q$. Now, replacing $x \to R_0(x)$ and $y \to R_0(y)$, we get:

$$R_0(x) + \varphi R_0(R_0(y) + \varphi R_0(x)) = R_0(R_0(y) + \varphi R_0(x)) + \varphi R_0(y),$$

$$\forall x, y \in Q$$
, i.e. $x \cdot yx = yx \cdot y, \forall x, y \in Q$. So $Q(\cdot)$ is a π -quasigroup of type T_6 .

Proposition 11. If $Q(\cdot)$ is a π -quasigroup of type $T_{10} = [\varepsilon, lr, l]$, isotopic to an abelian group, $a \in Q$ and $(+) = (\cdot)^{(R_a^{-1}, L_a^{-1}, \varepsilon)}$, then there exists a complete substitution θ of Q(+) such that $x \cdot y = R_a x + R_a^{-1} I \theta y$, for every $x, y \in Q$, where Ix = -x, $\forall x \in Q$.

Proof. The quasigroup $Q(\cdot)$ satisfies the identity $xy \cdot yx = y$ so, using the equality $x \cdot y = R_a x + L_a y$, we get $R_a(R_a x + L_a y) + L_a(R_a y + L_a x) = y$ or, after replacing $R_a x$ by x and $L_a y$ by y:

$$R_a(x+y) + L_a(R_aL_a^{-1}(y) + L_aR_a^{-1}(x)) = L_a^{-1}(y).$$
(12)

Taking $x = a^2$ (the unit of the group Q(+)), from (12) it follows:

$$R_a(y) + L_a R_a L_a^{-1}(y) = L_a^{-1}(y), (13)$$

or, replacing y by $L_a(y)$:

$$R_a L_a(y) + L_a R_a(y) = y. (14)$$

Now, taking $y=a^2$ in (12), we have: $R_ax+L_a^2R_a^{-1}x=a$ and, replacing x by R_ax in the last equality, we get $R_a^2x+L_a^2x=a$. From (14) it follows $y+IR_aL_a(y)=L_aR_a(y), \ \forall y\in Q$, where $I(x)=-x, \ \forall x\in Q$, so IR_aL_a is a complete substitution of Q(+). Finally, denoting IR_aL_a by θ , we get $L_a=R_a^{-1}I\theta$ and $x\cdot y=R_ax+R_a^{-1}I\theta y, \ \forall x,y\in Q$.

References

- [1] Belousov V. Parastrophic-orthogonal quasigroups. Quasigroups and Related Systems, 2005, 14, 3–51.
- [2] Belousov V., Gwaramija A. On Stein quasigroups. Soobsh. Gruz. SSR., 1966, 44, 537-544.
- [3] Bennett F.E. The spectra of a variety of quasigroups and related combinatorial designs. Discrete Math., 2005, 77, 29–50.
- [4] Bennett F. E. Quasigroups, in "Handbook of Combinatorial Designs.. Eds. C.J. Colbourn and J.H. Dinitz, CRC Press, 1996.

PARASCOVIA SYRBU State University of Moldova 60 A. Mateevici str., MD-2009, Chisinau Moldova

E-mail: psyrbu@mail.md

Received September 10, 2009