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On π-quasigroups isotopic to abelian groups
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Abstract. A π-quasigroup is a quasigroup satisfying one of the seven minimal
identities from the V.Belousov’s classification given in [1]. Some general results about
π-quasigroups isotopic to groups are obtained by V.Belousov and A.Gwaramija in [1]
and [2]. π-Quasigroups isotopic to abelian groups are investigated in this paper.
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Let Q be a nonempty set and let Σ(Q) be the set of all binary quasigroup
operations defined on Q. V. Belousov (see [1]) found all nontrivial identities w1 = w2

in Q(Σ) having the length |w1|+ |w2| = 5 (|w| is the number of free elements in the
word w), called minimal identities. He proved that, using transformation to inverse
operations, every minimal identity can be transformed into the form:

A(x,B(x,C(x, y))) = y.

Using multiplication of operations, the last identity can be rewritten in abbrevi-
ated form as ABC = E, where E(x, y) = y,∀x, y ∈ Q, is the right selector.

Minimal nontrivial identities imply the orthogonality of participating operations.
It is known that two quasigroup operations A and B, defined on a set Q, are orthogo-
nal if and only if there exists a quasigroup operation C on Q, such that CBA−1 = E
[1]. Hence, if A,B,C ∈ Q(Σ) and ABC = E,we have A⊥B−1, B⊥C−1 and C⊥A−1.

A quasigroup Q(A) is called a π-quasigroup of type [α, β, γ], where α, β, γ ∈ S3,
if it satisfies the identity αAβAγA = E.

V.Belousov considered the following transformations of types on S3
3 : f [α, β, γ] =

[β, γ, α] and h[α, β, γ] = [rγ, rβ, rα], where r = (23). The transformations f and h
generate the group S0 = {ε, f, f2, h, fh, f2h} ∼= S3. Two types T = [α, β, γ] and
T ′ = [α′, β′, γ′] are called parastrophically equivalent if there exist g ∈ S0 and θ ∈ S3

such that T ′ = gTθ. If the types T and T ′ are parastrophically equivalent then we’ll
denote T ∼ T ′. The binary relation ” ∼ ” is an equivalence on S3

3 and S3
3/ ∼ consists

of 7 classes [1]. A system of representatives of the seven equivalence classes is:

T1 = [ε, ε, ε], T2 = [ε, ε, l], T4 = [ε, ε, lr], T6 = [ε, l, lr], T10 = [ε, lr, l],
T8 = [ε, rl, lr], T11 = [ε, lr, rl], where l = (13), r = (23), s = (12).

Two minimal identities

αA(x,β A(x,γ A(x, y))) = y,
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α′

A(x,β
′

A(x,γ
′

A(x, y))) = y,

where A ∈ Σ(Q), are called parastrophically equivalent if the types T = [α, β, γ]
and T ′ = [α′, β′, γ′] are parastrophically equivalent.

Denoting A = ” · ” the following identities, which correspond to the seven types,
respectively, were obtained by V. Belousov in [1]:

No. Type Identity in Q(·)

1 T1 = [ε, ε, ε] x(x · xy) = y

2 T2 = [ε, ε, l] x(y · yx) = y

3 T4 = [ε, ε, lr] x · xy = yx Stein’s 1st law

4 T6 = [ε, l, lr] xy · x = y · xy Stein’s 2nd law

5 T10 = [ε, lr, l] xy · yx = y Stein’s 3d law

6 T8 = [ε, rl, lr] xy · y = x · xy Schröder’s 1st law

7 T11 = [ε, lr, rl] yx · xy = y Schröder’s 2nd law

The same classification was obtained independently by F.E. Bennett in 1989 (see,
for example, [3] and [4]).

π-Quasigroups isotopic to groups have been investigated by V.Belousov in [1]
and by V. Belousov and A.Gwaramija in [2]. In particular, they proved that the
groups which are isotopic to π-quasigroups of type T4 = [ε, ε, lr] (i.e. to Stein
quasigroups) or to π-quasigroups of type T6 = [ε, l, lr], are metabelian. Also it is
proved in [1] that if a group Q(+) is isotopic to a π-quasigroup of type T8 = [ε, rl, lr]
then Q(+) is abelian of exponent 2. More, every finite group of exponent 2 is isotopic
to a π-quasigroup of type T8. π-Quasigroups of other types, isotopic to groups, are
considered in [1] as well. We’ll consider below π-quasigroups isotopic to abelian
groups.

Let Q(·) be a π-quasigroups of type T1 = [ε, ε, ε], i.e. a quasigroup satisfying the
identity

x(x · xy) = y. (1)

Such quasigroups are also called C3-quasigroups. Suppose that Q(·) is isotopic

to an abelian group, and for a, b ∈ Q consider the LP -isotopes (·)(R
−1
a ,L−1

b
,ε) and

(+) = (·)
(R−1

0 ,L−1
f0

,ε)
where 0 = b · a and f0 · 0 = 0. According to Albert’s theorem,

these two LP -isotopes are abelian groups (as loops which are isotopic to groups), so
Q(+) where x + y = R−1

0 (x) · L−1
f0

(y), for every x, y ∈ Q, is an abelian group with

the neutral element 0 = f0 ·0. Let denote now L−1
f0

by λ. Then x+y = R−1
0 (x) ·λ(y)

and x · y = R0(x) + λ−1(y), for every x, y ∈ Q, so the identity (1) takes the form
R0(x) + λ−1(R0(x) + λ−1(R0(x) + λ−1(y))) = y or, after replacing R0(x) by x:

x + λ−1(x + λ−1(x + λ−1(y))) = y. (2)

Taking x = 0, from (2) it follows λ3 = ε. Also the equality (2) implies x +
λ−1(x + λ−1(y)) = λ(I(x) + y) or, replacing λ−1(y) by y:
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x + λ−1(x + y) = λ(I(x) + λ(y)), (3)

where I : Q → Q, I(x) = −x (in the abelian group Q(+)). Taking y = 0, (3) implies

x + λ−1(x) = λI(x), (4)

for every x ∈ Q, as λ(0) = L−1
f0

(0) = 0.

Let consider now a new operation on Q denoted by ” ◦ ” and defined as follows:

x ◦ y = λ(x) + x + I(y), (5)

∀x, y ∈ Q.

Proposition 1. The grupoid Q(◦) is a quasigroup isotopic to Q(+).

Proof. From (4) it follows λ−1(x) = λI(x) + I(x), ∀x ∈ Q so λ−1I(x) = λ(x) +
x,∀x ∈ Q, and then x ◦ y = λ(x) + x + I(y) = λ−1I(x) + I(y), ∀x, y ∈ Q, i.e.
(◦) = (+)(λ

−1I,I,ε).

Proposition 2. Let Q(·) be a π-quasigroup of type T1, isotopic to an abelian group
and let Q(+) and Q(◦) be its isotopes defined above. The following conditions are
equivalent:

1. λI = Iλ;
2. λ ∈ AutQ(+);

3. λ ∈ AutQ(◦);
4. I ∈ AutQ(◦);
5. Q(+) satisfies the equality λ2(x) + λ(x) + x = 0, ∀x ∈ Q;

6. Q(◦) is a medial quasigroup.

Proof. 1.⇒ 2.: If λI = Iλ then from (3) and (4) it follows x+λ−1(x+y) = λ(I(x)+
λ(y)) = λI(x+Iλ(y)) = λI(x+λI(y)) = λI(x+y+λ−1(y)) = x+y+λ−1y+λ−1(x+
y + λ−1(y)) = x + λI(y) + λ−1(x + λI(y)), so λ−1(x + y) = λI(y) + λ−1(x + λI(y)),
which implies

λ−1(x + y) + λ(y) = λ−1(x + λI(y)).

Denoting x + y by z, from the last equality it follows λ−1(z) + λ(y) = λ−1(z +
I(y) + λI(y)) = λ−1(z + λ−1(y)), so replacing y by λ(y) and using the equality
λ3 = ε, we get: λ−1(z) + λ−1(y) = λ−1(z + y), ∀z, y ∈ Q, i.e. λ ∈ AutQ(+).

2.⇒ 1.: If λ ∈ AutQ(+) then λ(−x) = −x, ∀x ∈ Q, i.e. λI = Iλ.
1.⇒ 3.: Using Proposition 1, we get: λI = Iλ ⇒ λ ∈ AutQ(+), so λ(x ◦ y) =

λ(λ−1I(x) + I(y)) = I(x) + λI(y) = λ−1Iλ(x) + Iλ(y) = λ(x) ◦ λ(y), ∀x, y ∈ Q, so
λ ∈ AutQ(◦).

3.⇒ 1.: λ ∈ AutQ(◦) ⇔ λ(x◦y) = λ(x)◦λ(y), ∀x, y ∈ Q ⇔ λ(λ−1I(x)+ I(y)) =
λ−1Iλ(x)+ Iλ(y), ∀x, y ∈ Q. Taking x = 0, the last equality implies λI(y) = Iλ(y),
∀y ∈ Q, i.e. λI = Iλ.
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1.⇔ 5.: Using (4), we have: λI = Iλ ⇔ x + λ−1(x) = Iλ(x), ∀x ∈ Q, ⇔
λ2(x) + λ(x) + x = 0, ∀x ∈ Q.

1.⇒ 4.: According to Proposition 1, x ◦ y = λ−1I(x) + I(y), ∀x, y ∈ Q. If
λI = Iλ, then I(x◦y) = I(λ−1I(x)+I(y)) = λ−1(x)+y, ∀x, y ∈ Q, and I(x)◦I(y) =
λ−1I(I(x)) + I(I(y)) = λ−1(x) + y, ∀x, y ∈ Q, so I(x ◦ y) = I(x) ◦ I(y), ∀x, y ∈ Q,
i.e. I ∈ AutQ(◦).

4.⇒ 1.: If I ∈ AutQ(◦), then I(x ◦ y) = I(x) ◦ I(y), ∀x, y ∈ Q, ⇒ I(λ−1I(x) +
I(y)) = λ−1 II(x) + I(I(y)) = λ−1(x) + y,⇒ Iλ−1I(x) + y = λ−1(x) + y, ∀x, y ∈ Q,
⇒ Iλ−1I = λ−1,⇒ Iλ = λI.

6.⇒ 1.: Remark that from (5) it follows x◦x = λ(x),∀x ∈ Q. If Q(◦) is a medial
quasigroup, i.e. if Q(◦) satisfies the identity (x ◦ y) ◦ (u ◦ v) = (x ◦ u) ◦ (y ◦ v), then
λ(x ◦ y) = (x ◦ y) ◦ (x ◦ y) = λ(x) ◦ λ(y), ⇒ λ ∈ AutQ(◦) ⇒ λI = Iλ.

1.⇒ 6.: If λI = Iλ, then λ ∈ AutQ(+), so λI, I ∈ AutQ(+) where Q(+) is an
abelian group and (λ−1I)I = λ−1 = I(λ−1I), i.e. Q(◦), where x◦y = λ−1I(x)+I(y),
∀x, y ∈ Q, is a medial quasigroup.

Proposition 3. Let Q(·) be an isotope of an abelian group, 0 ∈ Q, f0 · 0 = 0,

λ = L−1
f0

, (+) = (·)(R
−1
0 ,λ,ε), and let λI = Iλ, where I : Q → Q, I(x) + x = 0.

Then Q(·) is a π-quasigroup of type T1 if and only if Q(+) satisfies the condition
λ2(x) + λ(x) + x = 0, ∀x ∈ Q.

Proof. If Q(·) is a π-quasigroup of type T1, isotopic to an abelian group and λI = Iλ
then, according to Proposition 2, Q(+) satisfies the condition λ2(x) + λ(x) + x = 0,
∀x ∈ Q.

Conversely, if λ2(x)+λ(x)+x = 0, ∀x ∈ Q, then λ ∈ AutQ(+) and λ2+λ+ε = ω,
where ω : Q → Q,ω(x) = 0, ∀x ∈ Q, ⇒ λ3 − ε = (λ − ε)(λ2 + λ + ε) = (λε)ω = ω
(in the ring of endomorphisms of Q(+)), as λ3 = ε. Moreover, λ2(x)+λ(x)+x = 0,
∀x ∈ Q ⇒ λ2(x)+λ(x)+x+y = y, ∀x, y ∈ Q, ⇒ x+λ−1(x+λ−1(x+λ−1(y))) = y,
∀x, y ∈ Q, ⇒ x(x · xy) = y, ∀x, y ∈ Q (see (2)), so Q(·) is a π-quasigroup of type
T1. 2

Corollary. Let Q(·) be an isotope of an abelian group Q(+) ∼= Zk
2 , for some positive

integer k, with the isotopy (R−1
0 , L−1

f0
, ε), where 0 is the neutral element of Q(+) and

f0 · 0 = 0. Then Q(·) is a π-quasigroup of type T1 if and only if Q(+) satisfies the
condition λ2(x) + λ(x) + x = 0, ∀x ∈ Q, where λ = L−1

f0
.

Proof. Indeed, in this case I = ε, so λI = Iλ.

Proposition 4. Let Q(·) be a π-quasigroup of type T1, isotopic to an abelian group

Q(+), (+) = (·)(R
−1
0 ,λ,ε) where 0 ∈ Q, f0 · 0 = 0, λ = L−1

f0
. The following conditions

are equivalent:

1. Q(·) has a left unit;

2. Q(◦), where ” ◦ ” is defined in (5), is idempotent;

3. Q(+) satisfies the equality x + x + x = 0, ∀x ∈ Q.
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Proof. 1.⇔ 2.: According to the definition (5), x ◦ x = λ(x) + x + I(x), ∀x ∈ Q. So
x ◦ x = x,∀x ∈ Q ⇔ λ = ε ⇔ λ−1 = ε ⇔ Lf0(x) = x,∀x ∈ Q ⇔ f0 · x = x,∀x ∈ Q,
i.e. Q(·) has the left unit f0.

2.⇔ 3.: x ◦ x = x,∀x ∈ Q ⇔ λ = ε ⇔ x + x = x + λ−1(x) = λI(x) = I(x),
∀x ∈ Q (see (4)), i.e. x + x + x = 0,∀x ∈ Q.

Denote IdQ(◦) = {x ∈ Q | x ◦ x = x}, i.e. the set of all idempotents of Q(◦).

Proposition 5. If λI = Iλ, then IdQ(◦) is a subquasigroup of Q(◦).

Proof. If λI = Iλ, then λ ∈ AutQ(+), so for every x, y ∈ IdQ(◦) we have:

(x ◦ y) ◦ (x ◦ y) = λ(x ◦ y) = λ(x) ◦ λ(y) = (x ◦ x) ◦ (y ◦ y) = x ◦ y,

i.e. x ◦ y ∈ IdQ(◦). Moreover, if a, b ∈ IdQ(◦) and a ◦ x = b, then (as Q(◦) is a
medial quasigroup) we have:

a ◦ (x ◦ x) = (a ◦ a) ◦ (x ◦ x) = (a ◦ x) ◦ (a ◦ x) = b ◦ b = b,

hence x ◦ x = x, i.e. the solution x of the equation a ◦ x = b is in IdQ(◦), for every
a, b ∈ IdQ(◦). Analogously we get that the solution of the equation x◦a = b belongs
to IdQ(◦), for every a, b ∈ IdQ(◦).

Remark. If λI = Iλ, then IdQ(◦) ⊆ {x ∈ Q | x + x + x = 0}.

Proof. Indeed, if x ∈ IdQ(◦), then x = x ◦ x = λ(x) + x + I(x) = λ(x), ∀x ∈ Q.
On the other hand, from (4) it follows x + x = x + λ−1(x) = λI(x) = I(x), ∀x ∈ Q
⇒ x + x + x = 0, ∀x ∈ Q.

Proposition 6. If |Q| < ∞, then IdQ(◦) = {0} if and only if λI = Iλ.

Proof. If λI = Iλ and x ∈ IdQ(◦)\{0}, then x is an element of order 3 in Q(+) (see
the remark above). But it is known that there exist the following possibilities for
the order |Q| of a finite π-quasigroup of type T1: |Q| = 4, |Q| ≡ 1 or 4(mod12),
or |Q| ≡ 1(mod3), i.e. |Q| is not divisible by 3. Consequently, if λI = Iλ, then
IdQ(◦) = {0}.

Conversely, let IdQ(◦) = {0} and |Q| < ∞. As Ker(λ − ε) = {x ∈ Q|λ(x) = x}
= {x ∈ Q|x◦x = x}, we have: (λ−ε)(x) = (λ−ε)(y) ⇒ λ(x−y) = x−y ⇒ x−y ∈
Ker(λ−ε) ⇒ x−y = 0 ⇒ x = y, hence λ−ε is injective and, as Q is finite, it follows
that λ−ε is a bijection. On the other hand, λ3 = ε ⇒ ω = λ3−ε = (λ−ε)(λ2+λ+ε)
⇒ λ2+λ+ε = (λ−ε)−1ω = ω, where ω : Q → Q,ω(x) = 0,∀x ∈ Q, hence according
to Proposition 2, λI = Iλ.

Example. The quasigroup Q(·), where Q = {0, 1, 2, 3} and
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· 0 1 2 3

0 3 1 0 2
1 0 2 3 1
2 1 3 2 0
3 2 0 1 3

is a π-quasigroup of type T1 and is isotopic to the Klein group K4 = Q(+) (0 is the
neutral element of Q(+)): x · y = R0(x) + λ−1(y), where R0 = (0321), λ = (132).
Remark that the quasigroup Q(◦), where x ◦ y = λ(x) + x + I(y), is defined by the
following table:

◦ 0 1 2 3

0 0 1 2 3
1 2 3 0 1
2 3 2 1 0
3 1 0 3 2

As I = ε we have λI = Iλ, hence λ ∈ AutQ(+) and λ ∈ AutQ(◦). The conditions
|Q| < ∞ and λI = Iλ give IdQ(◦) = {0}.

Proposition 7. If a π-quasigroup Q(·) of type T2 = [ε, ε, l] is isotopic to an abelian
group Q(⊕), then for every b ∈ Q there exists an isomorphic copy Q(+) ∼= Q(⊕)
such that x · y = IL3

b(x) + Lb(y) + b, ∀x, y ∈ Q, where I : Q → Q, I(x) = −x,
∀x ∈ Q.

Proof. Let Q(·) be a π-quasigroup of type T2 = [ε, ε, l], isotopic to an abelian group.
Then, for every a, b ∈ Q, the LP-isotope Q(+), where x + y = R−1

a (x) + L−1
b (y),

∀x, y ∈ Q, is an abelian group as well. Denote its neutral element b · a by 0. The
quasigroup Q(·) satisfies the identity

x(y · yx) = y. (6)

Using the definition of ” + ”, the identity (6) takes the form Ra(x) + Lb(Ra(y) +
Lb(Ra(y)+Lb(x))) = y or, after replacing y → R−1

a (y) and x → L−1
b (x): RaL

−1
b (x)+

Lb(y + Lb(y + x)) = R−1
a (y), which implies:

Lb(y + Lb(y + x)) = R−1
a (y) + IRaL

−1
b (x). (7)

Taking y = 0 in (7) we get L2
b(x) = b + IRaL

−1
b (x) ⇒ L3

b(x) = b + IRa(x),∀x ∈
Q,⇒ Ra(x) = b + IL3

b(x),∀x ∈ Q, x · y = IL3
b(x) + Lb(y) + b, ∀x, y ∈ Q.

Proposition 8. A quasigroup Q(·), isotopic to a group Q(⊕) and having an idem-
potent 0, is a π-quasigroup of type T2 = [ε, ε, l] if and only if there exists an isomor-
phic copy Q(+) ∼= Q(⊕) such that x · y = IL3

0(x) + L0(y) and L0(y + L0(y + x)) =
L2

0(x) + L−3
0 I(y), for every x, y ∈ Q.
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Proof. If Q(·) is a π-quasigroup of type T2 = [ε, ε, l] and 0 is an idempotent of Q(·),

then the LP-isotope (+) = (·)(R
−1
0 ,L−1

0 ,ε) is a group with unit 0. Using the definition
of ” + ” the identity x(y · yx) = y takes the form:

R0(x) + L0(R0(y) + L0(R0(y) + L0(x))) = y,

or, after replacing R0(y) by y and L0(x) by x:

L0(y + L0(y + x)) = IR0L
−1
0 (x) + R−1

0 (y). (8)

For y = 0 the last equality implies L2
0(x) = IR0L

−1
0 (x) for every x ∈ Q, so

R0 = IL3
0 and then (8) implies

L0(y + L0(y + x)) = L2
0(x) + L−3

0 I(y).

At the same time we get that x · y = IL3
0(x) + L0(y).

Conversely, let Q(·) be the quasigroup defined by the last equality, where Q(+)
is a group, 0 is an idempotent of Q(·) and let the equality L0(y + L0(y + x)) =
L2

0(x)+L−3
0 I(y) holds. Then x(y ·yx) = IL3

0(x)+L0(IL3
0(y)+L0(IL3

0(y)+L0(x))) =
IL3

0(x) + L3
0(x) + L−3

0 I2L3
0(y) = y, i.e. Q(·) is a π-quasigroup of type T2.

It was proved in [2] by V.Belousov and A.Gwaramiya that every group G which
is isotopic to a π-quasigroup of type T4 = [ε, ε, lr] (i.e. to a Stein quasigroup) is
metabelian (i.e. [x, y] ∈ Z for every x, y ∈ G). It was also proved by V.Belousov in
[1] that if a group Q(·) is isotopic to a π-quasigroup of type T6 = [ε, l, lr], then Q(·)
is metabelian.

Proposition 9. If a π-quasigroup Q(·) of type T6 = [ε, l, lr] is isotopic to an abelian
group Q(⊕), then there exists an element 0 ∈ Q and an isomorphic copy Q(+) ∼=
Q(⊕) such that x · y = R0(x) + ϕR0(y),∀x, y ∈ Q, where ϕ ∈ AutQ(+).

Proof. Let Q(·) be a π-quasigroup of type T6 = [ε, l, lr], i.e. let Q(·) be a quasigroup
with the identity

x · yx = yx · y. (9)

Then for y = fx, where fxx = x,∀x ∈ Q, we have x2 = x · fx ⇒ fx = x ⇒ x =
fx · x = x · x, i.e. Q(·) is idempotent. Let 0 ∈ Q and consider the LP-isotope

(+) = (·)(R
−1
0 ,L−1

0 ,ε). It is clear that Q(+) is an abelian group with the neutral
element 0 = 0 · 0. Now, using the equality x · y = R0(x) + L0(y), the identity (9)
takes the form

R0(x) + L0(R0(y) + L0(x)) = R0(R0(y) + L0(x)) + L0(y),

∀x, y ∈ Q, hence replacing R0(y) → y and L0(x) → x, we get

R0L
−1
0 (x) + L0(y + x) = R0(y + x) + L0R

−1
0 (y),
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which implies

L0(y + x) + IR0(y + x) = IR0L
−1
0 (x) + L0R

−1
0 (y). (10)

Taking x = 0 in (10) we get:

L0(y) + IR0(y) = L0R
−1
0 (y) (11)

for all y ∈ Q. For y = I(x), the equality (10) implies 0 = IR0L
−1
0 (x) +

L0R
−1
0 I(x),∀x ∈ Q, i.e. R0L

−1
0 = L0R

−1
0 I. Denoting L0R

−1
0 by ϕ, we get ϕI = ϕ−1

and L0 = ϕR0, so x · y = R0(x) + ϕR0(y),∀x, y ∈ Q. On the other hand, using
(11), the equality (10) takes the form L0R

−1
0 (y + x) = IR0L

−1
0 (x) + L0R

−1
0 (y), i.e.

ϕ(x + y) = Iϕ−1(x) + ϕ(y) = IϕI(x) + ϕ(y), ∀x, y ∈ Q.

As ϕ(0) = L0R
−1
0 (0), taking y = 0 in the last equality, we get ϕ = Iϕ−1, so

ϕ(x + y) = ϕ(x) + ϕ(y),∀x, y ∈ Q, i.e. ϕ ∈ AutQ(+).

Proposition 10. Let Q(+) be an abelian group with the neutral element 0, ϕ ∈
AutQ(+) and ϕ2 = I, where I(x) = −x,∀x ∈ Q. If the isotope Q(·), where (+) =

(·)(R
−1
0 ,R−1

0 ϕ−1,ε), is idempotent then Q(·) is a π-quasigroup of type T6.

Proof. Using the definition of ” · ”, we have x · y = R0(x) + ϕR0(y), ∀x, y ∈ Q. If
Q(·) is idempotent then z · z = z,∀z ∈ Q, so R0(z) + ϕR0(z) = z, ⇒ z + IR0(z) =
ϕR0(z),∀z ∈ Q. Taking z = y +ϕ(x) in the last equality, we get y +ϕ(x)+ IR0(y +
ϕ(x)) = ϕR0(y + ϕ(x)) ⇒ ϕ(x) + IR0(y + ϕ(x)) = ϕR0(y + ϕ(x)) + I(y) ⇒ ϕ(x) +
ϕ2R0(y+ϕ(x)) = ϕR0(y+ϕ(x))+ϕ2(y) ⇒ x+ϕR0(y+ϕ(x)) = R0(y+ϕ(x))+ϕ(y),
∀x, y ∈ Q. Now, replacing x → R0(x) and y → R0(y), we get:

R0(x) + ϕR0(R0(y) + ϕR0(x)) = R0(R0(y) + ϕR0(x)) + ϕR0(y),

∀x, y ∈ Q, i.e. x · yx = yx · y,∀x, y ∈ Q. So Q(·) is a π-quasigroup of type T6.

Proposition 11. If Q(·) is a π-quasigroup of type T10 = [ε, lr, l], isotopic to an

abelian group, a ∈ Q and (+) = (·)(R
−1
a ,L−1

a ,ε), then there exists a complete substitu-
tion θ of Q(+) such that x · y = Rax + R−1

a Iθy, for every x, y ∈ Q, where Ix = −x,
∀x ∈ Q.

Proof. The quasigroup Q(·) satisfies the identity xy · yx = y so, using the equality
x · y = Rax + Lay, we get Ra(Rax + Lay) + La(Ray + Lax) = y or, after replacing
Rax by x and Lay by y:

Ra(x + y) + La(RaL
−1
a (y) + LaR

−1
a (x)) = L−1

a (y). (12)

Taking x = a2 (the unit of the group Q(+)), from (12) it follows:

Ra(y) + LaRaL
−1
a (y) = L−1

a (y), (13)

or, replacing y by La(y):
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RaLa(y) + LaRa(y) = y. (14)

Now, taking y = a2 in (12), we have: Rax + L2
aR

−1
a x = a and, replacing x by

Rax in the last equality, we get R2
ax+L2

ax = a. From (14) it follows y+IRaLa(y) =
LaRa(y), ∀y ∈ Q, where I(x) = −x, ∀x ∈ Q, so IRaLa is a complete substitution of
Q(+). Finally, denoting IRaLa by θ, we get La = R−1

a Iθ and x · y = Rax+R−1
a Iθy,

∀x, y ∈ Q.
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