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On m-quasigroups isotopic to abelian groups
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Abstract. A w-quasigroup is a quasigroup satisfying one of the seven minimal
identities from the V.Belousov’s classification given in [1]. Some general results about
m-quasigroups isotopic to groups are obtained by V. Belousov and A. Gwaramija in [1]
and [2]. m-Quasigroups isotopic to abelian groups are investigated in this paper.
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Let Q be a nonempty set and let ¥(Q) be the set of all binary quasigroup
operations defined on ). V. Belousov (see [1]) found all nontrivial identities w; = ws
in Q(X) having the length |wi| 4 |wa| =5 (Jw| is the number of free elements in the
word w), called minimal identities. He proved that, using transformation to inverse
operations, every minimal identity can be transformed into the form:

A(z, B(z,C(2,9))) = y-

Using multiplication of operations, the last identity can be rewritten in abbrevi-
ated form as ABC = E, where E(x,y) = y,Vz,y € Q, is the right selector.

Minimal nontrivial identities imply the orthogonality of participating operations.
It is known that two quasigroup operations A and B, defined on a set (), are orthogo-
nal if and only if there exists a quasigroup operation C on @, such that CBA™! = F
[1]. Hence, if A, B,C € Q(X) and ABC = E,we have ALB~!, BLC~!and CLA™!,

A quasigroup Q(A) is called a m-quasigroup of type [a, 3,7], where «, 3, € Ss,
if it satisfies the identity *A%AYA = E.

V. Belousov considered the following transformations of types on S35: f[a, 3,7] =
(3,7, a] and hla, B,~] = [ry,70,ra], where r = (23). The transformations f and h
generate the group SO = {e, f, f2, h, fh, f2h} = S3. Two types T = [, 3,7] and
T' = [o/, ', 7'] are called parastrophically equivalent if there exist g € S° and § € S3
such that T = gT0. If the types T and T" are parastrophically equivalent then we’ll
denote T'~ T". The binary relation ” ~ ” is an equivalence on Sj and S5/ ~ consists
of 7 classes [1]. A system of representatives of the seven equivalence classes is:

T = [e,e,e], Th = [g,¢,l], Ty = [g,e,lr], T = [, 1,1r], Tho = [g,Ir,1],
Tg = [e,rl,lr], T11 = [e,lr,rl], where | = (13), r = (23), s = (12).

Two minimal identities

aA(x’ﬁ A(x;/ A(‘Ta y))) =Y,
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/

“ A($>ﬁl A(x;y/ A($> y))) =Y,

where A € 3(Q), are called parastrophically equivalent if the types T = [«
and T" = [o/, #',7'] are parastrophically equivalent.

Denoting A =7 -7 the following identities, which correspond to the seven types,
respectively, were obtained by V. Belousov in [1]:

,8,7]

No. Type | Identity in Q(-)
1 = [e,e,¢€] z(z-zy) =y
2 = [e,&,1] z(y-yz) =y
3 T4 = [e,¢,lr] xT-xy =yr Stein’s 1st law
4 T = [e,1,1r] TY T =Y TY Stein’s 2nd law
5 Ty =[e,lr]] TY - Yr =y Stein’s 3d law
6 | Ts = [e,rl,lr] zy-y=x- -2y | Schroder’s 1st law
7| T =g, lr,rl] yxr-xy =y | Schroder’s 2nd law

The same classification was obtained independently by F. E. Bennett in 1989 (see,
for example, [3] and [4]).

m-Quasigroups isotopic to groups have been investigated by V.Belousov in [1]
and by V. Belousov and A.Gwaramija in [2]. In particular, they proved that the
groups which are isotopic to m-quasigroups of type Ty = [e,&,lr] (i.e. to Stein
quasigroups) or to m-quasigroups of type T = [g,l,lr], are metabelian. Also it is
proved in [1] that if a group Q(+) is isotopic to a m-quasigroup of type Tz = [e, 71, 7]
then Q(+) is abelian of exponent 2. More, every finite group of exponent 2 is isotopic
to a m-quasigroup of type Tg. w-Quasigroups of other types, isotopic to groups, are
considered in [1] as well. We’ll consider below m-quasigroups isotopic to abelian
groups.

Let Q(-) be a w-quasigroups of type T =
identity

[e,¢€,¢], i.e. a quasigroup satisfying the

z(z - zy) =y. (1)
Such quasigroups are also called C3-quasigroups. Suppose that Q(-) is isotopic

to an abelian group, and for a,b € @) consider the LP-isotopes (')(R‘; BLNe) and

(+) = (-)(Rgl’Llel’E) where 0 = b-a and fy-0 = 0. According to Albert’s theorem,
these two L P-isotopes are abelian groups (as loops which are isotopic to groups), so
Q(+) where z +y = Ry*(z) - L;()l(y), for every x,y € @, is an abelian group with
the neutral element 0 = f-0. Let denote now LJTOI by A. Then z+y = Ry (z)-A(y)
and z -y = Ro(z) + A7}
Ry (:L') + A1

(y), for every z,y € @, so the identity (1) takes the form
(Ro(z) + A"Y(Ro(x) + A"(y))) = y or, after replacing Ry(x) by x:
(z+ A x4+ 2171

Taking z = 0, from (2) it follows \* = e.
A Hx + A7Hy)) = A(I(x) + y) or, replacing A1

z+ 27! ) =y. (2)

Also the equality (2) implies = +
(y) by v:
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r+ A +y) = A (z) + Ay)), (3)
where I : Q — @, I(x) = —z (in the abelian group Q(+)). Taking y = 0, (3) implies

z+ A" z) = M (2), (4)
for every x € @, as A\(0) = LJTO1(0) =0.
Let consider now a new operation on () denoted by ” o

b

and defined as follows:

zoy=Az)+az+I(y), (5)
Y,y € Q.
Proposition 1. The grupoid Q(o) is a quasigroup isotopic to Q(+).

Proof. From (4) it follows A~(z) = M (x) + I(z), Vo € Q so A\~ (z) = \(x) +
z,Vr € @, and then z oy = Aa) + 2 + I(y) = A\ (z) + I(y), Yo,y € Q, i.e.
(0) = ()LL), O

Proposition 2. Let Q(-) be a m-quasigroup of type Ty, isotopic to an abelian group
and let Q(+) and Q(o) be its isotopes defined above. The following conditions are
equivalent:
1. N[ =1X;
A € AutQ(+);
A € AutQ(o);
I € AutQ(o);
Q(+) satisfies the equality N\*(z) + A(z) + = = 0, Vz € Q;
Q(o) is a medial quasigroup.

S G Lo e

Proof. 1.= 2.: If \I = I\ then from (3) and (4) it follows 2 +A~! (:L"+y) I (x)+
Ay) = M(z+IX(y)) = M(z+ M (y)) = M(z+y+A"Hy)) = a:+y+)\ y—l—)\ Y+
y+ A" y) =z + M (y) + A @+ M (Y)), so Ao +y) = M (y) + Az + M (y)),
which implies

A @ +y) + Ay) = Az + M (y)).

Denoting = + y by z, from the last equality it follows A~(2) + A(y) = A1 (2 +
I(y) + M(y)) = A1(z + A7L(y)), so replacing y by A(y) and using the equality
A =g weget: A7)+ AT y) = ATz +y), Vz,y € Q, ie. A€ AutQ(+).

2= 1. If A € AutQ(+) then A\(—z) = —z, Vo € Q, i.e. Al =1\,

1.= 3.: Using Proposition 1, we get: Al = IXA = A € AutQ(+), so AM(z oy) =
AATH(2) + I(y)) = I(x) + M (y) = XL (2) + IX(y) = AM(z) o \(y), Vz,y € Q, so
A € AutQ(o).

3.= 1. A€ AutQ(o) & A(zoy) = AMz)oA(y), Va,y € Q & NN (2)+1(y)) =
AN (z) +I\(y), Vz,y € Q. Taking o = 0, the last equality implies M (y) = I\(y),
Yy € Q,ie. Al =1\
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1. 5. Using (4), we have: M = I\ & x4+ A"Yz) = I\(2), Vo € Q, &
N(z) + Az) +2 =0, Vo € Q.

1.= 4.: According to Proposition 1, z oy = X" 'I(z) + I(y), Vz,y € Q. If
M = I\, then I(xoy) = IN " (2)+1(y)) = A x)+y, Yo,y € Q,and I(z)ol(y) =
ATU(I(2) + I(I(y) = A (2) +y, Yo,y € Q,s0 I(woy) = I(x) o I(y), Va,y € Q,
ie. I € AutQ(o).

4.= 1. If I € AutQ(o), then I(zoy) = I(z) o I(y), Yo,y € Q, = I\ "' I(x) +
I(y)) = A" II(2) +I(I(y)) = A (@) +y,= IV (2) +y = A" (z) +y, Yo,y € Q,
= IV =)= A=)\

6.= 1.: Remark that from (5) it follows xox = A(z),Vx € Q. If Q(o) is a medial
quasigroup, i.e. if Q(o) satisfies the identity (z oy) o (uov) = (x ou)o (yov), then
Mzoy)=(roy)o(roy)=Ax)oA(y), = € AutQ(o) = A\ =I\.

1.= 6.: If A\ = I\, then A € AutQ(+), so AI,I € AutQ(+) where Q(+) is an
abelian group and (A\"11)I = A=t = I(A711), i.e. Q(o), where zoy = A\~ I (z)+1(y),
Vz,y € Q, is a medial quasigroup. O

Proposition 3. Let Q(-) be an isotope of an abelian group, 0 € Q, fo -0 = 0,
A= LJI()l, (+) = (')(Rgl’)‘va), and let \XI = I\, where I : Q — Q,I(z) +z = 0.
Then Q(-) is a w-quasigroup of type Ty if and only if Q(+) satisfies the condition
N(z)+ Az) +2=0,Vz €Q.

Proof. If Q(+) is a w-quasigroup of type T7, isotopic to an abelian group and AI = I\
then, according to Proposition 2, Q(+) satisfies the condition A\?(x) + \(x) +z = 0,
Yz € Q.

Conversely, if \2(z)+A(z)+z = 0, Vo € @Q, then A € AutQ(+) and A2+ +e = w,
where w : Q — Q,w(r) =0,Vz €Q, = N —ec=N—-e)MN+A+e)= Nw=w
(in the ring of endomorphisms of Q(+)), as A* = €. Moreover, \2(z) + A(z) +x = 0,
Vee Q= N(z)+Aa)+z+y =y, V2,9 €Q, = 2+ X L az+ A"z + A1 (y)) = v,
Vae,y € Q, = x(xz - zy) =y, Va,y € Q (see (2)), so Q(-) is a m-quasigroup of type
Ty. O |

Corollary. Let Q(-) be an isotope of an abelian group Q(+) = Zéf, for some positive
integer k, with the isotopy (Ro_l, LJTOI, g), where 0 is the neutral element of Q(+) and
fo-0=0. Then Q(-) is a w-quasigroup of type Ty if and only if Q(+) satisfies the
condition \?(z) + \(z) + =0, Vz € Q, where \ = LJTOI.

Proof. Indeed, in this case I = ¢, so Al = I\. O

Proposition 4. Let Q(-) be a m-quasigroup of type Ty, isotopic to an abelian group
Q(+), (+) = () B2 where 0€ Q, fo-0=0, A = L;ol' The following conditions
are equivalent:

1. Q(-) has a left unit;

2. Q(o), where” o” is defined in (5), is idempotent;

3. Q(+) satisfies the equality x +x +x =0, Yz € Q.
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Proof. 1.< 2.: According to the definition (5), xox = A(z) + = + I(x), Vx € Q. So
xox:x,VazeQ@)\:E@)\_l:E@Lfo(x):a:,VxEQ@fo-x:x,VazeQ,
i.e. Q(-) has the left unit fj.

283 zo0x=z,Vr€EQ & A=c S ar+z =0+ ) = \(z) = I(v),
Ve € Q (see (4)),ie. z+x+x=0,Vz € Q. O

Denote IdQ(o) = {z € Q | x oz = x}, i.e. the set of all idempotents of Q(o).
Proposition 5. If \I = I\, then IdQ(o) is a subquasigroup of Q(o).
Proof. If A\I = I\, then A\ € AutQ(+), so for every z,y € IdQ(o) we have:
(woy)o(zoy)=Azoy)=Az)oA(y)=(zox)o(yoy)=zoy,

ie. xoy € 1dQ(o). Moreover, if a,b € IdQ(c) and a o x = b, then (as Q(o) is a
medial quasigroup) we have:

ao(xox)=(aoa)o(zxox)=(aox)o(aox)=bob="b,
hence x o xz = x, i.e. the solution x of the equation a o x = b is in IdQ(0), for every
a,b € IdQ(o). Analogously we get that the solution of the equation xoa = b belongs
to IdQ(o), for every a,b € 1dQ(o). O

Remark. If A\I = I\, then IdQ(o) C {z € Q | z + = + 2 = 0}.

Proof. Indeed, if x € IdQ(0), then z = zox = Az) + x + I(x) = Az), Vo € Q.
On the other hand, from (4) it follows z + x =z + A~} (z) = M (z) = I(x), Yz € Q
=z+z+ax=0,Vreq. O

Proposition 6. If |Q| < oo, then IdQ(o) = {0} if and only if \I = I\.

Proof. If \I = I\ and z € IdQ(0)\{0}, then z is an element of order 3 in Q(+) (see
the remark above). But it is known that there exist the following possibilities for
the order |Q| of a finite m-quasigroup of type T1: |Q| = 4, |Q] =1 or 4(modl12),
or |Q] = 1(mod3), i.e. |Q] is not divisible by 3. Consequently, if A\I = I\, then
1Q(c) = {0}.

Conversely, let IdQ(o) = {0} and |Q| < oco. As Ker(A —¢) = {z € Q|\(z) = z}
={zr € Qlrox =z}, we have: (A—¢)(x) = A—¢)(y) = Nax—y)=x—y=>zx—y €
Ker(A—¢) = z—y = 0=z = y, hence A —¢ is injective and, as @ is finite, it follows
that A—e¢ is a bijection. On the other hand, A3 =& = w = M3 —c = (A—¢)(A2+ A +¢)
= Nt Ate=(N—¢)lw=w, wherew : Q — Q,w(x) = 0,Vz € Q, hence according
to Proposition 2, AT = T \. O

Example. The quasigroup Q(-), where Q = {0,1,2,3} and
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0123
3102
0231
1320
2013

0
1
2
3

is a m-quasigroup of type T and is isotopic to the Klein group K4 = Q(+) (0 is the
neutral element of Q(+)): = -y = Ro(z) + A~ (y), where Ry = (0321),\ = (132).
Remark that the quasigroup Q(o), where x oy = A(x) + = + I(y), is defined by the
following table:

0123
0123
2301
3210
1032

(0]
0
1
2
3

As I = e wehave A\ = I\, hence A € AutQ(+) and A € Aut@(o). The conditions
|Q] < oo and AI = I\ give 1IdQ(o) = {0}.

Proposition 7. If a m-quasigroup Q(-) of type Ty = [e,¢,1] is isotopic to an abelian
group Q(®), then for every b € Q there exists an isomorphic copy Q(+) = Q(P)
such that x -y = IL3(z) + Ly(y) + b, Yo,y € Q, where I : Q — Q, I(z) = —uz,
Ve e Q.

Proof. Let Q(+) be a m-quasigroup of type Th = [¢, &, 1], isotopic to an abelian group.
Then, for every a,b € Q, the LP-isotope Q(+), where x +y = R, (z) + Lb_l(y),
Y,y € @, is an abelian group as well. Denote its neutral element b - a by 0. The
quasigroup Q(-) satisfies the identity

x(y - yz) = y. (6)

Using the definition of ” + 7, the identity (6) takes the form R,(x)+ Ly(R.(y) +
Ly(Ro(y)+ Ly(x))) = y or, after replacing y — R, '(y) and z — Lb_l(x): RaLb_l(:E)—l-

Ly(y + Ly(y + 7)) = Ry (y), which implies:

Ly(y + Ly + =) = By (y) + TRo Ly ' (). (7)
Taking y = 0 in (7) we get L2(v) = b+ IR.L; '(z) = L}(z) = b+ IR,(z),Vx €
Q,= Ry(z) =b+ IL}(z),Vo € Q, -y = IL}(x) + Ly(y) + b, Va,y € Q. O

Proposition 8. A quasigroup Q(-), isotopic to a group Q(®) and having an idem-
potent 0, is a w-quasigroup of type To = [e,&,1] if and only if there exists an isomor-
phic copy Q(+) = Q(®) such that x -y = IL§(x) + Lo(y) and Lo(y + Lo(y + z)) =
Li(z) + LO_?’I(y), for every x,y € Q.
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Proof. If Q(+) is a m-quasigroup of type Ty = [¢,¢,1] and 0 is an idempotent of Q(-),
then the LP-isotope (+) = (-)(Rgleglva) is a group with unit 0. Using the definition
of 7 +7 the identity z(y - yx) = y takes the form:

Ro(x) + Lo(Ro(y) + Lo(Ro(y) + Lo(x))) =y,

or, after replacing Ry(y) by y and Lo(z) by x:

Lo(y + Lo(y + z)) = IRoLy () + Ry (y). (8)

For y = 0 the last equality implies L}(z) = IRoLy'(x) for every = € Q, so
Ry = IL} and then (8) implies

Lo(y + Lo(y + =) = Lj(x) + Ly *I(y).

At the same time we get that z -y = IL3(z) + Lo(y).

Conversely, let Q(-) be the quasigroup defined by the last equality, where Q(+
is a group, 0 is an idempotent of Q(-) and let the equality Lo(y + Lo(y + x))
L3(2)+ Ly I(y) holds. Then z(y-yx) = IL(x)+Lo(IL§(y)+ Lo(IL3(y) + Lo(x)))
IL}(x) + L3(z) + La?’IQLg(y) =y, i.e. Q(+) is a m-quasigroup of type T5.

~—

Ol

It was proved in [2] by V.Belousov and A.Gwaramiya that every group G which
is isotopic to a m-quasigroup of type Ty = [g,¢,lr] (i.e. to a Stein quasigroup) is
metabelian (i.e. [z,y] € Z for every z,y € G). It was also proved by V.Belousov in
[1] that if a group Q(-) is isotopic to a m-quasigroup of type Tg = [e,(,lr], then Q(-)
is metabelian.

Proposition 9. If a m-quasigroup Q(-) of type Tg = [e,1,1r] is isotopic to an abelian
group Q(®), then there exists an element 0 € Q and an isomorphic copy Q(+) =
Q(®) such that x -y = Ro(x) + ¢Ro(y),Vz,y € Q, where ¢ € AutQ(+).

Proof. Let Q(-) be a m-quasigroup of type Tg = [, [, 1r], i.e. let Q(-) be a quasigroup
with the identity
T YT =yT-y. (9)

Then for y = f,, where f,x = z,Vo € Q, we have 2> =2 - f, = fo = = = =

fo-x =z -z, ie. Q) is idempotent. Let 0 € @ and consider the LP-isotope
(+) = (-)(Ral’Lal’a). It is clear that Q(+) is an abelian group with the neutral
element 0 = 0-0. Now, using the equality x -y = Ro(x) + Lo(y), the identity (9)
takes the form

Ro(x) + Lo(Ro(y) + Lo(x)) = Ro(Ro(y) + Lo(z)) + Lo(y),
Va,y € @, hence replacing Ry(y) — y and Lo(z) — x, we get

RoLy*(x) + Lo(y +x) = Ro(y + ) + LoRy (),
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which implies

Lo(y + @) + IRo(y + x) = IRo Ly () + LoRy ' (y). (10)

Taking = = 0 in (10) we get:

Lo(y) + IRo(y) = LoRy ' (y) (11)
for all y € Q. For y = I(z), the equality (10) implies 0 = IRoLy'(x) +
LoRall(az),Vaz €Q,ie. ROLO_1 = LoRo_lf. Denoting LORO_1 by ¢, we get oI = ¢!
and Ly = @Ry, so -y = Ro(x) + ¢Ro(y),Vz,y € Q. On the other hand, using
(11), the equality (10) takes the form LoRy'(y + 2) = IRoLy ' (x) + LoRy ' (y), i.e.
plz+y) =To N (z) + p(y) = Ipl(z) + (y), Yo,y € Q.

As p(0) = LoRgl(O), taking y = 0 in the last equality, we get ¢ = I~ !, so
olx+y)=p@)+py),Vr,y € Q, i.e. p € AutQ(+). O
Proposition 10. Let Q(+) be an abelian group with the neutral element 0, ¢ €
AutQ(+) and ©* = I, where I(z) = —z,Ya € Q. If the isotope Q(-), where (+) =
(-)(Rgl’Ralfl’s), is idempotent then Q(-) is a w-quasigroup of type Tg.

Proof. Using the definition of ” -7, we have x -y = Ro(z) + ¢Ro(y), Va,y € Q. If
Q(+) is idempotent then z - z = 2,Vz € @, so Ro(z) + ¢Ro(z) = z, = 2z + [Ry(z) =
¢Ry(z),Vz € Q. Taking z = y+ ¢(z) in the last equality, we get y + p(z) + I Ro(y +
p(r)) = pRo(y + ¢(x)) = ¢(z) + IRo(y + ¢(z)) = pRo(y + ¢(x)) + I(y) = ¢(x) +

¢*Ro(y+p(x)) = pRo(y+p(2)) +9*(y) = z+9Ro(y+¢(x)) = Ro(y+p(z))+e(y),
Va,y € Q. Now, replacing © — Rg(z) and y — Ro(y), we get:

Ro(z) + ¢Ro(Ro(y) + ¢Ro(z)) = Ro(Ro(y) + ¢Ro(z)) + ¢Ro(y),
Vr,y € Q,ie x-yr=yx- -y, Ve,y € Q. So Q(-) is a m-quasigroup of type Tg. O

Proposition 11. If Q(-) is a m-quasigroup of type Ty = [e,lr, 1], isotopic to an
abelian group, a € Q and (+) = (-)(R‘;l’L‘;l’E), then there exists a complete substitu-
tion 0 of Q(+) such that x -y = Rqx + R, 10y, for every x,y € Q, where Ix = —x,
Vo € Q.

Proof. The quasigroup Q(-) satisfies the identity zy - yx = y so, using the equality
x-y = Rex + Loy, we get Ry(Roqx + Loy) + Lo(Ray + Loz) = y or, after replacing
Ryz by z and Lyy by y:

Ra(z +y) + La(RaLy " (v) + LaRy ' (7)) = Ly (y)- (12)
Taking = = a? (the unit of the group Q(+)), from (12) it follows:

Ra(y) + LaRaLg ' (y) = L (y), (13)
or, replacing y by Lg(y):
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RaLa(y) + LaRa(y) =Y. (14)

Now, taking y = a? in (12), we have: R,z + L2R;'xz = a and, replacing z by
Ry in the last equality, we get R2z + L2z = a. From (14) it follows y+ I R,Ls(y) =
L,R.(y), Yy € Q, where I(z) = —x, Vx € Q, so IR,L, is a complete substitution of
Q(+). Finally, denoting IR, L, by 6, we get L, = R; 110 and 2 -y = R,x + R, 10y,
Y,y € Q. O
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