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Abstract. A generalization of Hardy-Hilbert’s integral inequality was given by
B.Yang in [18]. The main purpose of the present article is to generalize the inequality.
As applications, the reverse, the equivalent form of the inequality, some particular
results and the generalization of Hardy-Littlewood inequalities are derived.
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1 Introduction

Let1 l:1(10>1) f,g > 0. Suppos<—:'0<f0 fP(z)dr < oo and 0 <

fo gl(x dx < 00. The well known Hardy-Hilbert’s integral inequality (see [1]) is
given by

| iy < T ([ o) ([T awan) )

and an equivalent form is given by

F (22 e[t | oo o

where the constant factor 7/sin(7/p) and [r/sin(mw/p)]P are the best possible. Re-
cently many generalizations and refinements of these inequalities were also obtained.
Some of them are given in [4]-[27]. One of the generalizations given by Yang [18] is
the following:

Theorem 1. If p > 1, %—l—% =1, ¢ >0 (r =p,q), ¢op+ g = A, u(z) is a
differentiable strictly increasing function in (a,b) (—oo < a < b < 00) such that

u(a+) = 0 and u(b—) = oo, f,g > 0 satisfy 0 < fbep( Ydz < oo and

q(l ¢p)—1

O<f W g (x)dx < oo then

s (u)pi=et \?
[ [ ez < Bien.an </ Wy ”) "

b ulx q(1—¢p)-—1 %
</ it gq(:”m) |
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(3)
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92 NAMITA DAS, SRINIBAS SAHOO

where the constant factor B(¢p, ¢q) is the best possible. If p < 1(p # 0),{\ : ¢ >
0,(r =p,q), dp + ¢g = A} # @, with the above assumption, the reverse of (3) holds
and the constant factor is still the best possible.

In this paper, we have generalized the inequality (3), where we have weakened
the normalized condition ¢, + ¢, = A and considered two different functions u(x)
and v(z), which is more generalized inequality and from which most of the recent
results are obtained by specialising the parameters and the functions u(z) and v(z).
We have also given the generalization of Hardy—Littlewood inequality.

2 Some Lemmas

We first set the following notations: Suppose p ¢ {0,1}, % + % =1 0<
dr < X (r = p,q), u(x) and v(x) are differentiable strictly increasing function in
(a,b) (00 < a < b < o) and (¢,d) (—o0 < ¢ < d < 00) respectively such that
u(a+) = v(c+) = 0 and u(b—) = v(d—) = oo.

We need the formula of the f—function as (cf. Wang et al. [3]):

B(p,q) = /OOO mt”‘ldt = B(g,p) (4)

Lemma 1. (cf. Kuang [2]). Ifp > 1, %4—% =1, w(t) >0, f,g >0,f e LL(E)
and g € LL(E), then one has the Hélder’s inequality with weight as:

[ woswa<{ [ w(t)fp(t)dt}%{ / w(t)gq(t)dt}? (5)

If p < 1(p # 0), with the above assumption, the reverse of (5) holds, where the
equality in the above two cases holds if and only if there exists non-negative real
numbers c¢1 and cy such that they are not all zero and

1 fP(t) = cogi(t), a.e.in E.

Lemma 2. Define wy(u,v,p,x) and wy(v,u,q,y) as

e,
artuvpa) = [ TRy, 2 € (@) (6
[ (@))% ()
wx(v,u,q,y) —/a (@) £ o)) dz, y € (c,d). (7)
Then
wx(,v,p,7) = Blep, A = dp) (u())? ™, x € (a,b), (8)

wx(v,4,4.y) = B(dg, A = 69)(v(y) A, y € (¢, d). 9)
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Proof. Setting t = % in (6), we have

[ (@) ()
wi(u,v,p,x) = /0 (a() £ ta(@) dt =
1

= (u(g:))‘i’p—A /OOO 7(1 n t))\tfi’p—ldt.

By (4), we get (8). Similarly, (9) can be proved. The lemma is proved.

Lemma 3. Suppose ¢, + ¢g = A\. Take ay = u=1(1), ¢ = v71(1).
(i) If p>1, %4—%:1 and 0 <e <qpp, then

/ / T @) ) )

w
(u(z) + v(y))*
> B( ,<;5q > O@1).
(i) If 0<p<1(orp<0) and 0<e < —qpq (or0<e < qopp), then

1 € €
I<-B(¢p——,0 +—>.
€ (p g q

CIC)RNT
u(z)

I:= /:(u(ﬂf))_l_eu’(:n) (/;j) a _it)/\t%_fz_ldt> dr =
YT S
- /b o </0() e t>At¢p_%_ldt) e

_l/oo 1 t¢p_%_1dt_ ¢ _E -2
ey (141 "g)

By (4), inequality (10) is valid. If 0 < p < 1 (or p < 0), by (12) we get

b / [e's)
u (.Z') / 1 dp—=—1
I < ———d — 7P dt
/al wan=" ), aTror

and then by (4), inequality (11) is valid. The lemma is proved.

Proof. For fixed x € (a1,b), setting t = in (10), we have

93
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3 Main Results

Theorem 2. If p > 1, ;—i— =1,0< ¢ <A(r=p,q) and f,g>0 satisfy

0 < Jy B fr(@)da < 00 and 0 < [ ST T g () d <
oo then

xg Y) b(u(x))Pr AHP—11=¢q) . »
/ / e dxdy<m(¢p,¢q></a T f(x)dx> ><

1

d vlx dq—AHg—1{1—¢p) a
’ </ Smros gq(x)dx)

1 1
where Hx(ép, ¢q) = B7 (¢p, A — ¢p) B (dg, A — ¢y).
Ifp<1lp#0),{\:0< ¢, < \,;7 = p,q} # ®, with the above assumption, the
reverse of (13) holds.

(13)

Proof. By (5), we have

(v(y)) e =D/p (v (y)) 1P g(y)] dxdy < (14)

< {/ab [/Cd (v(y))¢p—1v’(y)d4 (u(:c))(p—1>(_1—¢q)fp(x)dx}% )

(u(@) + v(y))* (/' (z))p=t

1
dr b bg—1,1 (—1)(1—¢p) a
u(z u'(x v
% / [/ (u(x)) (}\) dx} ( (y))/ — g(y)dy .
¢ Lo (u(@)+0(y)) (v'(y))
If (14) takes the form of equality, then by (5) there exist non negative numbers ¢;
and ¢ such that they are not all zero and

(v()?r 1 (y) (u()) P~ =)

(' ()Pt
(u(x))? ' (x)
(v (y

/

fP(x) =

C1

(v(y
)

)(1=¢p)
=y (5 )1) 91(y), a.e. in (a,b) x (c,d).

It follows that

ulx p(1—¢q) q(1—¢p)
C1%ﬂ’(w) = 62%9 (y) =c3, a.e. in (a,b) x (¢,d)
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where c3 is a constant. Without loss of generality, suppose that ¢; # 0. Then
we have

b () Pr— A1) (1—0q) c3 [P
/ ( ( ))(u,($))p_1 fp(x)dx zi (u(aj))¢p+¢q—>\—1u/(g;)dw =

c 1 o)
=3 {/ torea=A=1gy +/ t¢P+¢q_’\_1dt} =00
=l 0 1

which contradicts to

b (u(x))Pr A E=1)(1=¢q)
o< | (W@

fP(x)dr < 0.

Then by (6) and (7), we have

b b () P~ (1=6,) z
[ [ st < {/ R p(x)dx} ’

a o)) @=D(=7) a
X {/c wi(v,u, q,y)( (??3))’@))‘1—1 gq(y)dy}

(15)

and in view of (8) and (9), it follows that (13) is valid.
For 0 < p <1 (or p < 0), by the reverse of (5) and using the same procedure,
we can obtain the reverse of (13). The theorem is proved. O

Theorem 3. Let the assumptions of Theorem 2 hold.
(i) If p > 1,1/p+1/q = 1, we obtain the equivalent inequality of (13) as follows:

d U/(y) b f(x) p
/c (v(y)) Lot P=D) (BN Ua mdm dy <
b ()= A+P—1)(1—¢q)

< [Ha(¢p b)) / (u()) e~

a (u' ()P~
(i1) If 0 < p < 1, we obtain the reverse of (16) equivalent to the reverse of (13);
(i1i) If p < 0, we obtain inequality (16) equivalent to the reverse of (13).

(16)

fP(z)dz;

Proof. Set g(y) = (v(y))lfas;);(?;?fquﬂ) [ff S (C dl‘]p_l' By (19). we have
0< /cd (v(y))gz:j/‘(;;z—_ll)(l—wgq(y)dy B
L E— L
- ab /C d %dﬂiy <
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(' ()P~

d (p(z))ba— a1 (=) .
X </c (v ))(v’(x))q—l gq(l')dl‘> )

b bp—A+(p—1)(1—64) ,
< Hy(dp, d0) ( / Gl fp(:n)d:c> y

then

! v'(y) b f(a) po)w
= {/C (U(y))l—¢p+(p—1)(¢q—)\) |:/a (u($)+v(y)))\d$:| dy} < (18)

< Hy(6y. 00) { /b (u(:p))¢p—/\+(p—1)(1—¢q)fp(x)dx}f’ .

/()

It follows that (17) takes the form of strict inequality by using (13); so, does (18).
Hence we can get (16).

On the other hand, if (16) holds, then by (5), we have

/ / xg dmdy—

d 1/p b f(l')
/ [ )= <z>p+p 1) (g ))/p/ (U(:L")Jrv(y))kdx] )

(1 dp+(P—1)(¢q—A))/p
DEE 9(y)| dy <

{/d ¢>p+(p 1)(dg—N) [/ab (u(x)fiwg(y))kdm]pdy}g X

d ¢q At(g=1)(1—¢p)
= 9')dy o

Hence by (16), (13) yields. Thus it follows that (13) and (16) are equivalent. The
theorem is proved. O

Q|-
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Theorem 4. If p>1, 1/p+1/q=1, ¢ >0(r=p,q), ¢pp+dq =X and f,g>0

(1¢)1 (1=¢p)—1
gl fP(x)dx < 0o and 0<fd(vmq .

satisfy 0 < f
then

s (u@)ri-s-t o\
// W) da:dy<B(¢p,¢q) (/a Wf (a;)da:) X

1
A (p(z))11=dp)-1 a
W) g
" </ IO G
where the constant factor B(¢p, ¢q) is the best possible.

If p < 1(p # 0),{\ : ¢ > 0,(r = p,q),Pp + ¢g = A} # ®, with the above
assumption, the reverse of (19) holds and the constant is still the best possible.

(19)

Proof. Since ¢, + ¢4 = A, then by Theorem 2, (19) and its inverse are valid.
For 0 < € < q¢y, setting

0 if € (a,a1) (a1 =u=1(1)),
f& X)) = €
@ {<u<x>>%‘f1w<x> if 2 € a1, ),

oolz) = {0 if z € (c,c1) (er =v71(1)),

(v(m))%_%_lv’(az) if x € [e1,d),

we have

u(z))P1—%)— d (p(z))a0=¢p)=1 g

If the constant factor B(¢p, ¢q) in (19) is not the best possible, then there exists a
positive constant K < B(¢p, ¢q) such that (19) is still valid if we replace B(¢p, ¢q)
by K. In particular, by (10) and (20), we have

B

B<¢p_§7¢q+i>_‘€o<1)<

fa( y
<€/ / ) ) dxdy <

x p(1—¢q d ol d(1—p)—1 %
<eK </a %ﬁj(w)dm) </c %gﬁ(m)dm) = K,

and then B(¢p, ¢,) < K (¢ — 01). This contradiction leads to the conclusion that
the constant factor in (19) is the best possible.

For the best constant factor in the reverse of (19), for 0 <p < 1 (p < 0), we set
fe(x) and g-(z), for 0 < e < —qg@4 (or 0 < € < g¢p), as the above; we still have (20).

B =
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If the constant factor B(¢p, ¢,) in the reverse of (19) is not the best possible, then
there exists a positive constant K > B(¢p, ¢4) such that the reverse of (19) is still
valid if we replace B(¢p, ¢,) by K. In particular, by (11) and (20), we have

B (0 S+ 2) >
> 5/ / fE() le dxdy >
> K (/ %ﬁ(@m) (/d %gﬁ(x)dm)é _K,

and then B(¢p,¢q) > K (¢ — 07). This contradiction leads to the conclusion
that the constant factor in the reverse of (19) is the best possible. The theorem is
proved. ]

Al

Corollary 1. For f =g, u=wv, A=1 ¢ = % (r =pq), if 0<
Jo (@) f(@)dz < 00 (r=p,q) then

/ / y()y drdy <
“ g </ab(”< N >dm>% < / b(ul(x))l_qfq(a:)dx>%,

where the constant factor W is the best possible.

(21)

Corollary2 For f =g, w=mwv, X=1, qzbr:%(r:p,q), if 0<

ff %f’“( Jdr < oo (r=p,q) then
Pt f@)f )
/a /a u(z) + u(y) dudy <

S A L TS LAY
<w</a s >d> (/ o e ) ,

where the constant factor 7 is the best possible.

Theorem 5. Let the assumptions of Theorem 4 hold.
(i) If p > 1,1/p+1/q = 1, we obtain the equivalent inequality of (19) as follows:

/cd o [/b <u<x>ff2<y>»d4pdy )

b ulx p(1—¢q)—1
<BGpa)P [ (((M)%Tfp(w)dx;

a

(23)
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(ii) If 0 < p < 1, we obtain the reverse of (23) equivalent to the reverse of (19);
(111) If p < 0, we obtain inequality (23) equivalent to the reverse of (19), where
the constants in the above inequalities are all the best possible.

Proof. Since ¢, + ¢4 = A, then by Theorem 3, we get inequality (23) and its inverse
which are equivalent to (19) and its inverse accordingly. By Theorem-4, the constants
in (19) and its inverse are best possible, hence the constants in (23) and it’s inverse
are best possible. The theorem is proved. O

4 Some Particular Inequalities

Theorem 6. If p > 1,% —1—3 =1,A> max{%,%},o < ff %)));:ffp(:n)dw < o0 and

0< fd %g (z)dr < 0o, then we have the following two equivalent inequalities:

1 L@
<,%= 3) </jésf<z?;-? i) ([ omee)
/cd(v(y))v(;(_yl))(l_A) [/ab( . )f—i(_xg( S dwrdy< .

< [E“ <%§>} / EZ/(?)))I Wyt
where £, (3. 1) = B+ (3.2 3) B (32— ).

Proof. Setting ¢, = 1 (r =p,q), in Theorem 2 and Theorem 3, we get the inequali-

T

ties (24) and (25) respectively. O
We discuss a number of special cases of inequality (24). Similar examples apply
also to inequality (25).

Example 1. Set u(z) =Az+C (A>0), z € (-C/A,0) and v(zx) =Bx+C
(B>0), € (—C/B,o0) in Theorem 6. Then (24) becomes

)
/_% ¢ (Aa:+By—|—20)>‘dxdy

1 - (11 o0 _ z
Al/qu/pH <—,q> (/_C(AerC)l )\fp(g;)dx> X (26)

A

X </OZ (Bx + C')l_)‘gq(a:)dw>

Q|
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For A= B =1,C = —a, we recover the result of Yang [7].

Example 2. Set u(z ) % (a > 0), x € (0,00) and v(z) = 27 (8 > 0), € (0,00)
in Theorem 6. Then ( becomes
/ / xa—i— 5 dxdy<
o 1
< ! —— H, <1 1> </ xo‘(2—>\—p)+p—1fp(g;)da:> " x (27)
aqﬁp P q

1
« </ 2P A—a+a—lga(, )dw>q
0

Taking A = 1 and o = 3, we get the result of Yang [12].
Example 3. Set u(z) = v(z) = Inz, x € (1,00) in Theorem 6. Then (24) becomes

/100 /100 %dwdy < H, (% 3) </loo(lnx)1_>‘:np_1fp(x)dx> %

1

X </1°O(1n a:)l_)‘xq_lgq(a:)da:> ‘)

Theorem 7. Suppose f, g > 0 satisfy 0 < ff ((Z,(é)));p:i fP(z)dr < oo and

==

(28)

0<fd((;}(1;v = ng( )dx < 00.

(i) Ifp > 1, p+5 = 1,A > 2—min{p, ¢}, then we have the following two equivalent
inequalities:

/ / xlg ydzdy <

! . (29)
b (u(z) p 4 (p(x))> a
<t ([ G o) ([ rogeto)
Yo [ @ T
/c (v(y) D0 [/ (ul@) + v<y>>Ada’] E 0
b () o
< [k‘,\(P)]p/a Wfp(l’)dﬂ? ;
where ky(p) = B <%ﬁ\_2, q+2_2) .
(ii)) If 0 <p<1land 2 —p < A <2 — q, we have two equivalent reverses of (29)

and (30).

(iii) If p < 0 and 2 — ¢ < A < 2 — p, we have reverse of (29) and the inequality
(30), which are equivalent; where the constants in the above inequalities are all the
best possible.
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Proof. Setting ¢, =1+ (1 — 1)(A = 2) (r = p,q), in Theorem 4 and Theorem 5, we

T

get the inequalities (29) and (30) respectively. O

Example 4. Set u(z) = Az +C (A>0), z € (—C/A,00) and v(zr) = Bz +C
(B>0), z€(—C/B,oo) in Theorem 7. Then (29) becomes

Sl B (€O V()
/—3 /_g (Az + By + Qc)xdxdf‘/ <

<oty < JR c)l*f%mx) ( [ B o)l-*g%x)dx) R

For C' = 0 and p = ¢ = 2 this is the result of Yang [11] and for C' = 0 we get the
result of Yang and Debnath [15]. Setting A = B = 1,C = —a, we recover the result
of Yang [9].Taking A = B = 1,C = 0, we get the result of Yang [10].

o (31)

Q=

b
osl

Example 5. Set u(z) = 2 (a > 0), 2 € (0,00) and v(z) = 2° (8 > 0), = € (0,00),
in Theorem 7. Then (29) becomes

T[T @) @) ([ a@-r-pyrp-t )é
/0 /0 (2 + yﬁ)kdxdy ) Qi (/0 ! P ) )
X(/o LBC-A—a)+a-1 g ()dx>q

For o = 8 = 1, this is the result of Yang [10]. Taking A =1 and « = 3, we get the
result of Yang [12, Theorem 3].

(32)

Example 6. Set u(z) = v(z) = Inz, z € (1,00) in Theorem 7. Then (29) becomes

/100 /100 %dm@ < ka(p) (Am(lnx)l—*xp—lfp(x)dx> "

« </100(ln:17)1 Apt=lga(y )dgc>é

For A =1 this is the result of Yang [16, Theorem 3.1].

=

Theorem 8. Suppose f, g > 0 satisfy 0 < fb pr( )dx < oo and

0< fd %gq(x)dx < 0.



102 NAMITA DAS, SRINIBAS SAHOO

(i) If p > 1,% —1—5 =1,A>1- 2min{%,%}, then we have the following two
equivalent inequalities:

Ity QU0 AL
/ / y dl'dy < k)\( ) </a Wf (ZE)dZE) X
d v(z q(1-X)/2 %

<[]’ / ’ wfp(w)dw ,

(' ()P~

(34)

(i) If0<p<1landl—
and (35).

(iii) If p< 0 and 1 — % <A<1-— %, we have reverse of (34) and the inequality
(35), which are equivalent; where the constants in the above inequalities are all the
best possible.

where kx(p) = B (%—i—% AT"'%)’
2
P

<A<1-— 5’ we have two equivalent reverses of (34)

Proof. Setting ¢, = % + % (r = p,q), in Theorem 4 and Theorem 5, we get the
inequalities (34) and (35) respectively. O

Example 7. Set u(x) Az +C (A>0), z € (—C/A,0) and v(z) = Bx+C
(B >0), z € (—C/B,o0) in Theorem 8. Then (34) becomes

/ / Am+By +)2C') dedy
< Af/)r\z(Bz/p (/_c

X </_OZ(B33 + C)Q(l_)‘)ﬂgq(az)dw> '

B

For C' =0 and p = ¢ = 2 this is the result of Yang [11].

Example 8. Set u(r) = 2% (a > 0), 2 € (0,00) and v(x) = 27 (3 > 0), x € (0,0)
in Theorem 8. Then (34) becomes

/ / - g d d < k ( ) </ p—l+o¢(2—p>\—p)/2fp(x)dx>p «
LE +y aqﬂp
% </ gI71HBC=aA=0)/2ga )da:>
0

(z + PO /2fp<:c>dm> E (30

»|

(37)
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Taking A = 1 and a = 3, we get the result of Yang [12, Theorem 3].

Example 9. Set u(x) = v(z) = Inz, x € (1,00) in Theorem 8. Then (34) becomes

/100 /100 %dxdy < 1;:,\(17) </100(1nx)p(l—/\)/zxp_lfp(x)dx> P

1

X </ (lnaj)q(l_A)/zznq_lgq(a:)dx) ’
1

For X\ =1 this is the result of Yang [16, Theorem 3.1].

(38)

(P—1)(A=X)

Theorem 9. If p > 1, %4—% =1,A>0,f,9g>0 satisfy 0< ff%fp(:n)dzr

< oo and 0 < fcd %gq(aj)dx < o0, then we have the following two

equivalent inequalities :

" fwel) A A ([ oy N
[ ] iy tpean<s(53) </ iyt )d) ~

. (39)
d( (x))(q—l)(l—A) q
v
q
’ </ Wyt w“) |
d / b p
/ v (yl)_A [/ f(z) )\dl} dy <
e () o (u(@)+v(y)) (40)
A P/b (u(:E))(p_l)(l_)‘)
< |B|-,— P(z)dx,
23] [ e
where the constants in the above inequalities are all the best possible.
Proof. Setting ¢, = % (r =p,q), in Theorem 4 and Theorem 5, we get the inequa-
lities (39) and (40) respectively. O

Example 10. Set u(z) = Az+C (A>0), z¢€(-C/A,0) and v(zx)=Bz+C
(B>0), € (—C/B,o0) in Theorem 9. Then (39) becomes

©oe f@)g(y)
/—i /_g (Az + By + 20)Ad$dy <

1
1 )\ )\ o p
- 22 (p=1)(A=X) rp
< Al/fIBl/pB <p’ q) (/ (42 +C) f (:E)dx) x (41)

e
A

X </OO (Bx + C’)(q_l)(l_)‘)gq(x)dx) q .

_<
B

For C' =0 and p = ¢ = 2 this is the result of Yang [11].
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Example 11. Set u(z) = 2% (a > 0), 2 € (0,00) and v(x) = 2 (8 > 0), 2 € (0, 00)
in Theorem 9. Then (39) becomes

1
/ / d dy < 11 B <§,é> (/ :E(p—l)(l—a/\)fp(x)dx>p %
waGr p q 0

1
> </ x(q—l)(l—ﬁk)gq(x)dx> t
0

For o = 3 = 1, this is the result of Yang [17]; for « = 3, A = 1 this gives the result
of Yang [14]; for v = 3 = 2, A = % this gives the result of Hong [5].

(42)

Example 12. Set u(z) = ar'*t® v(z) = bz'*®, x € (0,00) and A = 1 in Theorem 9.
Then (39) becomes

/ / axl—i—sc_i_b 1+yd zdy

LB (1 1) </0 ( (1+a:+xlnx))1_pfp(a:)dw>% x (43)

aibr P q

1

x (/Ooo(xw(l b+ a:lna:))l_ng(a:)dw> ‘)

This is the result of Jia and Gao [19].
Example 13. Set u(z) = v(z) = Inz, x € (1,00) in Theorem 9. Then (39) becomes

/ / lnx —Hny ——————drdy < B (A A) </ (ln;n)(p_l)(l—/\):np_lfp(x)dgg>p v
(g=1)(1-X) .q-1 a
X (/1 (Inz) 21 g (x )d:r> )

For X\ =1 this is the result of Yang [16, Theorem 3.1].

(44)

Theorem 10. If p > 1, l+l =1, X > 0, f,g > 0 satisfy 0 <
fb( p:11f (x)dx < 0o and O<fd(vm)q = 1gq( Ydx < oo, then we have the

a “W(a) W

following two equivalent inequalities:
1
f(z g () A A P (u(@)p ’
[ [ tiias <5 (5 5) ([ e )

d(v DI N "
([ )
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4 (y) b @) ?
/c (0(y) 2D U (@) + o] W<

<[ G [ o

where the constants in the above inequalities are all the best possible.

(46)

Proof. Setting ¢, = A (1 - %) (r =p,q), in Theorem 4 and Theorem 5, we get the
inequalities (45) and (46) respectively. O

Example 14. Set u(z) = Az +C (A > 0), z € (—C/A,0) and v(z) = Bx + C
(B>0), z € (—C/B,o0) in Theorem-10. Then (45) becomes

© e f@)e)
/—% /_% (Az + By + QC)Adwdf‘/ <
1 A A o0 1
<t (5:3) </_g<“‘$ ’ C>’J‘A‘1fp<x>dw) <

x ( / oz (B + C)71 gq(a:)dw> "

B

For C' =0 and p = ¢ = 2 this is the result of Yang [11].

Example 15. Set u(z ) (> 0), z € (0,00) and v(z) =27 (8 > 0), 2 € (0,00)
in Theorem 10. Then ( ) becomes

1 A A
[ gt < Y 5(53)
><</OOO:L"7’ AL (g )d:r) </0003:q AA-L ()dw)a.

This is the result of Azar [23, Theorem 1], with the constant factor WB (%, %)
is the best possible for o = 3, but we proved that the constant factor is the best

possible for all @ and 3 . For a = 8 = 1, we get the result of Yang [17].

(48)

Example 16. Set u(z) = v(z) = Ilnx, x € (1,00) in Theorem 10. Then (45)
becomes

/ / lnx—l—lny Mz & my) <B<A A) </ (1nw)p‘A‘1xp‘1fp(a:)dx>’l’x

1

X (/1 (Inz)? A 1pd=1gd(x )dm).

(49)
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Remark 1. For A = 1,u(z) = v(z) = 2%, ¢, = (7‘ =p,q), Theorem 2 gives

m
/ / - d dy < T - X
z +y asin? (7/ap) sina (7/aq)

x(/omxl—af%) >1</0w 1-a <>d:c>%,

which is the result of Kuang[4].

Remark 2. For A = b+ c+ Liu(z) = v(z) = z,¢p = c—l—l—%,qbq = b+1—%,
Theorem 2 gives

< fx)g(y) 1 1
/0 /0 <x+y>b+c+1dxdy<3(”5’”5)X

1 o 1
> </ xp(l—b)_zfp(x)dx> ? (/ :Eq(l_c)_zgq(l‘)dl‘) ,
0 0

which is given by Peachey [24].

Remark 3. For u(z) = v(z) = 2%, ¢p = 22 ¢, = =
following results:

If p > 1, 1/p+1/q—1a>0)\>0mn6Rsuchthat0<1—mp<a)\,
0<l—ng<aXand f >0, g>Osatlsfy0<f (1=ad)+p(n=m) fp(1)dz < oo and
0< [y~ y=aN+a(m=n) gd(3)dz < oo then

/ / da:dy < Hyo(m,n,p,q) </ x(l_o‘)‘)ﬂ("_m)fp(x)dx) " x
0
1
x < /0 y- ‘“”*q(m‘")gq(y)dy) :

(51)

6% 7

=

(52)
1 pi/1-m 1—m, L n 1—n
where Hy o(m,n,p,q) = sBr (—2, X\ — —"2)Ba (4 X - —1).
Further if mp + ng = 2 — a, then Theorem 4 gives
1
/ / f(a;)g(y)/\ dudy < 1y (1—m}07 1—nq></ :E"(p+q)_1fp(x)dm> P

o Jo (z*+y*) « a a 0

(53)

1
X < / ym(p+q)‘1gq(y)dy> "
0

where the constant factor éB (17#, 1%“"(1) is the best possible. These two inequa-
lities are given by Hong [6].
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Remark 4. Replacing u(z) by zu(z) and v(z) by xv(z) and taking ¢, = 1 — Asp,
¢qg = 1 — Aiqg in Theorem 2, we get the following result given by
Mario Krnic et. al [27]:

Hp>LUp+Uq:LA>0¢he<%§5)amm@e<%%%)mm

<[ flz)gly)
L] et <
oo 1/p
<L </0 (mu(az))l_Aer(Al_A”(u(a:) + xu/(az))l_pfp(x)dx> X (54)

1/q

([t o) () gt i)

where L = (B (1 — Aap, A — 1 —|—A2p))% (B(1—A1q,A—1 —|—A1q))%.

Remark 5. For u(z) = Aa®,v(z) = Bb®, ¢, = 1+(1—1)(A—2) (r = p, q), Theorem 4
gives the following inequality:

Ifp > 1,%—#% =1,A>2—min{p,q},A>0,B >0,a>1,b>1and f,g >0
satisfy 0 < ffooo aP=AP)E fP(1)dx < 0o and 0 < ffooo b2A=97 44 (3)d < oo, then

oo f(2)g(y)
Km[m@ga%%?mw<

1 . 1
<C </ a(2—>\—p):cfp(x)dx> ! (/ b(z—)‘_q)xgq(a:)da:> 7

1 1
where the constant factor C = (%)p (Blﬂ) ‘B <M, M) is the best

(55)

Alna p q

possible. This inequality is an extension of the result of Zhou et.al[22], where they

consider the parameter p > ¢ > 1,1 — % <A<2

Remark 6. For u(x) = v(x), Theorem 4 gives (52).

For other appropriate values of A, ¢, ¢4, u(x) and v(x) taken in Theorem 2-5,
many new inequalities can be obtained.

5 Applications

In this section, we will give the generalizations of Hardy-Littlewood’s inequality.
Let f € L?(0,1) and f(z) # 0. If

1
an:/ 2" f(x)de, n=0,1,2,3,...
0

then we have the Hardy-Littlewood’s inequality (see [1]) of the form

o0 1
Zai < 7r/0 2 (x)dx (56)
n=0
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where the constant factor 7 is the best possible.

In [20,21], Gao gave the integral version of Hardy-Littlewood’s inequality as
follows :

Let h € L?(0,1) and h # 0. If

1
f(:n):/o Elh@)dt, € [0, 00),

then - .
/ Pa)dz < 7 / B2(1)dt (57)
0 0
and - .
/ fA(x)dr < / th2(t)dt. (58)
0 0
Theorem 11. Let p > 1, % + % =1, he L*(0,1) and h(t) #0. Define a function
f(x) by

1 1
ﬂ@=4wu»54t“@mwwa z € (a,b).

If0<f 2))27P P01 (2)dx < oo , then

(/a fp(a:)da:> " < sizg (/ab(U’(a;))?—pr(P—H(x)dx>% /OlthQ(t)dt. (59)

Proof. We can write

Ll
P(g) = P () ()7 u(z) .
P2) = V@)l () At (h(t)dt

Now applying, Schwartz inequality and Corollary-1, we have

(/ fP(@ da:) = |
— {/ </ P (@) ( );tu(x)—édx> t%\h(t)\dt} <
/ </ Nz ptu(x) §d$>2dt></01th2(t)dt:

([ e zz IZELS””“”W) Swons
gﬁzg(1<u@»1%ﬁ@*M@w@wm)%x

x ( / b(u'(x))l_q fq<P—1>(x)(u'($))Zd;p>; x /0 1 th2(t)dt =

a

- siz% (Lb(“/($))2_pfp(p_l)(l‘)dw>; (/lbfp($)d$>3 x /Olth2(t)dt.
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Since h(t) # 0, so, f(x) # 0. Hence it is impossible for equality in (60) and then we
get the inequality (59). This completes the theorem. O

Theorem 12. Let p > 1, % + % =1, he L*(0,1) and h(t) #0. Define a function
f(x) by

1_1 1 1
f(z) Z(U($))2_P(u'($))P/O t“@In(e)dt, @ € (a,b).

u(z)

</ab fp(a;)da:> * <7 /ab <%>2_p fp(p_l)(a:)da: g /01 th2(t)dt. (61)

Proof. Proceeding as in Theorem refhlthm1 and using Corollary 2, we complete the
theorem. n

/ 2—
If 0< fab (" m) pfp(p_l)(x)dx < o0, then

Remark 7. Taking p = 2 in Theorem 11 and Theorem 12, we get

00 1
2.1' X T 2
/O P(a)dz < / 2 (1) dt (62)

0

which is a generalization of Hardy-Littlewood inequality (58).
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