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On preradicals associated to principal

functors of module categories, I
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Abstract. The preradicals associated to the functor HomR(U, -) : R-Mod → Ab are
revealed, their properties and the relations between these preradicals are studied.
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Introduction

The radicals and torsions associated to adjoint situations and Morita contexts
were studied in a series of papers, which were totalized in the book [1]. The aim of
this article is the generalization, supplement and specification of some results of [1]
concerning the preradicals in module categories which are determined by principal
functors of module categories:

H = HU = HomR(U, -) : R-Mod→ Ab (RU ∈ R-Mod),

T = T U = U ⊗S - : S-Mod→ Ab (US ∈Mod-S),

H ′ = HU = HomR(-, U) : R-Mod→ Ab (RU ∈ R-Mod),
where Ab is the category of abelian groups. In particular, it will be shown that
some results which were proved for adjoint situations and Morita contexts are valid
in general case (without supplementary restrictions). The preradicals associated to
each of functors H,T and H ′ will be elucidated, the properties of these preradicals,
as well as the relations between them and the conditions of coincidence of some
preradicals will be shown.

The part I of this work is dedicated to the study of indicated above questions for
the functor H = HomR(U, -) for an arbitrary module RU ∈ R-Mod. In the following
parts the functors T and H ′ will be investigated from the same aspect.

1 Preliminary notions and results

The basic notions and results of radical theory in modules can be found in the
books [2–5]. For specification of terminology and notations we will remind some of
them.
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Let R be a ring with unity and R-Mod is the category of unitary left R-modules.
A preradical r of R-Mod is a subfunctor of identic functor of R-Mod, i.e. r associates
to every module M ∈ R-Mod a submodule r(M) ⊆ M such that f(r(M)) ⊆ r(M ′)
for every R-morphism f : M →M ′.

Now we remind the principal types of preradicals [2, 4].

A preradical r of R-Mod is called:

– idempotent preradical if r(r(M)) = r(M) for every M ∈ R-Mod;

– radical if r(M/r(M)) = 0 for every M ∈ R-Mod;

– idempotent radical if both previous conditions are fulfilled;

– pretorsion if r(N) = N ∩ r(M) for every N ⊆M ;

– torsion if r is radical and pretorsion;

– cohereditary preradical if r(M/N) = (r(M) + N)/N for every N ⊆M ;

– cotorsion if r is idempotent and cohereditary.

Every preradical r of R-Mod defines two classes of modules:
1) the class of r-torsion modules

R(r) = {M ∈ R-Mod | r(M) = M};
2) the class of r-torsionfree modules

P(r) = {M ∈ R-Mod | r(M) = 0}.

The special types of preradicals indicated above can be described by associated
classes of modules. More exactly:

– every idempotent preradical r is described by the class R(r), which is closed
under homomorphic images and direct sums; such classes are called pretorsion

classes;
– every radical r is described by the class P(r), which is closed under submodules

and direct products; the classes with such properties are called pretorsionfree

classes;
– every idempotent radical r can be restored both by the class R(r) and P(r); the

class R(r) is pretorsion and closed under extensions – such classes are called
torsion classes; the class P(r) is pretorsionfree and closed under extensions –
such classes are called torsionfree classes.

If r is a torsion then R(r) is a hereditary torsion class and P(r) is a stable

torsionfree class. If r is a cotorsion, then P(r) is simultaneously a torsion class and
a torsionfree class; such classes are called TTF-classes.

If r is an idempotent preradical of R-Mod, then it can be restored by the class
R(r) in the following way:

r(M) =
∑

{N ⊆M |N ∈ R(r)}.
Dually, if r is a radical of R-Mod, then it can be expressed by the class P(r) as
follows:

r(M) = ∩{N ⊆M |M/N ∈ P(r)}.

In the theory of radicals in modules an essential role is played by the following
two operators of Hom-orthogonality. For an arbitrary class of modules K ⊆ R-Mod
we define:

K
↑

= {M ∈ R-Mod |HomR(M,N) = 0 for every N ∈ K},
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K
↓

= {N ∈ R-Mod |HomR(M,N) = 0 for every M ∈ K}.

The following facts are well known. For every class K ⊆ R-Mod we have:
– K

↑

is a torsion class;
– K

↓

is a torsionfree class;
– K

↓↑

is the least torsion class containing K;
– K

↑↓

is the least torsionfree class containing K.
If r is an idempotent radical then:

R(r) = P(r)
↑

, P(r) = R(r)
↓

.

In the family of all preradicals of the category R-Mod the relation of partial order

can be defined as follows:

r1 ≤ r2
def
⇐⇒ r1(M) ⊆ r2(M) for every M ∈ R-Mod.

For the preradicals of special types this relation can be expressed by associated
classes of modules. In particular:

– for idempotent preradicals
r1 ≤ r2 ⇐⇒ R(r1) ⊆ R(r2);

– for radicals
r1 ≤ r2 ⇐⇒ P(r1) ⊇ P(r2);

– for idempotent radicals
r1 ≤ r2 ⇐⇒ R(r1) ⊆ R(r2)⇐⇒ P(r1) ⊇ P(r2).

2 Preradicals associated to functor H

Let U ∈ R-Mod be an arbitrary left R-module and consider the functor
H = HomR(U, -) : R-Mod → Ab, where Ab is the category of abelian groups.
We denote:

Gen (RU) = {M ∈ R-Mod | there exists an epi U (A) →M → 0},

i.e. Gen (RU) is the class of modules generated by the fixed module RU . It is clear
that the class Gen (RU) is closed under homomorphic images and direct sums, so it
is a pretorsion class. We define by RU the function rU as follows:

rU(M) =
∑

f :U→M

Im f, M ∈ R-Mod,

i.e. rU(M) is the trace of RU in RM for every M ∈ R-Mod. The following fact is
obvious.

Proposition 2.1. For every module U∈R-Mod the function rU is an idempotent ra-

dical of R-Mod, determined by the class of rU-torsion modules: R(rU)=Gen (RU). �

For the functor H we denote:

KerH = {M ∈ R-Mod |H(M) = 0}.
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From the definition of operator ( )
↓

it follows for the class K = {RU} that Ker H =

{RU}
↓

. From the properties of the functor H we have

Proposition 2.2. KerH is a torsionfree class, i.e. it is closed under submodules,

direct products and extensions. �

Therefore the class Ker H defines an idempotent radical rU such that

P(rU)
def
== KerH (= {RU}

↓

). The respective torsion class for rU is:

R(rU) = (KerH)
↑

= {RU}
↓↑

= (Gen (RU))
↓↑

.

Since R(rU) = Gen (RU), it follows that R(rU) is the least torsion class containing
R(rU). In the language of preradicals this means the following.

Proposition 2.3. For every module U ∈ R-Mod we have rU ≤ rU and rU is the least

idempotent radical, containing rU . �

Now we will investigate the question when these preradicals coincide: rU = rU .
For that we introduce the following notion.

Definition 1. A module RU will be called weakly projective if the functor
H = HomR(U, -) : R-Mod → A b preserves the exactness of the short exact se-
quences of the form:

0→ rU(M)
i
−→
⊆

M
π
−−→
nat

M /rU(M)→ 0

for every module M ∈ R-Mod, where i is the inclusion and π is the natural epimor-
phism.

In other words, RU is weakly projective if for every M ∈ R-Mod and every R-
morphism f : U → M /rU(M) there exists an R-morphism g : U → M such that
πg = f (π is natural morphism):

RU
g

}}{
{

{
{

{
f

%%KKKKKKKKKK

M
π

// M
/

ru(M)

Fig. 1

Proposition 2.4. For the module RU the following conditions are equivalent:

1) rU = rU ;
2) rU is an (idempotent) radical ;

3) Gen(RU) = (KerH)
↑

(= {RU}
↓↑

);
4) RU is a weakly projective module.

Proof. 1) ⇐⇒ 2) ⇐⇒ 3) follows from Proposition 2.3.
2) ⇒ 4). If rU is a radical, then for every M ∈ R-Mod we have:

M /rU(M) ∈ P(rU) = P(rU) = KerH,
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therefore HomR(U,M) / rU (M) = 0 and that implies immediately that RU is weakly
projective (f = 0⇒ g = 0).
4) ⇒ 2). Let RU be weakly projective and we verify that rU(M /rU(M)) = 0 for
every M ∈ R-Mod. Consider an arbitrary R-morphism f : U → M /rU(M). From
condition 4) it follows that there exists a morphism g : U → M such that π g = f .
Since Im g ⊆ rU(M) by definition of rU(M), we have π g = 0 and f = 0. So
HomR(U,M / rU(M)) = 0, i.e. rU(M /rU(M)) = 0 and rU is a radical.

Examples. 1) If RU is a projective module, then it is weakly projective, therefore
rU = rU .
2) If RU is a generator of R-Mod, then Gen (RU) = R-Mod, so rU = rU = 1, where
1 is the greatest trivial preradical of R-Mod (1(M) = M for every M ∈ R-Mod).

More strong than the conditions of Proposition 2.4 is the request that the idem-
potent preradical rU must be a cotorsion. To indicate when such situation takes
place we need the

Definition 2 [1]. A module RU will be called cohereditary below if the class {RU}
↓

is cohereditary (i.e. a TTF-class).

This means that if HomR(U,M) = 0 for a module M ∈ R-Mod, then
HomR(U,M/N) = 0 for every submodule N ⊆M .

From Proposition 2.4 and definitions follows

Proposition 2.5. For a module RU the following conditions are equivalent:

1) rU is a cotorsion;

2) rU = rU and the class P(rU) = KerH is cohereditary ;

3) RU is weakly projective and cohereditary below. �

It is obvious that if the module RU is projective, then rU is a cotorsion.

3 Preradicals defined by trace-ideal I = TraceU (RR)

For a fixed module U ∈ R-Mod we consider its trace in RR:

I = rU(RR) =
∑

f :U→R

Im f,

which is a two-sided ideal of R. It defines the following three classes of modules
(see [6]):

IT = {M ∈ R-Mod | IM = M},

IF = {M ∈ R-Mod |m ∈M, Im = 0⇒ m = 0},

A(I) = {M ∈ R-Mod | IM = 0},
i.e. IT is the class of I-accessible modules, IF is the class of modules without nonzero
elements annihilated by I, and A(I) consists of the modules annihilated by I.

It is easy to verify the following properties of these classes.
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Proposition 3.1. 1) IT is a torsion class;

2) IF is a torsion free and stable class;

3) A(I) is closed under submodules, homomorphic images and direct products (hence

also under direct sums). So the class A(I) is simultaneously a pretorsion and a

pretorsionfree class. �

Therefore the class IT defines an idempotent radical rI such that:

R(rI)
def
== IT,

while the class IF determines a torsion rI such that:

P(rI)
def
== IF,

which is the ideal torsion, defined by I (see [4]).

The class A(I) as pretorsion (and hereditary) class determines a pretorsion r(I)

by the rule:

R(r(I))
def
== A(I).

For every M ∈ R-mod we have:

r(I)(M) = {m ∈M | I ·m = 0}.

From the other hand, A(I) as pretorsionfree (and cohereditary) class defines the
cohereditary radical r(I) such that:

P(r(I))
def
== A(I),

which acts by the rule:

r(I)(M) = IM, M ∈ R-Mod (see [2, 4, 6]).

Thus by definitions the idempotent radical rI has the associated classes:

(

I
T = R(rI), IT

↓

= P(rI)
)

,

while the torsion rI is defined by the classes:

(

I
F

↑

= R(rI), IF = P(rI)
)

.

In continuation we will indicate a series of relations between the classes of mod-
ules mentioned above. They imply the respective connexions between the preradicals
defined by these classes.
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Proposition 3.2. 1) A(I)
↑

= IT; 2) A(I)
↓

= IF.

Proof. 1) (⊆). Let M ∈ A(I)
↑

. Since M/IM ∈ A(I), we have HomR(M,M/IM) =
0, hence M/IM = 0 and M = IM .

(⊇). Let M ∈ IT. Then for every N ∈ A(I) and f : M → N we have
f(M) = f(IM) = I · f(M) ⊆ I ·N = 0, so f = 0. Thus HomR(M,N) = 0 for every

N ∈ A(I), i.e. M ∈ A(I)
↑

.

2) (⊆). Let M ∈ A(I)
↓

. If m ∈ M and I ·m = 0, then since Rm ∈ A(I) we
have HomR(Rm,M) = 0, therefore Rm = 0 and m = 0. This means that M ∈ IF.

(⊇). Let M ∈ IF. We consider an arbitrary module N ∈ A(I) and an R-
morphism f : N →M . For every element n ∈ N we have:

I · f(n) = f(I · n) ⊆ f(IN) = f(0) = 0,

and from the assumption M ∈ IF now follows f(n) = 0, thus f = 0. In that way

HomR(M,N) = 0 for every N ∈ A(I) and so M ∈ A(I)
↓

.

From the relations of Proposition 3.2 the corresponding connexions between
the preradicals defined by ideal I follow. Namely, from IT = A(I)

↑

we obtain

IT
↓

= A(I)
↑↓

, therefore the class IT
↓( def

== P(rI)
)

is the least torsionfree class con-

taining A(I)
( def

== P(r(I))
)

.

Similarly, from IF = A(I)
↓

we have IF
↑

= A(I)
↓↑

, therefore IF
↑ ( def

== R(rI)
)

is

the least torsion class containing A(I)
( def

== R(r(I))
)

. Translating this facts in the
language of preradicals, associated to these classes, we obtain the following results.

Proposition 3.3. 1) rI ≤ r(I) and rI is the greatest idempotent radical contained

in r(I).
2) rI ≥ r(I) and rI is the least idempotent radical containing r(I). �

Thus we have two pairs of ”near” preradicals: rI ≤ r(I) and rI ≥ r(I). It is
natural to search the conditions of its coincidence.

Proposition 3.4. The following conditions are equivalent:

1) rI = r(I);
2) r(I) is idempotent ;

3) A(I) = IT
↓

;
4) rI = r(I);
5) r(I) is a radical ;

6) A(I) = IF
↑

;
7) I = I2.

Proof. Consists in the direct verification (see, for example,[4], p. 22).

If the equivalent conditions of Proposition 3.4 are fulfilled, then A(I) is TTF-
class, rI is a cotorsion defined by the classes

(

I
T,A(I)

)

and rI is a jansian torsion
with the associated classes (A(I), IF).
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4 Relations between preradicals defined by H and preradicals
defined by I

In this section we will show that there exists some remarkable connexions between
the preradicals rU , rU of Section 2 and preradicals defined by ideal I (Section 3). For
that we clarify firstly the relations between the respective classes of modules. We
start by the following remark.

Lemma 4.1. For every module M ∈ R-Mod we have IM ⊆ rU(M) (where RU is a

fixed module and I = rU(RR)).

Proof. We must verify that
(

∑

f :U→R

Im f
)

M ⊆
∑

f :U→M

Im g. For every f : U → R

and m ∈M we have the R-morphism

g(f,m) : U →M, g(f,m)(u)
def
== f(u) ·m, u ∈ U.

Since Im g(f,m) = (Im f) · m ⊆
∑

f :U→M

Im g = rU(M) for every f : U → M and

m ∈M , we obtain IM ⊆ rU(M).

Lemma 4.2. Ker H ⊆ A(I)
(

i.e. P(rU) ⊆ P
(

r(I)
)

, hence rU ≥ r(I)
)

.

Proof. Let M ∈ KerH, i.e. HomR(U,M) = 0. Then rU(M) =
∑

f :U→M

Im g = 0 and

by Lemma 4.1 we have IM ⊆ rU(M) = 0, so M ∈ A(I).

Lemma 4.3. IT ⊆ Gen(RU)
(

i.e. R(rI) ⊆ R(rU), hence rI ≤ rU
)

.

Proof. Let M ∈ IT, i.e. IM = M . From Lemma 4.1 we have M = IM ⊆ rU(M),
thus M = rU(M). Therefore, M ∈ R(rU) = Gen(RU).

In a schematic form the relations between the preradicals indicated above can
be presented as follows:
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rI

rU

r(I)

rU

q

q

pq

q

Fig.2

where the arrow r1 ← r2 means r1 ≤ r2.
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In the Propositions 2.4 and 3.4 the criterions of coincidences
rU = rU and rI = rI are indicated. Now we will consider the case when all four
preradicals of Fig. 2 coincide.

Proposition 4.4. The following conditions are equivalent:

1) rU = rI (i.e. Gen (RU) = IT);

2) rU = rI (i.e. Ker H)
↑

= IT);

3) rU = r(I) (i.e. Ker H = A(I));

4) rU = r(I);

5) I U = U .

Proof. We will prove that every condition 1)–4) implies the coincidence of all four
preradicals.

1) If rU = rI , then since rI is a radical we have that rU is a radical, so rU = rU

(Proposition 2.4). Therefore rI = rU and rI = r(I) = rU .

2) If rU = rI then is obvious that all preradicals coincide.

3) If rU = r(I), then since rU is idempotent, follows that r(I) is idempotent,
hence rI = r(I) (Proposition 3.4) and then rU = rI .

4) If rU = r(I), then rU is a radical and r(I) is idempotent, therefore rU = rU

and rI = r(I).
From the previous arguments follows that the conditions 1)–4) are equivalent.
1) ⇒ 5). If rU = rI , then R(rU) = R(rI), i.e. Gen (RU) = IT. Since

RU ∈ Gen (RU), we have RU ∈ IT, i.e. I U = U .

5) ⇒ 1). Let I U = U , i.e. RU ∈ IT. Then Gen (RU) ⊆ IT (because IT is a
torsion class). From Lemma 4.3 we obtain Gen (RU) = IT, thus rU = rI.

Corollary 4.5. If I U = U , then module RU is weakly projective and I = I2.

Proof. The conditions of Proposition 4.4 implies in particular rU = rU and r(I) = rI ,
therefore RU is weakly projective (Proposition 2.4) and I = I2 (Proposition 3.4).

Remark. In the previous study do not participate the pair of preradicals (rI , r(I)). In
general case the relation between preradicals rU and rI can be expressed by inclusion
P(rU) ⊆ R(rI) (i.e. Ker H ⊆ A(I)

↓↑

). In the case when I U = U (Proposition 4.4)

we have P(rU) = R(rI), since then Ker H = A(I) = A(I)
↓↑

.

In conclusion we totalize by the following scheme the relations between all classes
of modules studied above (Fig. 3).
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Fig. 3.
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This general situation will be completed after the study of preradicals, associated
to the functor of tensor product T , adding two preradicals tV and t

V
(dual to rU

and rU), connected with rI and r(I) similar as the pairs (rU , rU) and (rI , r(I)) are
connected (see Fig. 2).
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