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On stability and quasi-stability radii for a vector

combinatorial problem with a parametric

optimality principle
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Abstract. A vector combinatorial linear problem with a parametric optimality
principle that allows us to relate the well-known choice functions of jointly-extremal
and Pareto solution is considered. A quantitative analysis of stability for the set of
generalized efficient trajectories under the independent perturbations of coefficients
of linear functions is performed. Formulas of stability and quasi-stability radii are
obtained in the l∞-metric. Some results published earlier are derived as corollaries.
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1 Problem statement

Let us consider a typical vector (n-criteria) combinatorial problem. Assume
that, on the system of subsets (trajectories) T ⊆ 2Nm , |T | ≥ 2, Nm = {1, 2, . . . ,m},
m ≥ 2, a vector criterion

f(t, A) = (f1(t, A), f2(t, A), . . . , fn(t, A)) → min
t∈T

is defined. Here

fi(t, A) =
∑

j∈t

aij, i ∈ Nn, n ≥ 1

are the linear partial criteria, where A = [aij ]n×m ∈ Rn×m, n,m ∈ N. Assume that
fi(∅, A) = 0.

Now we introduce the binary relation ≻, in the space Rd of any dimension d ∈ N,
which generates the Pareto optimality principle [1], assuming that, for any different
vectors y = (y1, y2, . . . , yd) and y′ = (y′1, y

′
2, . . . , y

′
d) of the space the formula

y ≻ y′ ⇔ y ≥ y′ & y 6= y′

holds.

Let s ∈ Nn, Nn =
⋃

r∈Ns
Jr be the partitioning of the set Nn into s nonempty

nonintersecting groups, i. e. Jr 6= ∅, r ∈ Ns; p 6= q ⇒ Jp ∩ Jq = ∅. For this
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partitioning define the set T n(A, J1, J2, . . . , Js) of generalized efficient, or, in other
words of (J1, J2, . . . , Js)-efficient trajectories according to the formula

T n(A, J1, J2, . . . , Js) = {t ∈ T : ∃k ∈ Ns ∀t′ ∈ T (fJk
(t, A)≻fJk

(t′, A))},

where ≻ denotes the negation of relation ≻, fJk
(t, A) is the projection of the vector

f(t, A) onto the coordinate axes of the space Rn with the numbers of group Jk.

It is evident that Nn-efficient trajectory t ∈ T n(A,Nn) (s = 1) is a Pareto
optimal trajectory on the set of trajectories T . Therefore, it is easy to see that the
set of Nn-efficient trajectories T n(A,Nn) is Pareto set

Pn(A) = {t ∈ T : ∀t′ ∈ T (f(t, A)≻f(t′, A))}.

Clearly, in another extreme case, where s = n, the set of trajectories T n(A, {1},
{2}, . . . , {n}) is the set of jointly-extremal trajectories

Cn(A) = {t ∈ T : ∃k ∈ Nn ∀t′ ∈ T (fk(t, A) ≤ fk(t
′, A))}

(see, for example, [2, 3]).

In this context, by the parametrization of the principle of optimality we mean
introducing a characteristic of binary relation of preference that allows us to relate
the well-known choice functions of jointly-extremal and Pareto solution.

Denote the vector problem of finding T n(A, J1, J2, . . . , Js) by Zn(A, J1, J2, . . . , Js).
It is evident that T 1(A,N1) is the set of optimal trajectories of the scalar (single
criterion) linear combinatorial problem Z1(A,N1), where A ∈ Rm, in scheme of
which many extremal graph, boolean programming and scheduling theory problems
are put in.

2 Stability radius

Following [4–10], the stability radius of Zn(A, J1, J2, . . . , Js) is the number

ρn
1 (A, J1, J2, . . . , Js) =

{
supΞ1 if Ξ1 6= ∅,

0 in other cases,

where Ξ1 = {ε > 0 : ∀B ∈ Ω(ε) (T n(A+B, J1, J2, . . . , Js) ⊆ T n(A, J1, J2, . . . , Js))},
Ω(ε) = {B ∈ Rn×m : ||B|| < ε}, ||B|| = max{|bij | : (i, j) ∈ Nn × Nm},
B = [bij ]n×m.

In other words, the stability radius of Zn(A, J1, J2, . . . , Js) determines the limit-
ing level of perturbations of elements of A of payoff function in the
l∞-metric, for which new (J1, J2, . . . , Js)-efficient trajectories do not appear. Obvi-
ously, Zn(A, J1, J2, . . . , Js) is stable and the stability radius is infinite if the equality
T n(A, J1, J2, . . . , Js) = T holds. If the set

T n(A, J1, J2, . . . , Js) := T \ T n(C, J1, J2, . . . , Js)
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is nonempty, then we say that Zn(A, J1, J2, . . . , Js) is non-trivial.

For any nonempty set J ⊆ Nn we introduce the notation

P (A, J) = {t ∈ T : ∀t′ ∈ T (fJ(t, A)≻fJ(t′, A))}.

Then we have

P (A,Nn) = Pn(A),

T n(A, J1, J2, . . . , Js) = {t ∈ T : ∃k ∈ Ns (t ∈ P (A, Jk))}. (1)

Suppose

∆(t, t′) = |(t ∪ t′) \ (t ∩ t′)|,

gi(t, t
′, A) = fi(t, A) − fi(t

′, A).

Henceforth we will use the following evident inequality

gi(t, t
′, A) ≤ ||A||∆(t, t′). (2)

Theorem 1. For the stability radius ρn
1 (A, J1, J2, . . . , Js) of the nontrivial problem

Zn(A, J1, J2, . . . , Js), n ≥ 1, s ≥ 1, the following formula is valid

ρn
1 (A, J1, J2, . . . , Js) = min

k∈Ns

min
t∈T n(A,J1,J2,...,Js)

max
t′∈T n(A,J1,J2,...,Js)

min
i∈Jk

gi(t, t
′, A)

∆(t, t′)
. (3)

Proof. Note that due to the nontriviality of Zn(A, J1, J2, . . . , Js) the set
T n(A, J1, J2, . . . , Js) is nonempty.

Let us introduce the notations: ρ1 and ϕ are accordingly the left-hand and the
right-hand sides of equality (3).

It is easy to see that ϕ ≥ 0. At first we prove the inequality ρ1 ≥ ϕ. If ϕ = 0,
then this inequality is obvious. Let ϕ > 0, B ∈ Ω(ϕ), t ∈ T n(A, J1, J2, . . . , Js). Let
us show that t ∈ T n(A + B, J1, J2, . . . , Js).

It follows directly from the definition of ϕ that for any k ∈ Ns and
t ∈ T n(A, J1, J2, . . . , Js) there exists trajectory t∗ ∈ T n(A, J1, J2, . . . , Js) such that
for any indices i ∈ Jk the inequality gi(t, t

∗, A) ≥ ϕ∆(t, t∗) holds.

Hence, taking into account (2), we derive

gi(t, t
∗, A + B) = gi(t, t

∗, A) + gi(t, t
∗, B) ≥ ϕ∆(t, t∗) − ||B||∆(t, t∗) > 0, i ∈ Jk.

Therefore we have fJk
(t, A + B) ≻ fJk

(t∗, A + B), k ∈ Ns, i. e.
t ∈ T n(A + B, J1, J2, . . . , Js).

Thus, the formula

∀B ∈ Ω(ϕ) (T n(A + B, J1, J2, . . . , Js) ⊆ T n(A, J1, J2, . . . , Js))

holds, and as consequence, ρ1 ≥ ϕ.
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Now let us show that ρ1 ≤ ϕ. According to the definition of ϕ there exist k ∈ Ns

and t0 ∈ T n(A, J1, J2, . . . , Js) such that for any trajectory t′ ∈ T n(A, J1, J2, . . . , Js)
there exists an index p = p(t′) ∈ Jk such that

gp(t
0, t′, A) ≤ ϕ∆(t0, t′).

Then, assuming ε > ϕ, B0 = [b0
ij ]n×m ∈ Ω(ε), where

b0
ij =






α if i ∈ Jk, j /∈ t0,

−α if i ∈ Jk, j ∈ t0,

0 in other cases,

ϕ < α < ε,

and using (2), we derive

gp(t
0, t′, A + B0) = gp(t

0, t′, A) + gp(t
0, t′, B0) ≤ ϕ∆(t0, t′) − α∆(t0, t′) < 0,

i. e. we have

∀ε > ϕ ∃B0 ∈ Ω(ε) ∀t′ ∈ T n(A, J1, J2, . . . , Js) (fJk
(t0, A + B0)≻fJk

(t′, A + B0)).
(4)

Consider two possible cases.

Case 1. t0 ∈ T n(A + B0, J1, J2, . . . , Js). Then, using the inclusion t0 ∈
T n(A, J1, J2, . . . , Js), we derive

∀ε > ϕ ∃B0 ∈ Ω(ε) (T n(A + B0, J1, J2, . . . , Js) 6⊆ T n(A, J1, J2, . . . , Js)). (5)

Case 2. t0 ∈ T n(A + B0, J1, J2, . . . , Js). Then t0 /∈ P (A + B0, Jk) and due
to the external stability [11] of Pareto set P (A + B0, Jk) there exists a trajectory
t∗ ∈ P (A + B0, Jk), such that fJk

(t0, A + B0) ≻ fJk
(t∗, A + B0). Hence, according

to (4) we have t∗ ∈ T n(A, J1, J2, . . . , Js) and taking into account (1) we obtain
t∗ ∈ T n(A + B0, J1, J2, . . . , Js). Therefore formula (5) holds.

Summarizing these two cases, we conclude that for any ε > ϕ we have ρ1 < ε.
Consequently, ρ1 ≤ ϕ.

Theorem 1 implies the following results known earlier.

Corollary 1 [5]. For the stability radius of the nontrivial problem Zn(A,Nn) with

Pareto optimality principle the following formula

ρn
1 (A,Nn) = min

t∈P n(A)
max

t′∈P n(A)
min
i∈Nn

gi(t, t
′, A)

∆(t, t′)
(6)

holds, where Pn(A) = T \ Pn(A).
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Corollary 2 [12]. For the stability radius of the nontrivial problem Zn(A, {1},
{2}, . . . , {n}) with jointly-extremal optimality principle the following formula

ρn
1 (A, {1}, {2}, . . . , {n}) = min

i∈Nn

min
t∈Cn(A)

max
t′∈Cn(A)

gi(t, t
′, A)

∆(t, t′)
(7)

holds, where Cn(A) = T \ Cn(A).

The partial case of the formulas (6) and (7) is the well-known formula of the
stability radius of the scalar (n = 1) linear trajectory problem [4,6].

3 Quasi-stability radius

As usual (see [5, 7, 13, 14]), the quasi-stability radius of Zn(A, J1, J2, . . . , Js) is
defined as

ρn
2 (A, J1, J2, . . . , Js) =

{
supΞ2 if Ξ2 6= ∅,

0 in other cases,

where

Ξ2 = {ε > 0 : ∀B ∈ Ω(ε) (T n(A, J1, J2, . . . , Js) ⊆ T n(A + B, J1, J2, . . . , Js))}.

Thus, the quasi-stability radius of Zn(A, J1, J2, . . . , Js) is the limit level of inde-
pendent perturbations of elements of A, for which the generalized efficient trajecto-
ries of initial problem do not disappear.

Theorem 2. For the quasi-stability radius ρn
2 (A, J1, J2, . . . , Js) of the problem

Zn(A, J1, J2, . . . , Js), n ≥ 1, s ≥ 1, the following formula is valid

ρn
2 (A, J1, J2, . . . , Js) = min

t′∈T n(A,J1,J2,...,Js)
max
k∈Ns

min
t∈T\{t′}

max
i∈Jk

gi(t, t
′, A)

∆(t, t′)
. (8)

Proof. Let us introduce the notations: ρ2 and ξ are accordingly the left-hand and
the right-hand sides of equality (8).

It is easy to see that ξ ≥ 0. At first we prove the inequality ρ2 ≥ ξ. If ξ = 0,
then this inequality is obvious. Let ξ > 0, B ∈ Ω(ξ).

It follows from the definition of ξ that for any trajectory t′ ∈ T n(A, J1, J2, . . . , Js)
there exists k ∈ Ns such that for any trajectory t ∈ T \{t′} there exists p = p(t) ∈ Jk

such that
gp(t, t

′, A) ≥ ξ∆(t, t′).

Hence, taking into account (2), we derive

gp(t, t
′, A + B) = gp(t, t

′, A) + gp(t, t
′, B) ≥ ξ∆(t, t′) − ||B||∆(t, t′) > 0.

Therefore, we have fJk
(t′, A + B)≻fJk

(t, A + B). Thus, we have proved the
formula

∀B ∈ Ω(ξ) ∀t′ ∈ T n(A, J1, J2, . . . , Js) ∃k ∈ Ns ∀t ∈ T (fJk
(t′, A+B)≻fJk

(t, A+B)),
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which implies

∀B ∈ Ω(ξ) (T n(A, J1, J2, . . . , Js) ⊆ T n(A + B, J1, J2, . . . , Js)),

and therefore the inequality ρ2 ≥ ξ holds.

Now we show that ρ2 ≤ ξ. According to the definition of ξ there exists a
trajectory t0 ∈ T n(A, J1, J2, . . . , Js) such that for any k ∈ Ns there exists a trajectory
t∗ ∈ T \ {t0} such that

∀i ∈ Jk (gi(t
∗, t0, A) ≤ ξ∆(t∗, t0)).

Then, assuming ε > ξ, B̂ = [̂bij ]n×m ∈ Ω(ε), where

b̂ij =

{
α if i ∈ Nn, j ∈ t0,

−α if i ∈ Nn, j /∈ t0,

ξ < α < ε,

and taking into account (2), we derive

gi(t
∗, t0, A + B̂) = gi(t

∗, t0, A) + gi(t
∗, t0, B̂) ≤ ξ∆(t∗, t0) − α∆(t∗, t0) < 0, i ∈ Jk,

i. e. fJk
(t0, A + B̂) ≻ fJk

(t∗, A + B̂). Thus, we have proved the following formula

∀ε > ξ ∃B̂ ∈ Ω(ε) ∀k ∈ Ns ∃t∗ ∈ T (fJk
(t0, A + B̂) ≻ fJk

(t∗, A + B̂)),

which implies

T n(A, J1, J2, . . . , Js) 6⊆ T n(A + B̂, J1, J2, . . . , Js).

It follows that the quasi-stability radius ρ2 does not exceed ξ.

Corollary 3 [13]. For the quasi-stability radius of the problem Zn(A,Nn) with

Pareto optimality principle the following formula is valid

ρn
2 (A,Nn) = min

t′∈P n(A)
min

t∈T\{t′}
max
i∈Nn

gi(t, t
′, A)

∆(t, t′)
.

Corollary 4. For the quasi-stability radius of the problem Zn(A, {1}, {2}, . . . , {n})
with jointly-extremal optimality principle the following formula is valid

ρn
2 (A, {1}, {2}, . . . , {n}) = min

t′∈Cn(A)
max
i∈Nn

min
t∈T\{t′}

gi(t, t
′, A)

∆(t, t′)
.

In conclusion we note that the analogous quantitative characteristics of differ-
ent stability types of discrete and game theory problems with another kinds of
parametrization of optimality principles were considered in the works [8–10,14–16].
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Republicii Moldova, Matematica, 2006, No. 3(52), 17–26.

[11] Podinovskii V.V., Nogin V.D. Pareto-optimal solutions of multiobjective problems. Moscow,
Nauka, 1982 (in Russian).

[12] Bukhtoyarov S.E., Emelichev V.A. Stability measure of a vector linear trajectory prob-
lem with jointly-extremal optimality principle. Vestnik BGU, Seriya 1, 2002, No. 3, 84–86
(in Russian).

[13] Emelichev V.A., Kravtsov M.K., Podkopaev D.P. On the quasistability of trajectory
problems of vector optimization. Mathematical Notes, 1998, 63, No. 1, 19–24.

[14] Emelichev V.A., Kuzmin K.G. Quasi-stability measure of a vector combinatorial problem
with a parametric optimality principle in the l1-metric. Izvestiya Vuzov, Matematika, 2005,
No. 12, 3–10 (in Russian).

[15] Bukhtoyarov S.E., Emelichev V.A., Stepanishina Yu.V. Stability of discrete vector prob-
lems with the parametric principle of optimality. Cybernetics and Systems Analysis, 2003, 39,
No. 4, 604–614.

[16] Emelichev V.A., Kuzmin K.G. Finite cooperative games with a parametric concept of equilib-
rium under uncertainty conditions. Journal of Computer and Systems Sciences International,
2006, 45, No. 2, 276–281.

Belarusian State University
av. Nezavisimosti, 4, 220030 Minsk
Belarus

E-mail: emelichev@bsu.by; evgeny gurevsky@tut.by;
platonov@scnsoft.com

Received April 03, 2009


