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On stability and quasi-stability radii for a vector
combinatorial problem with a parametric
optimality principle
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Abstract. A vector combinatorial linear problem with a parametric optimality
principle that allows us to relate the well-known choice functions of jointly-extremal
and Pareto solution is considered. A quantitative analysis of stability for the set of
generalized efficient trajectories under the independent perturbations of coefficients
of linear functions is performed. Formulas of stability and quasi-stability radii are
obtained in the l.-metric. Some results published earlier are derived as corollaries.
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1 Problem statement

Let us consider a typical vector (n-criteria) combinatorial problem. Assume
that, on the system of subsets (trajectories) T' C 2V¥m |T'| > 2, N,, = {1,2,...,m},
m > 2, a vector criterion

f(t7A) = (fl(t7A)7f2(t7A)7 ce 7fn(t7A)) — min

teT

is defined. Here
fi(t,A) = Zai]’, 1€ Ny, n>1
jet

are the linear partial criteria, where A = [a;j]nxm € R™™, n,m € N. Assume that
fi(0,A) = 0.

Now we introduce the binary relation >, in the space R? of any dimension d € N,
which generates the Pareto optimality principle [1], assuming that, for any different
vectors y = (y1,¥2,.--,Ya) and ¥ = (y],v5, ..., y,) of the space the formula

y-y o y>y &y#y

holds.
Let s € N,, N,, = UTeNS J be the partitioning of the set IV,, into s nonempty
nonintersecting groups, i. e. J. # 0, r € Ng; p # ¢ = J,NJ; = 0. For this
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partitioning define the set T"(A, Jy, Jo, ..., Js) of generalized efficient, or, in other
words of (Jy, Jo, ..., Js)-efficient trajectories according to the formula

TYA, Ji, Joy..., Js) ={teT: ke N; V' €T (fs (t,A)=fs. (t',A)},

where > denotes the negation of relation >, f; (¢, A) is the projection of the vector
f(t, A) onto the coordinate axes of the space R"™ with the numbers of group Jj.

It is evident that N,-efficient trajectory ¢t € T"(A,N,) (s = 1) is a Pareto
optimal trajectory on the set of trajectories T. Therefore, it is easy to see that the
set of Ny-efficient trajectories T"(A, N,,) is Pareto set

PYA) ={teT: Y eT (f(t,A=f(,A)}.

Clearly, in another extreme case, where s = n, the set of trajectories T™(A, {1},
{2},...,{n}) is the set of jointly-extremal trajectories

C"A)={teT: Ike N, V' eT (fi(t,A) < fr(t',A))}

(see, for example, [2,3]).

In this context, by the parametrization of the principle of optimality we mean
introducing a characteristic of binary relation of preference that allows us to relate
the well-known choice functions of jointly-extremal and Pareto solution.

Denote the vector problem of finding 7" (A, Ji, Jo, ..., Js) by Z™(A, J1, Ja, ..., Js).
It is evident that T (A, Ny) is the set of optimal trajectories of the scalar (single
criterion) linear combinatorial problem Z'(A, N;), where A € R™, in scheme of
which many extremal graph, boolean programming and scheduling theory problems
are put in.

2 Stability radius

Following [4-10], the stability radius of Z"(A, J1, J2,...,Js) is the number

= if =
P?(A,Jl,JQ,...,JS):{SUP 1 if B #£0,

0 in other cases,

where = = {E >0:VBe Q(E) (T”(A-i—B, Ji,Joy ., Js) - Tn(A, Ji,Joy ., Js))},
Q) = {B € R™™ : |IB|| < ¢}, ||BI| = max{lby| : (i) € No x N},
B = [bm]nxm

In other words, the stability radius of Z™(A, J1, Ja, ..., Js) determines the limit-
ing level of perturbations of elements of A of payoff function in the
loo-metric, for which new (Jy, Ja, ..., Js)-efficient trajectories do not appear. Obvi-
ously, Z"(A, Jy, Ja,...,Js) is stable and the stability radius is infinite if the equality
T(A, J1,Ja,...,Js) =T holds. If the set

W(“47 J17J27"'7JS) = T\Tn(ca J17J27"'7JS)
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is nonempty, then we say that Z"(A, Jy, Jo, ..., Js) is non-trivial.

For any nonempty set J C N,, we introduce the notation
P(A7 J) = {t eT: Vel (fJ(th);fJ(tlvA))}‘

Then we have
P(A,N,) = P"(A),

T™A,Ji, Jay..., Js) ={t€T: Ike N, (te P(A,Jp)). (1)

Suppose
At t) =|tut)\ (Ent),

gi(tvt/7A) = fz(th) - fi(tla A)

Henceforth we will use the following evident inequality
gi(t,t', A) < ||A[JA,1). (2)

Theorem 1. For the stability radius p{ (A, Ji, J2,...,Js) of the nontrivial problem
ZMA Jy, Jo, ..., Js), n > 1, s > 1, the following formula is valid
gl(t7 t,7 A)

Pr(A Ji,Ja, ..., Js) = min _ min max min ——————=. (3)
ey KENs (€T (A1 Jaynds) VET™M (AL T2y ds) (€0, A(t, 1)

Proof. Note that due to the nontriviality of Z™(A,Jy,J2,...,Js) the set
T"(A, J1, Ja,. .., Js) is nonempty.

Let us introduce the notations: p; and ¢ are accordingly the left-hand and the
right-hand sides of equality (3).

It is easy to see that ¢ > 0. At first we prove the inequality p; > ¢. If ¢ = 0,
then this inequality is obvious. Let ¢ > 0, B € Q(¢), t € T*(A, J1, Jo, ..., Js). Let
us show that t € T"(A+ B, Jy, Ja,. .., Js).

It follows directly from the definition of ¢ that for any £k € Ng and
t € Tn(A,Jy, Ja,...,Js) there exists trajectory t* € T™(A, Jy, Ja,...,Js) such that
for any indices i € Ji the inequality g;(t,t*, A) > pA(t, t*) holds.

Hence, taking into account (2), we derive

gi(t,t*, A+ B) = g;(t,t*, A) + ¢i(t, t*, B) > @A(t, t*) — || B||A(t,t*) > 0, i € Jy.
Therefore we have fr,t,A+ B) = f;,(t""A+ B), k € Ns; ie
teT(A+ B, Ji,Jo, ..., Js).
Thus, the formula

VB € Q((,D) (Tn(A—I—B,Jl,JQ,...,JS) - Tn(A, Jl,JQ,...,JS))

holds, and as consequence, p; > .
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Now let us show that p; < ¢. According to the definition of ¢ there exist k € N
and t° € T"(A, J1, Jo, ..., Js) such that for any trajectory t' € T"(A, J1, Ja, ..., Js)
there exists an index p = p(t') € Ji such that

gp(t0, 1", A) < oA, 1)).

Then, assuming € > ¢, B® = [b?

ijlnxm € Q(e), where

a if ieJy, j¢t,

b = —a if i€ Jy, jEL°,
0 in other cases,
p<a<e,

and using (2), we derive
gp(t07 tla A + BO) = gp(toa tla A) + gp(toa t,7 BO) < QOA(t()? t/) - aA(toa t,) < 07
i.e. we have

Ve > 3B € Qe) V' € T(A, Ji, Joy...,Js) (f1,(t°% A+ BY)=f; (t', A+ B?)).
(4)
Consider two possible cases.

Case 1. t° ¢ T"(A + B° J1,J,...,J5). Then, using the inclusion t° €
T(A, J1, Ja,. .., Js), we derive

Ve > AB € Q(e) (T™(A+B° J1,Ja,...,Js) TTY(A, Ji, Ja,...,Js).  (5)

Case 2. t” € T"(A+ B° Jy,Jo,...,J5). Then t° ¢ P(A+ BY J;) and due
to the external stability [11] of Pareto set P(A + B°,.J;) there exists a trajectory
t* € P(A+ BY, J), such that fj, (t°, A+ BY) = f;, (t*, A+ BY). Hence, according
to (4) we have t* € T™(A,Jy,Ja,...,Js) and taking into account (1) we obtain
t* € T"(A+ B°, J1, Ja,...,Js). Therefore formula (5) holds.

Summarizing these two cases, we conclude that for any € > ¢ we have p; < e.
Consequently, p1 < ¢. O

Theorem 1 implies the following results known earlier.

Corollary 1 [5]. For the stability radius of the nontrivial problem Z"(A, N,) with
Pareto optimality principle the following formula

. . gi(tvt/7A)
PL(A, Nn) te%(nA) t’eHIlD%}((A) zrélll\fg A(t,t') o

holds, where P"(A) =T \ P"(A).
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Corollary 2 [12]. For the stability radius of the nontrivial problem Z™(A,{1},
{2},...,{n}) with jointly-extremal optimality principle the following formula

. . gi(t7t/7A)
(A {1}, {2},... = NS
P1 ( ’ { }7 { }7 ’ {n}) ZIQJIVE tE%I(IA) t’EC?;(A) A(t, t/) (7)

holds, where C™(A) =T \ C™(A).

The partial case of the formulas (6) and (7) is the well-known formula of the
stability radius of the scalar (n = 1) linear trajectory problem [4, 6].

3 Quasi-stability radius

As usual (see [5,7,13,14)), the quasi-stability radius of Z™(A, Jy,Ja,...,Js) is
defined as
sup=Zy if Zg # ),

(A, J1, Jo, ..o Jg) =
pa bz ) {0 in other cases,

=9 = {6 >0: VBe€e 9(6) (Tn(A, Ji, Jo, .. .,Js) - Tn(A + B, Ji, Jo, .. ,JS))}

Thus, the quasi-stability radius of Z"(A, Ji, Jo, ..., Js) is the limit level of inde-
pendent perturbations of elements of A, for which the generalized efficient trajecto-
ries of initial problem do not disappear.

Theorem 2. For the quasi-stability radius p5(A,Ji,Ja,...,Js) of the problem
Z"(A, Ji,Jo, ... Js), n > 1, s > 1, the following formula is valid

. 9i (t7 t/7 A)
max min e ——

nAyJ,J,.,,,J = : .
Py (A, J1, Jo ) mlll,lJZ...,JS) keNs teT\{t'} iEJf Alt,t)

 vern(A,

(8)

Proof. Let us introduce the notations: ps and £ are accordingly the left-hand and
the right-hand sides of equality (8).

It is easy to see that € > 0. At first we prove the inequality py > &. If & = 0,
then this inequality is obvious. Let £ > 0, B € Q(¢).

It follows from the definition of £ that for any trajectory ¢’ € T™(A, J1, Jo, ..., Js)
there exists k € Ny such that for any trajectory t € T'\ {#'} there exists p = p(t) € Ji
such that

gp(t, ', A) > EA(L, ).

Hence, taking into account (2), we derive
gp(t:t', A+ B) = gp(t ', A) + gy(t, 1, B) = EA(t, 1) — [| BIJA(t,1) > 0.

Therefore, we have f;, (t', A+ B)=f;. (t,A+ B). Thus, we have proved the
formula

VB € Q&) V' € T(A, Ji, Jo, ..., Js) Ik € N, VE €T (f5,(t', A+B)=f,, (t, A+B)),
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which implies
VB € Q(f) (Tn(A, Ji, Jo, .. .,Js) - Tn(A—l- B, Ji,Js,.. .,JS)),

and therefore the inequality po > £ holds.

Now we show that ps < &£ According to the definition of £ there exists a
trajectory t° € T"(A, Jy, Ja, ..., Js) such that for any k € N, there exists a trajectory
t* € T\ {t°} such that

VieJ, (g:i(t",t° A) < EA(t*,tY)).

~

Then, assuming € > &, B= [bijlnxm € (), where

5 a if i €N, jetl,
“ —a if ieN,, j¢to,

E<a<e,

and taking into account (2), we derive

Gi(t* 1% A+ B) = g;(t*,1°, A) + g:(t*,1°, B) < EA(t*, %) — aA(t*,1°) < 0, i € Jy,
ie. fr(t°% A+ E) — fr,(t", A+ E) Thus, we have proved the following formula

Ve>¢ dBeQ(e) Vke N, 3t €T (f5,(t°, A+ B) > f;,(t*, A+ B)),
which implies
T™A, J1, Jay. .., J) T (A+ B, Jh, Jo, ..., J5).
It follows that the quasi-stability radius ps does not exceed &. O

Corollary 3 [13]|. For the quasi-stability radius of the problem Z™(A, N,) with
Pareto optimality principle the following formula is valid

) /
p5(A,Ny) = min min = max M
tePr(A) teT\{t'} i€Nn A(t,t)
Corollary 4. For the quasi-stability radius of the problem Z™(A,{1},{2},...,{n})
with jointly-extremal optimality principle the following formula is valid

. . gi(tvt,7A)
T(A {1}, {2}, = CAN AR
p5 (A, {1},{2},...,{n}) pdiin max min S )

In conclusion we note that the analogous quantitative characteristics of differ-
ent stability types of discrete and game theory problems with another kinds of
parametrization of optimality principles were considered in the works [8-10,14-16].
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