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The cubic differential system with six real invariant

straight lines along three directions

V.Puţuntică, A. Şubă

Abstract. We classify all cubic systems possessing exactly six real invariant straight
lines along three directions taking into account their degree of invariance. We prove
that there are 6 affine different classes of such systems. For every class we carried out
the qualitative investigation in the Poincaré disc.
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1 Introduction

We consider the real polynomial system of differential equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

and the vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

associated to system (1).

Denote n = max{deg(P ), deg(Q)}. If n = 2 (n = 3) then system (1) is called
quadratic (cubic).

An algebraic curve f(x, y) = 0, f ∈ C[x, y] (a function f = exp(g/h); g, h ∈
C[x, y]) is called invariant algebraic curve (invariant exponential function) of the
system (1) if there exists a polynomial Kf ∈ C[x, y], deg(Kf ) ≤ n− 1 such that the
identity holds

X(f) ≡ f(x, y)Kf (x, y). (2)

It should be observed that if in (2) for invariant algebraic curve f(x, y) = 0 we
have Kf (x, y) ≡ fm(x, y)K(x, y) for any natural number m ∈ N and polynomial
K(x, y), then exp(1/f), ..., exp(1/fm) are invariant exponential functions. If, in ad-
dition, the polynomial f(x, y) does not divide K(x, y), then we say that the invariant
algebraic curve f(x, y) = 0 has the degree of invariance equal to m + 1.

Let f ∈ C[x, y] and f = fn1
1 · · · fns

s be its factorization in irreducible factors over
C[x, y]. Then f(x, y) = 0 is an invariant algebraic curve for (1) if and only if each
of the algebraic curves fj(x, y) = 0, j = 1, s, has this property.
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It is easy to see that there is no correlation between the degree of invariance of
the invariant algebraic curve f(x, y) = 0 and the degree of invariance of its factors
fj(x, y) = 0, j = 1, s, in general case. For example, for a system ẋ = x3, ẏ =
y(2x2 + y2), we have that x2 + y2 = 0 is an algebraic curve with the degree of
invariance equal to two, while for each of its factors x± iy = 0, i2 = −1, the degree
of invariance is equal to one. For the system [5]: ẋ = 2x3, ẏ = y(3x2 + y2), each of
the invariant straight lines x± iy = 0 has the degree of invariance equal to two, and
their product x2 + y2 = 0 has the degree of invariance equal to one.

Let f1(x, y) = 0, ..., fk(x, y) = 0 be some irreducibles invariant algebraic curves;
fk+1(x, y) = exp(gk+1/hk+1), ..., fs(x, y) = exp(gs/hs) be some invariant exponential
functions of the system (1) and let λ1, ..., λs be some real or complex numbers. We
compose the function

F = fλ1
1 · · · fλs

s . (3)

If F 6≡ const and X(F ) ≡ 0 (X(F ) ≡ −F (∂P
∂x + ∂Q

∂y )), i.e. F (x, y) = const is a
first integral (F is an integrating factor) for (1), then we say that the system (1) is
Darboux integrable. In order that (3) be a first integral (an integrating factor) for
(1), it is necessary and sufficient that cofactors Kf1 , ...,Kfs

and numbers λ1, ..., λs

verify the identity
λ1Kf1(x, y) + · · · + λsKfs

(x, y) ≡ 0
(

λ1Kf1(x, y) + · · · + λsKfs
(x, y) ≡ −∂P

∂x
− ∂Q

∂y

)

.

Later on, we will be interested in invariant algebraic curve of degree one, that is
invariant straight lines αx + βy + γ = 0.

A set of invariant straight lines can be infinite, finite or empty. Systems with
infinite number of invariant straight lines will not be considered.

At present a great number of works are dedicated to the investigation of poly-
nomial differential systems with invariant straight lines. Here we indicate some
problems and works concerning the polynomial differential system with invariant
straight lines.The problem of estimation for the number of invariant straight lines
which can have a polynomial differential system was considered in [2]; the problem
of coexistence of the invariant straight lines and limit cycles in {[9]: n = 2}; {[4]:
n = 3}; [10]; the problem of coexistence of the invariant straight lines and the sin-
gular points of a center type for the cubic system in [3, 11] An interesting relation
between the number of invariant straight lines and the possible number of directions
for them is established in [1].

The classification of all cubic systems possessing the maximum number of in-
variant straight lines taking into account their multiplicities is given in [5].

The cubic system with exactly eight and exactly seven invariant straight lines
has been studied in [5-7] and with six invariant straight lines along two directions
in [8].

In this paper a qualitative investigation of cubic systems with exactly six real
invariant straight lines along three direction is given.

The main obtained results are shown in the following theorem:
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Theorem. Any cubic system having real invariant straight lines along three direc-
tions with total degree of invariance six via affine transformation and time rescaling
can be written as one of the following six systems. The bifurcation diagrams in the
space of parameters and the phase portraits in the Poincaré disc are presented in the
figures for each system.







ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(y + 1)(−a + dx + (1 − d)y), F ig.1
d(d − 1)(a + d − 1)(a − d + 2) 6= 0; (Fig.4.1;Tab.4.1, 4.2)

(4)







ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(y + 1)(a(a − d + 1) + dx + (a + 1)(a − d + 1)y), F ig.2
d(a − d + 1)(a − d + 2)(2a − d + 1) 6= 0; (Fig.4.2;Tab.4.3, 4.4)

(5)

{

ẋ = x2(x + 1), d(d − 1) 6= 0,
ẏ = y(y + 1)(dx + (1 − d)y); Fig.3 (Tab.4.5)

(6)

{

ẋ = x2(x + 1), d(d − 1) 6= 0,
ẏ = y2(1 + dx + (1 − d)y); Fig.4 (Tab.4.6)

(7)

{

ẋ = x3,
ẏ = y2(2x − y); Fig.5

(8)







ẋ = x(x + 1)(a − ax + y),
ẏ = y(y + 1)(a + (2 − 3a)x + (2a − 1)y), F ig.6
a(3a − 1)(2a − 1)(2 − 3a)(a − 1) 6= 0. (Tab.4.7, 4.8)

(9)

1) 2) 3)

4) 5) 6)
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7) 8) 9)

10) 11) 12)
Fig. 1.

1) 2) 3)

4) 5) 6)
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7) 8) 9)
Fig. 2.

1) 2) 3)

4) 5)
Fig. 3.

1) 2) 3)
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4)
Fig. 4 Fig. 5.

1) ⇄ 2) 3)
Fig. 6.

2 Preliminaries

We consider the real cubic differential system










dx

dt
=

∑3
r=0 Pr(x, y) ≡ P (x, y),

dy

dt
=

∑3
r=0 Qr(x, y) ≡ Q(x, y), GCD(P,Q) = 1,

(10)

where Pr(x, y) =
∑

j+l=r

ajlx
jyl, Qr(x, y) =

∑

j+l=r

bjlx
jyl. It is assumed that the

right-hand sides of the system (10) have not a non-constant common factor.
We will mention some properties of the system (10):
2.1) in the finite part of the phase plane the system (10) has at most nine singular

points;
2.2) at infinity the system (10) has at most four singular points if yP3(x, y)

−xQ3(x, y) 6≡ 0. In the case yP3(x, y)− xQ3(x, y) ≡ 0 the infinity is degenerate, i.e.
consists only of singular points;

2.3) in the finite part of the phase plane the system (10) can not have more than
three colinear singular points;

2.4) in the finite part of the phase plane the system (10) has no more than eight
invariant straight lines [5, 6];
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2.5) the infinity for (10) represents an invariant straight line;
2.6) the system (10) has invariant straight lines along at most six different

directions [1, 12];
2.7) the system (10) can not have more than three invariant straight lines parallel

among themselves.
Let ajx + bjy + cj = 0, j = 1, 2, a1b2 − a2b1 6= 0 be two real invariant straight

lines of the system (10). The transformation X = a1x+ b1y + c1, Y = a2x+ b2y + c2

reduces (10) to a system of the Lotka-Volterra form

{

ẋ = x(a10 + a20x + a11y + a30x
2 + a21xy + a12y

2),
ẏ = y(b01 + b11x + b02y + b21x

2 + b12xy + b03y
2)

(11)

(we preserved the old notations).
The property 2.7) says that every cubic system with at least four real invariant

straight lines can be written in the form (11).
For system (11) a straight line y = Ax + B, A 6= 0 is invariant if and only if A

and B are the solutions of the system:

B(b01 + b02B + b03B
2) = 0,

b11B + b12B
2 + [b01 − a10 + (2b02 − a11)B + (3b03 − a12)B

2] · A = 0,
b21B + [b11 − a20 + (2b12 − a21)B] · A + [b02 − a11 + (3b03 − 2a12)B] · A2 = 0,
b21 − a30 + (b12 − a21) · A + (b03 − a12) · A2 = 0.

(12)

Its cofactor is

K(x, y) = c00 + c10x + c01y + c20x
2 + c11xy + c02y

2,

where
c00 = b01 + b02B + b03B

2, c01 = b02 + b03B,

c10 = b11 + b12B + (b02 − a11)A + (2b03 − a12)AB,

c20 = b21 + (b12 − a21)A + (b03 − a12)A
2, c11 = b12 + (b03 − a12)A, c02 = b03.

The invariant straight line Ax − y + B = 0, A 6= 0, of (11) has the degree
of invariance not less than two if and only if A and B verify the following seven
relations:

B(b02 + 2b03B) = 0, b01 + 2b02B + 3b03B
2 = 0,

a10A + 2b02AB + (b12 + 6b03A − a12A)B2 = 0,
a20 + b02A + 2(b12 + 3b03A − a12A)B = 0,
b11 − a20 + (b02 − a11)A = 0, a30 + b12A + (2b03 − a12)A

2 = 0,
b21 + (2b12 − a21)A + (3b03 − 2a12)A

2 = 0.

(13)

In this case, the cofactor of invariant straight line is K(x, y) = c00 + c10x + c01y,
where

c00 = −b02 − 2b03B, c10 = −b12 + (a12 − 2b03)A, c01 = −b03.
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Proposition 1. Let the cubic system have two real not parallel invariant straight
lines l1 and l2, of which l1 has the degree of invariance equal to m, 1 ≤ m ≤ 3. Then
the number of singular points lying on l2 \ l1 is at most 3 − m.

Proof. In hypothesis of Proposition 1 via affine transformation, system (10) can be
written in the form:

ẋ = xmP̃3−m(x, y), ẏ = yQ̃2(x, y), (14)

where P̃i, Q̃i are polynomials of degree at most i and P̃3−m(x, 0) 6≡ 0, P̃3−m(0, y) 6≡ 0.
The system (14) has the invariant straight lines l1 : x = 0 and l2 : y = 0 of which l1
has the degree of invariance equal to m. The assertion of Proposition 1 follows from
the fact that the equation P̃3−m(x, 0) = 0 can not have more than 3 − m roots.

We say that the straight lines l1, l2 and l3 are of generic position (”triangle”
position) if li ∩ lj 6= ∅ and l1 ∩ l2 ∩ l3 = ∅.

Proposition 2. If cubic system (10) has three real invariant straight lines of generic
position, then the sum of their degrees of invariance is at most four.

Proof. We mention that any invariant straight line of the cubic system (10) can not
have the degree of invariance more than three.

As the point of intersection of two invariant straight lines is a singular point for
(10), Proposition 1 does not allow that any of these three straight lines l1, l2 and l3
to have the degree of invariance equal to three.

Let each of the invariant straight lines l1 and l2 has the degree of invariance
equal to two. By affine transformation and time rescaling the system (10) can be
written in the form:

{

ẋ = x2(a + bx + y) ≡ P (x, y),
ẏ = y2(c + dx + ey) ≡ Q(x, y), GCD(P,Q) = 1,

(15)

for which l1 = x and l2 = y, and equalities (12) have the form

B2(c + eB) = 0, 2cA + dB + 3eAB = 0,
a + (1 − 2d)B − cA − 3eAB = 0, eA2 + (d − 1)A − b = 0.

(16)

Let l3 = y−Ax−B, AB 6= 0. The points (0, B) = l1∩ l3 and (−B/A, 0) = l2∩ l3
are singular points for (15). Therefore, P (−B/A, 0) = Q(0, B) = 0, yielding A =
−c/a and B = −c/b. Substituting these values of A and B in the first three equalities
of (16), we get that c = ab, d = b2 and e = b. In this case, GCD(P,Q) = a + bx + y.
So, the assumption that system (15) can have invariant straight lines not passing
through the origin of coordinates is false.
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3 Canonical forms and Darboux integrability

There are the following possible configurations of six invariant straight lines along
three directions:

1) (3, 2, 1); 2) (3(2), 2, 1); 3) (3(3), 2, 1); 4) (3, 2(2), 1);

5) (3(2), 2(2), 1); 6) (3(3), 2(2), 1); 7) (2, 2, 2); 8) (2(2), 2, 2);

9) (2(2), 2(2), 2); 10) (2(2), 2(2), 2(2)).

Notation (3, 2, 1) means that along one direction there are three distinct straight
lines, along the second direction there are two distinct invariant straight lines and
along the third direction there is one invariant straight line; (3(2), 2, 1) means that
along one direction the differential system has two distinct straight lines from which
one is double (i.e. has the degree of invariance equal to two), along the second
direction there are two distinct invariant straight lines and along the third direction
there is one invariant straight line and so on.

3.1) Configuration (3, 2, 1). We note that the point of intersection of two real
invariant straight lines of the system (10) is a singular point for this system.

Assume that the cubic system (10) has six distinct invariant straight lines, in-
cluding one couple Then, taking into account the property 2.3) from Section 2, the
given straight lines can have (up to some affine transformation) one of the following
2 geometric positions given in Fig. 3.1.

5

4

2

l6

b)a)

l3

l

l

l6

ll1

Fig. 3.1

The cubic system which includes both configurations, via affine transformation
and time rescaling can be written in the form

{

ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(y + 1)(c + dx + ey), d(|e| + |c(c − d)(c + ad)|) 6= 0.

(17)

The system (17) has the invariant straight lines

l1 ≡ x = 0, l2 ≡ y = 0, l3 ≡ x + 1 = 0, l4 ≡ y + 1 = 0, l5 ≡ x − a = 0.

We have to determine the conditions on parameters c, d and e such that (17)
has only one invariant straight line of the form l6 ≡ y − Ax − B = 0, A 6= 0.

For (17) the equalities (12) look as:
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B(B + 1)(eB + c) = 0, dB + dB2 + [a + c + 2(c + e)B + 3eB2] · A = 0,
A · [a + d − 1 + (c + e)A + 2dB + 3eAB] = 0, eA2 + dA − 1 = 0.

(18)

Otherwise, we observe that the fourth equation of (18) doesn’t allow for cubic
system of ẋ = x(x + 1)(x − a), ẏ = cy(y + 1), a|c| > 0 the configuration (3, 2, 1) to
be realized.

In the cases a) the straight line l6 has the equation y = x. Putting in (18) A = 1
and B = 0, we obtain

c = −a, e = 1 − d. (19)

In conditions (19) the equalities (18) show that the straight line y = −x/a
(y = (x − a)/(a + 1)) is invariant for (17) if a + d − 1 = 0 (a − d + 2 = 0).

Equalities (19) and inequality (a + d − 1)(a − d + 2) 6= 0 show that for (17) the
case a) is realized, excluding, at the same time, the cases when (17) can has more
than 6 invariant straight lines. In these conditions, (17) can be written in the form
(4).

In the cases b) the straight line l6 : y = (x − a)/(a + 1) is invariant for (17) if

c = a(1 + a − d), e = (a + 1)(1 + a − d). (20)

If a−d+2 = 0 (2a−d+1 = 0) then (17) has the invariant straight line l7 = x−y
(l7 = x − ay − a).

The conditions (20) and (a − d + 2)(2a − d + 1) 6= 0 reduce (17) to the system
(5).

The systems (4) and (5) are Darboux integrable and have respectively the inte-
grating factors:

µ(x, y) = xa/δ(x + 1)−(a+1)/δ(x − a)−2y(d−a−2)/δ(y + 1)(d+a−1)/δ(y − x)d/δ,

µ(x, y) = x−2(x + 1)−σ(x − a)−aσy−(1+σ)(y + 1)−(1+aσ)

(

y − x − a

a + 1

)dσ

,

where δ = 1 − d, σ = 1/(a − d + 1).

3.2) Configuration (3(2), 2, 1). The cubic system (10), with invariant straight
lines of configuration (3(2), 2), via affine transformation and time rescaling, can be
written in the form

{

ẋ = x2(x + 1),
ẏ = y(y + 1)(c + dx + ey), d(|e| + |c(c − d)|) 6= 0.

(21)

For this system the conditions (12) for the existence of invariant straight lines
are of the form (18) with a = 0.

For (21), the invariant straight line x = 0 has the degree of invariance equal to
two. Taking into account the propriety 2.3) and Proposition 1, the system (21) can
have invariant straight lines along three directions only of one of the following two
geometric positions indicated in Fig. 3.2.
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b)a)

l
6

l6

2 2

b)a)

l
6

l6

2

2

2

2

Fig. 3.2 Fig. 3.3

It is obvious that geometrical position of the straight lines in a) and b) are affine
equivalent. We will examine only the case a). In order the straight line which passes
through singular points (−1,−1) and (0, 0), i.e. the straight line y = x, to be
invariant for (21), it is necessary that c = 0 and e = 1− d. In this conditions, (21) is
reduced to the form (6). This system is Darboux integrable and has an integrating
factor

µ(x, y) = x−2(x + 1)−1/δy−1−1/δ(y + 1)−1(y − x)d/δ,

where δ = 1 − d.

3.3) Configuration (3(3), 2, 1) and (3.2(2), 1). The property 2.3) and Propo-
sition 1 do not allow the realization of these configurations.

3.4) Configuration (3(2), 2(2), 1). Considering the configuration (3(2), 2(2)) of
invariant straight lines we obtain the system

{

ẋ = x2(x + 1),
ẏ = y2(c + dx + ey), d(|e| + |c(c − d)|) 6= 0,

(22)

which has the invariant straight lines l1 = x, l2 = x + 1, l3 = y and the invariant
exponential functions l4 = exp(1/x), l5 = exp(1/y). The straight lines l1 and l3 have
the degree of invariance equal to two.

Proposition 2 allows only the positions from Fig.3.3 of the straight lines l1, l2, l3
and l6 = y − Ax − B, A 6= 0.

For (22) the equations (12) with condition A 6= 0 can be written as:

B2(c + eB) = 0, (dB + (2c + 3eB)A)B = 0,
cA + (2d + 3eA)B − 1 = 0, eA2 + dA − 1 = 0.

(23)

On the straight line l3 = x+ 1 the system (22) can have only the singular points
(−1, 0) and (−1, (d − c)/e). The straight line which passes through the points (0, 0)
and (−1, (d − c)/e) is described by the equation y = (c − d)x/e. Putting in (23)
A = (c − d)/e and B = 0, we obtain that e = cd(c − d). This leads to the system

ẋ = x2(x + 1), ẏ = y2(c + dx + c(c − d)y), c(c − d) 6= 0,

which by substitutions d → cd, x → x, y → y/c can be reduced to a system (7).
The system (7) is Darboux integrable and has an integrating factor

µ(x, y) = x−1/δ exp(δ/x)(x + 1)−2y(2d−3)/δ exp(−δ/y)(y − x)d/δ ,
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where δ = 1 − d.

3.5) Configuration (3(3), 2(2), 1). For first step we consider the system

ẋ = x3, ẏ = y2(c + dx + ey), d(|c| + |e|) 6= 0. (24)

For (24) the equalities (12) look as:

B2(c + eB) = 0, (dB + (2c + 3eB)A)B = 0,
cA + (2d + 3eA)B = 0, eA2 + dA − 1 = 0.

(25)

Proposition 1 allows for differential system (24) to have besides the straight lines
l1,2,3 = x, l4,5 = y also the invariant straight lines of the form y = Ax, A 6= 0.
Putting in (25) B = 0, we obtain that c = 0 and A1,2 = (−d ±

√
d2 + 4e)/(2e). If

d2 + 4e > 0 (d2 + 4e < 0), the system (24) has seven (five) real straight lines, and
if d2 + 4e = 0, i.e. e = −d2/4, after a transformation y → 2y/d we come to the
system (8) with invariant straight line l6 = x − y. This system has an integrating
factor µ(x, y) = 1/(xy(x − y)2).

3.6) Configuration (2, 2, 2). Taking into account the propriety 2.3), the system
(10) with such configuration has at least two singular points through which three
invariant straight lines of different directions pass. By a translation one of these
points can be brought at the origin. The system (10) realizing this configuration via
an affine transformation and time rescaling can be brought to the form

{

ẋ = x(x + 1)(a + bx + y) ≡ P (x, y),
ẏ = y(y + 1)(c + dx + ey) ≡ Q(x, y), GCD(P,Q) = 1.

(26)

For (26) the equalities (12) look as:















B(B + 1)(c + eB) = 0,
(c − a)A + dB + dB2 + (2c + 2e − 1 + 3eB)AB = 0,
d − a − b + (c + e − 1)A + (2d − 1)B + 3eAB = 0,
eA2 + (d − 1)A − b = 0.

(27)

Besides the invariant straight lines l1 = x, l2 = x + 1, l3 = y, l4 = y + 1, we
will seek the conditions on parameters of (27) such that it has exactly two more
invariant straight lines of the form y = Ax, y = Ax + B, AB 6= 0. For this, we put
B = 0 in (27). The second equation of (27) gives c = a, and the third one becomes

d − a − b + (a + e − 1)A = 0. (28)

In assumption that AB 6= 0 and c = a, the system of equations ((27), (28)) has
the following solutions:

1) b = −a, c = a, d = 2 − 3a, e = 2a − 1, A = 1, B = −1.
System (26) with the conditions above has the invariant straight lines l5 = y −

x, l6 = y−x+1. The condition GCD(P,Q) = 1 implies the inequality a(2a−1)(a−
1) 6= 0, and the inequality 2− 3a 6= 0 excludes the existence of a triplet of invariant
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straight lines parallel to axis Ox. If 3a− 1 = 0, then the given system has two more
invariant straight lines of the form: l7 = y + x + 1 and l8 = y − x − 1.

2) b = (a − 1)/2, c = a, d = (3a + 1)/2, e = −a, A = B = 1

(l5 = y − x, l6 = y − x − 1, a(9a2 − 1)(a2 − 1) 6= 0);

3) b = 1 − a, c = a, d = 3a − 1, e = 2a − 1, A = B = −1

(l5 = y + x, l6 = y + x + 1, a(a − 1)(2a − 1)(3a − 1)(3a − 2) 6= 0);

4) b = 2a− 1, c = a, d = 3a− 1, e = 1− a, A = (1− 2a)/(1 − a), B = a/(a− 1)

(l5 = y + (1 − 2a)x/(a − 1), l6 = y + ((1 − 2a)x − a)/(a − 1), l7 = y − x).

If conditions 4) hold, then (26) has seven invariant straight lines and, will be
not considered. Moreover, it is sufficient to consider only the case 1), as the case 2)
(3)) can be reduced to the case 1) via the change

a → a

2 − 3a
, x → y, y → x, t → (2 − 3a)t

(a → 1 − a, x → x, y → −y − 1, t → −t).

Inclusion of system (9) in the statement of Theorem in Section I is motivated.
This system has the integrating factor

µ(x, y) =
[

y(x + 1)(y − x + 1)
√

x(y + 1)(y − x)
]

−1
.

3.7) Configuration (2(2), 2, 2). Let cubic system (10) have distinct invariant
straight lines lj, j = 1, 5, of which l1||l2, l3||l4 and l5 has the degree of invariance
equal to two. According to Proposition 1, the straight line l5 must go through the
points of intersection of straight lines l1 and l3, l2 and l4 (or l1 and l4, l2 and l3. This
case is reduced to the previous one by changing the enumeration of straight lines).
In our assumptions, via affine transformation and time rescaling the system (10) can
be written in the form of (26). For (26) the straight lines l1 = x, l2 = x + 1, l3 = y
and l4 = y + 1 are invariant, and the equalities (13) look as:

B(c + e + 2eB) = 0, c + 2(c + e)B + 3eB2 = 0,
aA + 2(c + e)AB + 6eAB2 = 0,
a + b + (c + e)A + 2dB + 6eAB = 0,
d − a − b + (c + e − 1)A = 0,
b + dA + 2eA2 = 0, A(2d − 1 + 3eA) = 0.

(29)

The straight line l5 is given by the formula x − y = 0. This line is invariant for
(26) if A = 1 together with B = 0 are the solution of (29). Substituting in (29)
these values of A and B, we obtain that a = c = b + 1 = d + 1 = e − 1 = 0, which
implies GCD(P,Q) = y − x.

3.8) Configuration (2(2), 2(2), 2). Proposition 2 does not allow the realization
of this configuration.

3.9) Configuration (2(2), 2(2), 2(2)). Taking into account Proposition 2, the
invariant straight lines of this configuration should have a common point.
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We consider the cubic system (15), where the straight lines l1 = x and l2 = y are
invariant and have the degree of invariance equal to two. In this case the equalities
(13) look as:

B(c + 2eB) = 0, B(2c + 3eB) = 0, B(2cA + dB + 6eAB) = 0,
a + cA + 2dB + 6eAB = 0, a − cA = 0,

b + dA + 2eA2 = 0, A(2d − 1 + 3eA) = 0.
(30)

To determine the third invariant straight line l3 = Ax − y, A 6= 0, with the
same degree of invariance, we put in the equalities (30) B = 0 and resolve them
for A 6= 0. The fourth and fifth equalities of ((30), B = 0) give a = c = 0. The
condition GCD(P,Q) = 1 implies e 6= 0. From six and seven equalities of (30) we
obtain e = (2 − d)(2d − 1)/(9b) and A = 3b/(d − 2). Thus, we come to the system

{

ẋ = x2(bx + y), d(d + 1)(2d − 1)(d − 2) 6= 0,
ẏ = y2(dx + (2 − d)(2d − 1)y/(9b)),

which besides the invariant straight lines x = 0, y = 0, 3bx + (2 − d)y = 0 with the
degree of invariance equal to two, also has the invariant straight line 3bx+(1−2d)y =
0.

4 The phase portraits

We mention that the cubic system with at least four real invariant straight lines
has no limit cycles [10]. Hence, the behaviour of trajectories in this system and, in
particular, of system with six real invariant straight lines, is imposed by the type of
singular points.

We denote by SP singular points; λ1 and λ2 the eigenvalues of SP ; S − saddle
(λ1λ2 < 0); N s − stable node (λ1, λ2 < 0), Nu − unstable node (λ1, λ2 > 0);
S − N s(u) − saddle-node with stable (unstable) parabolic sector; P s(u) − stable
(unstable) parabolic sector; H − hyperbolic sector.

4.1. System (4). The coordinates of singular points of system (4) in the
finite and infinite parts of the phase plane Oxy, also the eigenvalues λ1, λ2 of the
characteristic equation, corresponding to each of these points, are shown in Tab.4.1.
In this table the following notations: α = 1 + a, δ = 1 − d were used.

Tab. 4.1
SP O1(0, 0) O2(−1,−1) O3(a, 0) O4(0,−1) O5(0, a/δ)

λ1;λ2 −a; −a α; α aα; −aδ −a; a + δ −a; a(a + δ)/δ

SP O6(−1, 0) O7(−1, (a + d)/δ) O8(a,−1) O9(a, a) I1(1, 0, 0)

λ1;λ2 α; −a − d α; α(a + d)/δ aα; αδ aα; aαδ −1; −1

SP I2(0, 1, 0) I3(1, 1, 0) I4(1,−1/δ, 0)
λ1;λ2 −δ; −δ −1; 2 − d −1; 1 + 1/δ

The singular point I1 is a stable node. Taking into account that a > 0, at
the point O1 (O2) the system (4) has a stable (unstable) node. Whatever are the
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parameters a, a > 0 and d, the types of points O8 and O9 coincide. In the case
a + δ = 0, i.e. 1 + a − d = 0, (a + d = 0; d = 2) the singular points O4 and O5

(respectively O6 and O7; I3 and I4) coincide.

By means of the straight lines d = 0, d = 1, d = 2, a = 0, 2+a−d = 0, 1+a−d =
0, a+d−1 = 0, a+d = 0 we divide the half-plane a > 0 of parameters space a and d
in sectors (Fig. 4.1). In Fig. 4.1 by V we denote the semi-line 1+a− d = 0, d > 2);
by V I − the segment of straight line (1 + a − d = 0, 1 < d < 2); by V II − the
semi-line (d = 2, a > 1); by V III − the segment (d = 2, 0 < a < 1); by IX
− the point (2, 1); by XII − the semi-line (a + d = 0, d < 0); by I − the open
domain bounded by straight lines a = 0, d = 2, 1 + a − d = 0 without the semi-line
(a − d + 2 = 0, 2 < d < +∞) and so on.

IV

V

VIII

XI

VII

I

I

XI

X

X

X III

VI

II

d

X

XII

210

a d=1

a-
d+1=0

a-
d+2=0

a+
d-1=

0

a+
d=

0

d=2

Fig. 4.1

For system (4) the results of qualitative investigation of singular points O3 −
O8, I2 − I4 in each of the sectors I − XII are given in Tab. 4.2.

Tab. 4.2
SP I/II III/IV V/V I V II/V III IX X/XI XII

O3 Nu Nu Nu Nu Nu S S

O4 N s S S−N s S/N s S−N s S S

O5 S N s − N s/S − S S

O6 S S S S S S/Nu S−Nu

O7 S S S S S Nu/S −
O8 S S S S S Nu Nu

I2 Nu Nu Nu Nu Nu N s N s

I3 N s/S S/N s N s/S S−N s S−N s S S

I4 S/N s N s/S S/N s − − S S

Fig. 1 : 1)/2) 3)/4) 5)/6) 7)/8) 9) 10)/11) 12)

4.2. System (5). For (5) the singular points and and the eigenvalues of the
characteristic equation are shown in Tab. 4.3, where α = 1 + a.
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Tab. 4.3
SP O1(−1,−1) O2(a, 0) O3(0,−1) O4(0, 0)

λ1; λ2 α; α aα; aα −a; α − d −a; a(α − d)

SP O5(0,−a/α) O6(−1, 0) O7(−1, d−a
α+d) O8(a,−1)

λ1; −a; α; α; aα;
λ2 a(d − α)/α α(a − d) α(d − a)/(α − d) α(1 − d)

SP O9(a, a/(d − α)) I1(1, 0, 0) I2(0, 1, 0) I3(1, 1/α, 0)

λ1; aα; −1; α(d − α); −1;
λ2 aα(d − 1)/(α − d)) −1 α(d − α) 2 − d/α

SP I4(1, 1/(d − α), 0)
λ1; λ2 −1; 1 + α/(d − α)

For the system (5) the singular points O1 and O2 are unstable nodes, but point
I1 is a stable node. At every point of the half-plane a > 0 the points O3 and O4 are
of the same type. If a − d = 0 (d = 1; 2a − d + 2 = 0), then the points O6 and O7

(respectively: O8 and O9; I3 and I4) coincide.

IV

V

VIII

IX

VII
I

II

X

III

VI

XII

d

XI

210

a d=1

a-
d+1=0

a-
d+2=0

2a-d+2=0VI II

a-
d=0

II

II

2a-d+=0

Fig. 4.2

The partition of the half-pane a > 0 in sectors and the qualitative study of
singular points O4 − O9, I2 − I4 are given in Fig. 4.2 and Tab. 4.4 respectively.

Tab. 4.4
SP I/II III IV/V V I/V II V III/IX X/XI XII

O4 N s N s S S S S S

O5 S S N s N s N s N s N s

O6 S S S/Nu Nu/S S−Nu Nu/S S−Nu

O7 S S Nu/S S − S/Nu −
O8 S S S Nu Nu/S S−Nu S−Nu

O9 S S Nu S/Nu S/Nu − −
I2 Nu Nu N s N s N s N s N s

I3 N s/S S−N s S S S S S

I4 S/Nu − S S S S S

Fig. 2 : 1)/2) 3) 4)/5) 6)/5) 7)/8) 8)/7) 9)
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4.3. System (6). This system has five singular points in the finite part of
the phase plane: O1(0, 0), O2(−1, 0), O3(−1,−1), O4(0,−1), O5(−1, d/(1 − d));
and four singular points at the infinity: I1(1, 0, 0), I2(0, 1, 0), I3(1, 1, 0), I4(1, 1/(d−
1), 0). Among these singular points only O1(0, 0) has the both eigenvalues of the
characteristic equation equal to zero (see Tab. 4.5). To determine the behavior
of trajectories in the neighborhood of this point, we write the system (6) in polar
coordinates x = ρ cos θ, y = ρ sin θ :











dρ

dτ
= ρ[cos3 θ(1 + ρ cos θ) + sin2 θ(1 + ρ sin θ)(d cos θ + δ sin θ)],

dθ

dτ
= sin θ cos θ(sin θ − cos θ)(ρ cos θ + δ(1 + ρ sin θ)),

(31)

where τ = ρt, δ = 1−d. The singular points of system (31) with the first coordinate
ρ = 0 and the second θ ∈ [0, 2π), and their eigenvalues are {M1(0, 0),M2(0, π) :
λ1 = 1, λ2 = d− 1}; {M3(0, π/2), M4(0, 3π/2) : λ1 · λ2 = −(1− d)2}; {M5(0, π/4) :
λ1 = 1/

√
2, λ2 = (1 − d)/

√
2}; {M6(0, 5π/4) : λ1 = −1/

√
2, λ2 = −(1 − d)/

√
2}.

The types of these points can differ only if d passes through value 1. If d < 1, we
have Fig. 4.3, and if d > 1, we have Fig. 4.4.

H

H
P

s

P
u

y

x

DN
s

DN
u

S

S

S S

Fig. 4.3 (d < 1).

Fig. 4.4 (d > 1).

In the case of system (6) we have Tab. 4.5.
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Tab. 4.5
SP λ1; λ2 d < 0 0 < d < 1 1 < d < 2 d = 2 d > 2

O1 0; 0 P uHP sH P uHP sH P uHP sH P uHP sH P uHP sH

O2 1; −d Nu S S S S

O3 1; 1 Nu Nu Nu Nu Nu

O4 0; 1 − d S − Nu S − Nu S − N s S − N s S − N s

O5 1; d
1−d S Nu S S S

I1 −1; −1 N s N s N s N s N s

I2 d − 1; d − 1 N s N s Nu Nu Nu

I3 −1; 2 − d S S S S − N s N s

I4 −1; 2−d
1−d S S N s − S

Fig. 3 : 1) 2) 3) 4) 5)

4.4. System (7). This system has the singular points: O1(0, 0), O2(−1, 0),
O3(−1,−1), O4(0,

1
d−1 ), I1(1, 0, 0), I2(0, 1, 0), I3(1, 1, 0), I4(1,

1
d−1 , 0), whose char-

acterizations are given in Tab. 4.6.

Tab. 4.6
SP λ1; λ2 d < 1, d 6= 0 1 < d < 2 d = 2 d > 2

O1 0; 0 P uHP sH P uHP sH P uHP sH P uHP sH

O2 0; 1 S − Nu S − Nu S − Nu S − Nu

O3 1; 1 − d Nu S S S

O4 0; 1/(1 − d) S − Nu S − N s S − N s S − N s

I1 −1; −1 N s N s N s N s

I2 d − 1; d − 1 N s Nu Nu Nu

I3 −1; 2 − d S S S − N s N s

I4 −1; 2−d
1−d S N s − S

Fig. 4 : 1) 2) 3) 4)

As in the case of system (6), the behavior of the trajectories in the neighborhood
of singular point O1(0, 0) was established by using the blow-up method for (7) in
polar coordinates:











dρ

dτ
= ρ[cos3 θ(1 + ρ cos θ) + sin3 θ(1 + dρ cos θ + (1 − d)ρ sin θ)],

dθ

dτ
= sin θ cos θ(sin θ − cos θ)(1 + ρ cos θ + (1 − d)ρ sin θ)),

(32)

where τ = ρt. The singular points of (32) with ρ = 0 and θ ∈ [0, 2π) and their
eigenvalues: {M1(0, 0),M2(0, π),M3(0, π/2),M4(0, 3π/2) : λ1 = −1, λ2 = 1};
{M5(0, π/4) : λ1 = λ2 = 1/

√
2}; {M6(0, 5π/4) : λ1 = λ2 = −1/

√
2}, lead us

to Fig. 4.3.

4.5. System (8). This system has in finite parts of the phase plane a singular
point O(0, 0) with λ1 = λ2 = 0 and at infinity singular points I1(1, 0, 0); I2(0, 1, 0);
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I3(1, 1, 0) with λ1 = λ2 = −1; λ1 = λ2 = 1; λ1 = −1, λ2 = 0. We have that I1 is N s;
I2 − Nu; I3 − S−N s and O − P uHHP uHH (see Fig. 5).

4.6. System (9). For (9) the singular points and the eigenvalues of the char-
acteristic equation are shown in Tab. 4.7. In this table we used the notations:
β = a − 1, γ = 2a − 1.

Tab. 4.7
SP O1(0, 0) O2(−1, 0) O3(−1,−1) O4(1, 0)

λ1;λ2 a; a −2a; 2γ −γ;−γ −2β;−2a

SP O5(−1,−2) O6(0,−1) O7(β/a,−1) O8(a/β, a/β)

λ1;λ2 −2β; 2γ β;β −βγ/a; 2βγ/a −aγ/β; 2aγ/β

SP O9(0, a/γ) I1(1, 0, 0) I2(0, 1, 0) I3(1, 1/β, 0)

λ1;λ2 −aβ/γ; 2aβ/γ a; a γ; γ β;β

SP I4(1, a/γ, 0)
λ1; λ2 −aβ/γ; 2aβ/γ

We divide the real axis in intervals J1 = (−∞, 0), J2 = (0, 1/3), J3 = (1/3, 1/2),
J4 = (1/2, 2/3), J5 = (2/3, 1), J6 = (1,+∞); J = J1 ∪ J2 ∪ · · · ∪ J6.

The eigenvalues λ1 and λ2 of the characteristic equation corresponding to each
singular point, in intervals J1 and J6 differ only by sign. Therefore, from the qual-
itative point of view the phase portraits of system (9) in intervals J1 and J6, differ
only by directions on trajectories.

Singular points O7, O8, O9 and I4 are saddles for every a ∈ J. The types of other
singular points (i.e. O1 − O6, I1, I2, I3) are shown in Tab. 4.8.

Tab. 4.8
SP J1 (J6) J2, J3 J4, J5

O1 N s(u) Nu Nu

O2 S N s S

O3 Nu(s) Nu N s

O4 Nu(s) S S

O5 S S Nu

O6 N s(u) N s N s

I1 N s(u) Nu Nu

I2 Nu(s) Nu N s

I3 N s(u) N s N s

Fig. 6 : 1 ⇄) 2) 3)
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A. Şubă
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