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Nash equilibria in the noncooperative informational
extended games

Ludmila Novac

Abstract. In this article∗we will analyse informational extended games, i.e. games
in which the players choose their actions simultaneously, with assumption that they
have some information about the future strategies which will be chosen by other
players. All informational extended games of this type will assume that players’ payoff
functions are common knowledge. Under these assumptions the last section will define
the informational extended games and analyse Nash equilibrium and conditions of its
existence. The essential result of this article is a theorem of Nash equilibrium existence
in informational extended games with n players. Our treatment is based on a standard
fixed point theorem which will be stated without proof in the first section.

Mathematics subject classification: 91A10, 47H04, 47H10.

Keywords and phrases: Noncooperative game, informational extended games,
strategic form game, Nash equilibrium, payoff function, set of strategies, best response
mapping (correspondence), point-to-set mapping, fixed point theorem.

1 Preliminary facts

1.1 Fixed points and contraction mappings

Consider the function f : X → X. An element x ∈ X is called a fixed point of f
if f (x) = x.

The fixed points of the function f are the intersection points of the graph of f
with the product X ×X.

Properties of fixed points.

1. If there are two functions f and g from X into Y, then the point x∗ ∈ X for
which f (x∗) = g (x∗) , is called [2] point of coincidence for the functions f and g.

2. Sometimes it is convenient to use the cyclic points of the function f together
with the fixed points, especially in the case when fixed points do not exist. Cyclic
points are the points which are images of the iterative function fn, where n is a
natural number. These are cyclic points of the n−th order. Often such points do
not exist and in these cases we can use boundary cycles. Also we can speak about
the invariant sets, i.e. subsets Y ⊂ X, for which f (Y ) = Y. In such cases the
minimal invariant subsets are very important.
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Next the notation F : X ⇒ 2Y will denote a point-to-set mapping, were 2Y

denotes the set of all subsets of Y . A fixed point of the point-to-set mapping
F : X ⇒ 2Y is a point x∗ ∈ X such that x∗ ∈ F (x∗) .

The graph for the application F is the set
gr (F ) = {(x, y) ∈ X × Y |x ∈ X, y ∈ F (x)} . This set can contain some points or
can be the empty set.

1.2 The Kakutani fixed point theorem

The existence of the fixed points is considered an important problem. The exis-
tence (and other properties) of the fixed point for the function f : X → X depends
on the properties of f and on the properties of the space X. Often it is considered
that f is a continuous function.

Definition 1.1. The function f of the metric space into itself is called [2] contrac-
tion mapping if there exists a constant K < 1 such that for each two points x and y
the inequality ρ (f (x) , f (y)) ≤ Kρ (x, y) holds, where ρ is the metrics of the space.

There are some important properties for the fixed points.

Proposition 1.1. If f is a contraction mapping, then there exists not more than a
single fixed point [1, 2].

Theorem 1.1. (Principle of the contraction mapping). Consider that f is a con-
traction mapping of the complete metric space X into itself. Then for each point
x ∈ X the sequence x, f (x) , f2 (x) = f (f (x)) , f3 (x) , . . . converges to a fixed point.
So f has a single fixed point [1, 2].

The points x, f (x) , f2 (x) , . . . are called consequent approximations of the fixed
point.

In the case of the contraction mapping we can consider as a start element every
element x and the consecutive approximations converge to the fixed point.

The Kakutani fixed point theorem is a fixed-point theorem for point-to-set map-
ping. It provides sufficient conditions for a point-to-set mapping defined on a con-
vex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is
mapped to a set containing it. The Kakutani fixed point theorem is a generalization
of Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental
result in topology which proves the existence of fixed points for continuous functions
defined on compact, convex subsets of Euclidean spaces. Kakutani theorem extends
this to point-to-set mapping.

The theorem was developed by Shizuo Kakutani in 1941 and was famously used
by John Nash in his description of Nash equilibrium. It has subsequently found
widespread application in game theory and economics. Many problems in economy
appear as problems of maximization and usually the solution of such problems is
many-valued.

Before giving this theorem we need to recall some definitions and theorems.
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Definition 1.2. Consider topological spaces X and Y . A point-to-set mapping
F : X ⇒ 2Y is said to be closed if the graph of F is closed as a subset into the
product of the spaces X × Y.

That is if the sequence of points (xn, yn) from gr (F ) converges to a point
(x, y) ∈ X × Y, then the limit point (x, y) ∈ gr (F ) [2].

Theorem 1.2 (Kakutani, 1941). Let X be a Banach space and K a non-empty,
compact and convex subset of X. Let F : K ⇒ 2K be a point-to-set mapping on K
with a closed graph and the property that the set F (x) is non-empty and convex for
all x ∈ K. Then F has a fixed point.

For proof see [1].
Before giving the applications of the fixed points in the game theory we will

recall some other important theorems.
Let C (K) be the space of all continuous functions defined on the compactum K.

Theorem 1.3 (Arzelà-Ascoli). (Compactness criterion). A set of continuous
functions E ⊆ C (K) is compact if and and only if the set E is uniformly bounded:
(|x (t) | 6 M,∀t ∈ K, for ∀x ∈ E) and the functions from the set E are equicontin-
uous (i.e. for ∀ε,∃δ so that if ρ (t1, t2) < δ then |x (t1)− x (t2) | < ε for ∀x ∈ E).

Theorem 1.4 (Tikhonov). A product of a family of compact topological spaces
X =

∏
α∈A

Xα is compact.

Lemma 1.1. 1) If X and Y are two compacta with the same metric, f : X → Y is

a continuous function, then the set Arg max
x∈X

f (x) =
{

x ∈ X

∣∣∣∣f (x) = max
z∈X

f (z)
}

is

compact too (see [3]).
2) If X and Y are two compacta with the same metric, and K (x, y) is a con-

tinuous function on X × Y, then ϕ (y) = max
x∈X

K (x, y) and ψ (x) = min
y∈Y

K (x, y) are

continuous functions on Y and X respectively [3].

2 Strategic form games and Nash equilibria

In this part we will analyse games in which the players choose their actions
simultaneously (without the knowledge of other player choices). The game will
assume that players’ payoff functions are common knowledge.

Definition 2.1. A strategic form of the game consists of: a finite set of players
I = {1, 2, . . . , n}, action spaces (set of strategies) of players, denoted by Xi, i ∈ I;
and payoff functions of players Hi : X → R, i ∈ I, where X = X1 × · · · ×Xn. We
refer to such a game as the tuple < I, (Xi)i∈I , (Hi)i∈I > denoted by Γ.

An outcome is an action profile (x1, x2, . . . , xn) , and the outcome space is
X = ×i∈IXi. The game is common knowledge among the players.
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One of the most common interpretations of Nash equilibrium (introduced by
John Nash in 1950) is that it is a steady state in the sense that no rational player has
an incentive to unilaterally deviate from it. Let x−i ≡ (x1, x2, . . . , xi−1, xi+1, . . . , xn)
and (x−i, yi) ≡ (x1, x2, . . . , xi−1, yi, xi+1, . . . , xn) .

Definition 2.2. A Nash equilibrium of the game Γ is an action profile x∗ ∈ X such
that for every i ∈ I

Hi (x∗) > Hi

(
x∗−i, xi

)
for all xi ∈ Xi.

Another and sometimes more convenient way of defining Nash equilibrium is via
the best response correspondences Bri : ×

j∈I\{i}
Xj ⇒ Xi

such that

Bri (x−i) =
{
xi ∈ Xi : Hi (x) > Hi

(
x−i, x

′
i

)
for ∀x′i ∈ Xi

}
. (*)

Definition 2.3. A Nash equilibrium is an action profile x∗such that x∗i ∈ Bri

(
x∗−i

)
for all i ∈ I.

If the sets Xi are compacts and the functions Hi are continuous, then the best
response set (*) for the player i can be represented by:

Bri (x−i) = Arg max
xi∈Xi

Hi (x−i, xi) .

Given a strategic form of the game Γ ≡< I, (Xi)i∈I , (Hi)i∈I >, the set of Nash
equilibria is denoted by NE (Γ) .

Using the best response sets of the players we consider the point-to-set mapping
Br : ×

i∈I
Xi ⇒ 2X such that Br = (Br1, Br2, . . . , Brn) .

Then we can easily prove that x∗ ∈ NE (Γ) À x∗ is a fixed point of the set-valued
mapping Br, i.e. x∗ ∈ Br (x∗) .

3 Nash equilibria in the noncooperative informational extended
games with n players

We analyse a static game with n players:

Γ =
〈
I, Xi, i = 1, n, Hi, i = 1, n

〉
(1)

where I = {1, 2, . . . , n} is the set of the players, the set of strategies for the i-th player
is denoted by Xi,

(
i = 1, n

)
, and the payoff functions are defined by: Hi :

∏
i∈I

Xi → R,
(
i = 1, n

)
.

Next we will analyse a static informational extended game with n players. In
this informational extended game we will consider that each player is informed of
the strategies of the other players which will be chosen. In this case the sets of the
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strategies for each player will be a set of functions defined on the product of the sets
of strategies of the rest players from the initial game (1).

The game is realised as follows: the strategies are chosen simultaneously by
players (with assumption that each of them knows which strategies will be chosen
by all other players), after that each of players determines his payoff and the game
is over.

This informational extended game can be described in the normal form by:

nΓ =
〈
I, Xi, i = 1, n, H i, i = 1, n

〉
,

where the sets of the strategies for the players are defined by:

Xi =



ϕi :

∏

j∈I,j 6=i

Xj → Xi



 , i = 1, n,

where
∏

j∈I,j 6=i

Xj = X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn.

The payoff functions are defined on the product of the extended sets of strategies:
H i :

∏
i∈I

Xi → R,
(
i = 1, n

)
.

In this case we analyse the informational extended game in which we consider
that all players know the chosen strategies of all other players and each player i ∈ I
chooses his strategy from the set Xi.

If some players do not know which strategies other players will choose, then
those players j ∈ I will choose their strategies from their initial sets Xj . Thus we
can define some different informational extended games in which the outcome will
consist of strategies xj ∈ Xj , j ∈ J and ϕk ∈ Xk, k ∈ I\J, where J is the set of
players which do not have some information about chosen strategies of other players.

We denote by C

(
∏

j∈I,j 6=i

Xj , Xi

)
,
(
i = 1, n

)
the space of all continuous functions

from
∏

j∈I,j 6=i

Xj into Xi, were
∏

j∈I,j 6=i

Xj and Xi are compacta.

Next we will apply the fixed point theorem to prove the following theorem of the
Nash equilibrium existence for the informational extended game nΓ with n players.

Theorem 3.1. Let us consider that for the game nΓ the next conditions hold:
1) the sets Xi 6= ∅, (i = 1, n

)
are compacta of Banach spaces,

2) the sets of functions Xi ⊂ C

(
∏

j∈I,j 6=i

Xj , Xi

)
,
(
i = 1, n

)
are uniformly

bounded and the functions from the sets Xi are equicontinuous;
3) the payoff functions Hi (·),

(
i = 1, n

)
are continuous on the compactum

∏
i∈I

Xi

and the functions H i (·) ,
(
i = 1, n

)
are concave on Xi for ∀ϕ−i, respectively.

Then NE (nΓ) 6= ∅.



NASH EQUILIBRIA IN THE NONCOOPERATIVE INFORM. EXT. GAMES 101

Proof. Let X =
∏
i∈I

Xi be the outcome space. According to Arzelà-Ascoli theorem

the sets Xi, (i ∈ I) are compact, and according to Tikhonov theorem the outcome
space X is a compactum too.

Let us denote an outcome of the extended game by ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ X =∏
i∈I

Xi, where ϕi = ϕi (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Xi.

Later we will use the next notations: ϕ−i = (ϕ1, ϕ2, . . . , ϕi−1, ϕi+1, . . . , ϕn) ,
X−i =

∏
j∈I
j 6=i

Xj .

Since the payoff functions Hi (·),
(
i = 1, n

)
are continuous on the compact

∏
i∈I

Xi

(from the third condition of the theorem) and because the functions ϕi ∈ Xi are
continuous on the compact

∏
j∈I,j 6=i

Xj , then the functions H i, i = 1, n are continuous

on the compact
∏
i∈I

Xi as compound functions of continuous functions H i (ϕ) =

Hi (ϕ (x)).
We define the point-to-set mapping B : X ⇒ 2X , such that B (ϕ) =

(B1 (ϕ−1) , B2 (ϕ−2) , . . . , Bn (ϕ−n)) , where Bi (ϕ−i) , (i ∈ I) represents the best re-
sponse set for the player i for the chosen strategies of all players j ∈ I\ {i}.

Because the sets Xi, (i ∈ I) are compacts and H i, for i = 1, n are continuous
functions, then according to the Weierstrass theorem we can write:

Bi (ϕ−i) = Arg max
ϕi∈Xi

H i (ϕ1, ϕ2, . . . , ϕn) ,

i. e.:

Bi (ϕ−i) =

{
ϕi ∈ Xi : H i (ϕ1, ϕ2, . . . , ϕn) = max

ϕ′i∈Xi

H i (ϕ1, ϕ2, . . . , ϕn)

}
,
(
i = 1, n

)
.

In order to use the Kakutani theorem we need to prove that:
1) X =

∏
i∈I

Xi 6= ∅ is a non-empty convex compact set;

2) for the point-to-set mapping B : X ⇒ 2X the next conditions hold:
a) for ∀ϕi ∈ Xi,

(
i = 1, n

)
the set B (ϕ) 6= ∅ is a convex subset of X;

b) the point-to-set mapping B is closed.
Firstly we will prove that X is convex and compact.
The set Xi, (i ∈ I) is convex if: for ∀ϕ′i, ϕ′′i ∈ Xi, and λ ∈ [0, 1] the function

λϕ′i + (1− λ) ϕ′′i is bounded by the same constant N (see Arzelà-Ascoli theorem)
and the function λϕ′i + (1− λ) ϕ′′i is equicontinuous.

It is easy to prove that the function λϕ′i + (1− λ) ϕ′′i is bounded by the same
constant N :
|λϕ′i (x−i) + (1− λ) ϕ′′i (x−i) | 6 λ |ϕ′i (x−i)|+ (1− λ) |ϕ′′i (x−i)| 6 λN + (1− λ) N =
N for all ϕ′i, ϕ

′′
i ∈ Xi, and λ ∈ [0, 1].

Evidently the function λϕ′i + (1− λ) ϕ′′i is equicontinuous. So the set Xi, (i ∈ I)
is convex. Then the set X is convex and compact too.
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Next we need to prove that for the point-to-set mapping B : X ⇒ 2X the
conditions a) and b) hold.

Firstly we will prove the condition a). For ∀ϕi ∈ Xi,
(
i = 1, n

)
the set B (ϕ) is

non-empty, this follows from the Weierstrass theorem, because Bi (ϕ−i) , ∀i ∈ I are
non-empty sets.

Next we need to prove that the set B (ϕ) is convex for ∀ϕi ∈ Xi,
(
i = 1, n

)
.

So we will prove that the sets Bi (ϕ−i) ,∀i = 1, n are convex.
The function H i (ϕ1, ϕ2, . . . , ϕn) = H i (ϕi, ϕ−i) is concave on the compact set

Xi ⊂ C

(
∏

j∈I,j 6=i

Xj , Xi

)
, (i ∈ I) , then by definition for ∀λ ∈ [0, 1], and ∀ϕ′i, ϕ′′i ∈

Xi the relation H i (λϕ′i + (1− λ) ϕ′′i , ϕ−i) > λH i (ϕ′i, ϕ−i) + (1− λ) H i (ϕ′′i , ϕ−i)
holds.

For ∀ϕ−i the set Bi (ϕ−i) will be convex since the function H i (·) is continuous
on Xi and H i (·) is concave by ϕi, for ∀i = 1, n.

From what was proved it follows that for ∀ϕi ∈ Xi,
(
i = 1, n

)
we will have a

convex subset B (ϕ) = (B1 (ϕ−1) , B2 (ϕ−2) , . . . , Bn (ϕ−n)) 6= ∅ from X =
∏
i∈I

Xi.

Next we will prove the condition b). We need to prove that the point-to-set
mapping B is closed.

The point-to-set mapping B is closed if its graph is a closed set [4]. Since Bi (ϕ−i)
is a subset from the compactum Xi for all i = 1, n, then grBi (ϕ−i) ,

(
i = 1, n

)
are

compact sets. Here the graph for Bi (ϕ−i) is defined by:

grBi (ϕ−i) =

{
(ϕ1, ϕ2, . . . , ϕn) ∈ X

∣∣∣∣∣ϕi ∈ Arg max
ϕ′i∈Xi

H i

(
ϕ′i, ϕ−i

)
, ϕ−i ∈ X−i

}
=

=
{
(ϕ1, . . . , ϕn) ∈ X

∣∣ϕi ∈ Bi (ϕ−i) , ϕj ∈ Xj , j ∈ I, j 6= i
}

.

We will prove that for the chosen strategies ϕ−i the sets Bi (ϕ−i) , i = 1, n, are
closed.

The set Bi (ϕ−i) can be rewritten as follows:

Bi (ϕ−i) =

{
ϕi ∈ Xi : H i (ϕi, ϕ−i)− max

ϕ′i∈Xi

H i

(
ϕ′i, ϕ−i

)
= 0

}
.

Because the set Xi is compact and the function H i is continuous on X, then the
function H i (ϕi, ϕ−i)− max

ϕ′i∈Xi

H i (ϕ′i, ϕ−i) is continuous on Xi too. So for ∀ϕ−i, the

set Bi (ϕ−i) ⊂ Xi is closed (and compact).
Then according to the Tikhonov theorem, because grBi (ϕ−i) is a closed set for

all i = 1, n, so it follows that

grB =
{
(ϕ1, . . . , ϕn) ∈ X

∣∣ϕi ∈ Bi (ϕ−i) , ∀i = 1, n
}

is a closed set too.
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Thus the point-to-set mapping B is closed.
Therefore we can apply the Kakutani theorem.
Let ϕ∗ = (ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
n) ∈ X =

∏
i∈I

Xi be a fixed point for the point-to-set

mapping B, i.e. (ϕ∗1, ϕ
∗
2, . . . , ϕ

∗
n) ∈ B (ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
n) =

∏
i∈I

Bi (ϕ−i) , so the relation

H i (ϕ∗1, . . . , ϕ
∗
i , . . . , ϕ

∗
n) = max

ϕi∈Xi

H i (ϕ∗1, . . . , ϕi, . . . , ϕ
∗
n)

holds for all i = 1, n, thus by definition of the Nash equilibrium it follows that
(ϕ∗1, . . . , ϕ

∗
i , . . . , ϕ

∗
n) ∈ NE (nΓ) 6= ∅. ¤
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[3] Hâncu Boris. Probleme de optimizare pe multe nivele, Partea I, CE USM, Chişinău, 2002.
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