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The distribution of a planar random evolution with
random start point

Alexander D. Kolesnik

Abstract. We consider the symmetric Markovian random evolution X(t) in the Eu-
clidean plane R2 starting from a random point whose coordinates are the independent
standard Gaussian random variables. The integral and series representations of the
transition density of X(t) are obtained.
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The planar random motion at finite speed was dealt with in a series of works
[2–4]. In these works the following planar stochastic motion was studied. A particle
starts from the origin 0 = (0, 0) of the plane R2 at time t = 0 and moves with
constant finite speed c. The initial direction is a two-dimensional random vector
with uniform distribution on the unit circumference

S(0, 1) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 = 1

}
.

The particle changes its direction at random instants that form a homogeneous
Poisson process of rate λ > 0. At these moments it instantaneously takes on the
new direction with uniform distribution on S(0, 1), independently of its previous
motion.

Let X(t) = (X1(t), X2(t)) denote the particle’s position at an arbitrary instant
t > 0. At any time t > 0 the particle, with probability 1, is located in the planar
disc of radius ct

B(0, ct) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 ≤ c2t2

}
.

Let dx be the infinitesimal element of the plane R2 with the Lebesgue measure
µ(dx) = dx1dx2. The distribution Pr {X(t) ∈ dx} , x ∈ B(0, ct), t ≥ 0, consists of
two components. The singular component corresponds to the case when no Poisson
event occurs in the interval (0, t) and is concentrated on the circumference

S(0, ct) = ∂B(0, ct) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 = c2t2

}
.

In this case, in the moment t, the particle is located on the sphere S(0, ct) and the
probability of this event is

Pr {X(t) ∈ S(0, ct)} = e−λt.
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If at least one Poisson event occurs, the particle is located strictly inside the disc
B(0, ct), and the probability of this event is

Pr {X(t) ∈ int B(0, ct)} = 1− e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior

int B(0, ct) =
{
x = (x1, x2) ∈ R2 : ‖x‖2 = x2

1 + x2
2 < c2t2

}
,

and forms its absolutely continuous component. Therefore there exists the density
of the absolutely continuous component of the distribution Pr {X(t) ∈ dx}.

The principal known result states that the complete density f(x, t) of the process
X(t) (starting from the origin 0), has the form

f(x, t) =
e−λt

2πct
δ(c2t2 − ‖x‖2) +

λ

2πc

exp
(
−λt + λ

c

√
c2t2 − ‖x‖2

)
√

c2t2 − ‖x‖2
Θ(ct− ‖x‖), (1)

x = (x1, x2) ∈ B(0, ct), ‖x‖ =
√

x2
1 + x2

2, t ≥ 0,

where δ(x) is the Dirac delta-function and Θ(x) is the Heaviside step function.
The first term in (1) represents the density of the singular part of the distribution
concentrated on the sphere S(0, ct), while the second term is the density of the
absolutely continuous part of the distribution concentrated in int B(0, ct).

If the process X(t) starts from some arbitrary fixed point x0 = (x0
1, x

0
2) ∈ R2,

then, given the phase space R2 is isotropic and homogeneous, the density of X(t)
has the form

f(x− x0, t) =
e−λt

2πct
δ(c2t2 − ‖x− x0‖2)+

+
λ

2πc

exp
(
−λt + λ

c

√
c2t2 − ‖x− x0‖2

)
√

c2t2 − ‖x− x0‖2
Θ(ct− ‖x− x0‖), (2)

x = (x1, x2) ∈ B(x0, ct), ‖x− x0‖ =
√

(x1 − x0
1)2 + (x2 − x0

2)2, t ≥ 0.

Suppose that the start point x0 = (x0
1, x

0
2) is a two-dimensional random variable

(random vector) with given density p(x) on the plane R2. If the random vectors
X(t) and x0 are independent for any t > 0, then the density of X(t) is given by the
convolution

ϕ(x, t) = f(x, t) ∗ p(x) =
∫

R2

f(x− ξ, t) p(ξ) µ(dξ). (3)

In this paper we obtain a closed-form expression for density (3) when the initial
point x0 = (x0

1, x
0
2) is a two-dimensional standard Gaussian vector with independent

coordinates. In this case the density p(x) has the form

p(x) = p(x1, x2) =
1
2π

exp
(
−x2

1 + x2
2

2

)
. (4)
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Due to the fairly simple form of function (4) we are able to obtain the density of the
process X(t) starting from a Gaussian random point of the Euclidean plane R2.

First, we will prove two auxiliary lemmas.

Lemma 1. For arbitrary q > 0 and any integer n ≥ 0 the following formula holds
∫ 1

0
xn I0(q

√
1− x2) dx = 2(n−1)/2 Γ

(
n + 1

2

)
I(n+1)/2(q)
q(n+1)/2

, (5)

where Iν(x) is the Bessel function of order ν with imaginary argument given by

Iν(x) =
∞∑

k=0

1
k! Γ(ν + k + 1)

(x

2

)2k+ν
. (6)

Proof. Making the substitution z =
√

1− x2 in the integral on the left-hand side of
(5), we obtain

∫ 1

0
xn I0(q

√
1− x2) dx =

∫ 1

0
z (1− z2)(n−1)/2 I0(qz) dz =

=
1
2

∫ 1

0
(1− ξ)(n−1)/2 I0(q

√
ξ) dξ =

=
1
2

∫ 1

0
(1− ξ)(n−1)/2

∞∑

k=0

1
(k!)2

(
q
√

ξ

2

)2k

dξ =

=
1
2

∞∑

k=0

1
(k!)2

(q

2

)2k
∫ 1

0
ξk (1− ξ)(n−1)/2 dξ =

=
1
2

∞∑

k=0

1
(k!)2

(q

2

)2k
B

(
n + 1

2
, k + 1

)
=

=
1
2

∞∑

k=0

1
(k!)2

(q

2

)2k Γ
(

n+1
2

)
Γ(k + 1)

Γ
(

n+1
2 + k + 1

) =

=
1
2

Γ
(

n + 1
2

) ∞∑

k=0

1
k! Γ

(
n+1

2 + k + 1
)

(q

2

)2k
=

=
1
2

Γ
(

n + 1
2

) (
2
q

)(n+1)/2 ∞∑

k=0

1
k! Γ

(
n+1

2 + k + 1
)

(q

2

)2k+(n+1)/2
=

=
1
2

Γ
(

n + 1
2

) (
2
q

)(n+1)/2

I(n+1)/2(q) =

= 2(n−1)/2 Γ
(

n + 1
2

)
I(n+1)/2(q)
q(n+1)/2

.

The lemma is proved. ¤
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Lemma 2. For arbitrary a > 0, b > 0 and q > 0 the following formula holds

∫ 1

0
eax2+bx I0(q

√
1− x2) dx =

=
∞∑

n=0

n∑

k=0

an−k bk

k! (n− k)!
2(2n−k−1)/2 Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(q)
q(2n−k+1)/2

,

(7)

where Iν(x) is the Bessel function of order ν with imaginary argument given by (6).

Proof. By expanding the exponential and applying formula (5) of Lemma 1, we
obtain

∫ 1

0
eax2+bx I0(q

√
1− x2) dx =

∞∑

n=0

1
n!

∫ 1

0
(ax2 + bx)n I0(q

√
1− x2) dx =

=
∞∑

n=0

1
n!

n∑

k=0

Ck
n an−k bk

∫ 1

0
x2n−k I0(q

√
1− x2) dx =

=
∞∑

n=0

n∑

k=0

an−k bk

k! (n− k)!
2(2n−k−1)/2 Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(q)
q(2n−k+1)/2

,

proving (7). The lemma is proved. ¤

The series on the right-hand side of (7) has a fairly complicated form and seem-
ingly cannot be reduced to a more elegant expression. Nevertheless, it enables us to
obtain a series representation of the transition density of X(t).

Now we are able to establish our main result. It is given by the following theorem.

Theorem 1. The transition density of the planar random evolution X(t) started
from a random point x0 with Gaussian density (4) is given by the formula

ϕ(x, t) =
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λt e−λt

2π
e−(‖x‖2+c2t2)/2

∫ 1

0
e(c2t2/2)ξ2+λtξ I0(ct‖x‖

√
1− ξ2) dξ.

(8)

The density (8) has the following series representation

ϕ(x, t) =
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖) +

λt e−λt

2π
e−‖x‖

2/2×

×
∞∑

n=0

n∑

k=0

(λt)k 2(k+1)/2

k! (n− k)!
(c2t2)n−k Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(ct‖x‖)
(ct‖x‖)(2n−k+1)/2

.

(9)



THE DISTRIBUTION OF A PLANAR RANDOM EVOLUTION . . . 83

Proof. According to (3) and taking into account (2) and (4), we have

ϕ(x, t) = ϕ(x1, x2, t) =

=
e−λt

4π2ct

∫∫

R2

exp
(
−ξ2

1 + ξ2
2

2

)
δ(c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2) dξ1 dξ2+

+
λe−λt

4π2c

∫∫

R2

exp
(

λ
c

√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

)
√

c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2
exp

(
−ξ2

1 + ξ2
2

2

)
×

×Θ
(
ct−

√
(x1 − ξ1)2 + (x2 − ξ2)2

)
dξ1 dξ2 =

=
e−λt

4π2ct

∫∫

R2

exp
(
−(x1 − ξ1)2 + (x2 − ξ2)2

2

)
δ(c2t2 − (ξ2

1 + ξ2
2)) dξ1 dξ2+

+
λe−λt

4π2c

∫∫

R2

exp
(

λ
c

√
c2t2 − (ξ2

1 + ξ2
2)

)
√

c2t2 − (ξ2
1 + ξ2

2)
exp

(
−(x1 − ξ1)2 + (x2 − ξ2)2

2

)
×

×Θ
(

ct−
√

ξ2
1 + ξ2

2

)
dξ1 dξ2.

By changing to the polar coordinates ξ1 = ρ cosα, ξ2 = ρ sinα, in both integrals,
we obtain

ϕ(x, t) =
e−λt

4π2ct

∫ ∞

0
dρ

{
ρ δ(c2t2 − ρ2)×

×
∫ 2π

0
exp

(
−(x1 − ρ cosα)2 + (x2 − ρ sinα)2

2

)
dα

}
+

+
λe−λt

4π2c

∫ ∞

0
dρ

{ρ exp
(

λ
c

√
c2t2 − ρ2

)
√

c2t2 − ρ2
Θ(ct− ρ)×

×
∫ 2π

0
exp

(
−(x1 − ρ cosα)2 + (x2 − ρ sinα)2

2

)
dα

}
.

(10)

Let’s evaluate separately the interior integral in (10):
∫ 2π

0
exp

(
−(x1 − ρ cosα)2 + (x2 − ρ sinα)2

2

)
dα =

=
∫ 2π

0
exp

(
−1

2
[
x2

1 + x2
2 + ρ2 − 2ρ(x1 cosα + x2 sinα)

])
dα =

= e−(x2
1+x2

2+ρ2)/2

∫ 2π

0
eρ(x1 cos α+x2 sin α) dα =

= 2π e−(‖x‖2+ρ2)/2 I0(ρ‖x‖).
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Substituting this into (10) we obtain

ϕ(x, t) =
e−λt

2πct

∫ ∞

0
ρ δ(c2t2 − ρ2) e−(‖x‖2+ρ2)/2 I0(ρ‖x‖)dρ+

+
λe−λt

2πc

∫ ∞

0
ρ
exp

(
λ
c

√
c2t2 − ρ2

)
√

c2t2 − ρ2
Θ(ct− ρ)e−(‖x‖2+ρ2)/2I0(ρ‖x‖)dρ =

=
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λe−λt

2πc
e−‖x‖

2/2

∫ ct

0
ρ

exp
(

λ
c

√
c2t2 − ρ2

)
√

c2t2 − ρ2
e−ρ2/2 I0(ρ‖x‖) dρ

Making the substitution z =
√

c2t2 − ρ2 in the last integral, we obtain

ϕ(x, t) =
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λe−λt

2πc
e−(‖x‖2+c2t2)/2

∫ ct

0
e(λ/c)z ez2/2 I0(‖x‖

√
c2t2 − z2) dz =

=
e−λt

2π
e−(‖x‖2+c2t2)/2 I0(ct‖x‖)+

+
λt e−λt

2π
e−(‖x‖2+c2t2)/2

∫ 1

0
e(c2t2/2)ξ2+λtξ I0(ct‖x‖

√
1− ξ2) dξ,

(11)

proving (8).
According to Lemma 2, the last integral in (11) is

∫ 1

0
e(c2t2/2)ξ2+λtξ I0(ct‖x‖

√
1− ξ2) dξ =

=
∞∑

n=0

n∑

k=0

2(2n−k−1)/2

k!(n− k)!

(
c2t2

2

)n−k

(λt)k Γ
(

2n− k + 1
2

)
I(2n−k+1)/2(ct‖x‖)
(ct‖x‖)(2n−k+1)/2

=

=
∞∑

n=0

n∑

k=0

(λt)k 2(k+1)/2

k! (n− k)!
(c2t2)n−k Γ

(
2n− k + 1

2

)
I(2n−k+1)/2(ct‖x‖)
(ct‖x‖)(2n−k+1)/2

.

Substituting this into (11) we obtain (9).
It remains to check that the (non-negative) function ϕ(x, t) given by (8) is really

the density of the process. For this we should show that for any t > 0
∫

R2

ϕ(x, t) µ(dx) = 1. (12)
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We have
∫

R2

e−‖x‖
2/2 I0(ct‖x‖) µ(dx) =

∫∫

R2

e−(x2
1+x2

2)/2 I0(ct
√

x2
1 + x2

2) dx1 dx2 =

=
∫ ∞

0
dr

∫ 2π

0
dθ

{
r e−r2/2 I0(ctr)

}
= 2π

∫ ∞

0
r e−r2/2 I0(ctr) dr =

= π

∫ ∞

0
e−z/2 I0(ct

√
z) dz = (see[1], Formula 6.643(2))

=
2π
√

2
ct

ec2t2/4 M−1/2,0

(
c2t2

2

)
,

where Mξ,η(z) is the Whittaker function. By applying now [1], Formula 9.220(2),
we reduce the Whittaker function on the right-hand side of the last equality to the
degenerated hypergeometric function and obtain

∫

R2

e−‖x‖
2/2 I0(ct‖x‖) µ(dx) = 2πΦ

(
1; 1;

c2t2

2

)
= 2π ec2t2/2. (13)

From (13) it also follows that
∫

R2

e−‖x‖
2/2 I0(ct

√
1− ξ2 ‖x‖) µ(dx) = 2π ec2t2(1−ξ2)/2. (14)

Therefore, by taking into account (13) and (14), we obtain

∫

R2

ϕ(x, t) µ(dx) =
e−λt

2π
e−c2t2/2

∫

R2

e−‖x‖
2/2 I0(ct‖x‖) µ(dx)+

+
λte−λt

2π
e−c2t2/2

∫ 1

0
e(c2t2/2)ξ2+λtξ





∫

R2

e−‖x‖
2/2I0(ct

√
1− ξ2‖x‖) µ(dx)



 dξ =

=
e−λt

2π
e−c2t2/2 2πec2t2/2 +

λte−λt

2π
e−c2t2/2

∫ 1

0
e(c2t2/2)ξ2+λtξ 2πec2t2(1−ξ2)/2dξ =

= e−λt + λt e−λt

∫ 1

0
eλtξ dξ = e−λt + e−λt

(
eλt − 1

)
= 1,

proving (12). The theorem is completely proved. ¤

Remark 1. We have supposed that the start point x0 was a two-dimensional ran-
dom vector whose coordinates are the independent standard random variables with
Gaussian density (4). However, we can consider in the same manner the case when
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the coordinates of the start point x0 are some dependent Gaussian random variables
with given characteristics (a1, σ1) and (a2, σ2), respectively. In this case the density
of x0 has the form

p(x) = p(x1, x2) =
1

2πσ1σ2

√
1− r2

×

× exp
[
− 1

2(1− r2)

{
(x1 − a1)2

σ2
1

− 2r
(x1 − a1)(x2 − a2)

σ1σ2
+

(x2 − a2)2

σ2
2

}]
,

(15)
−1 < r < 1.

The similar analysis can be done to evaluate the convolution (3) of the transition
density (2) with Gaussian density (15), however the computations will be much more
difficult and tedious.
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