Applications of the integral operator to the class of meromorphic functions

Camelia Mădălina Bălăeți

Abstract. By using the Sălăgean integral operator $I^n f(z)$, $z \in U$, we introduce a class of holomorphic functions denoted by $\Sigma_k(\alpha, n)$ and we obtain an inclusion relation related to this class and some differential subordinations.

Mathematics subject classification: 30C45.

Keywords and phrases: Differential subordination, integral operator, meromorphic function.

1 Introduction and preliminaries

We denote the complex plane by \mathbb{C} and the open unit disc by U

$$U = \{z \in \mathbb{C} : |z| < 1\}$$

with $\dot{U} = U - \{0\}$.

Let $\mathcal{H}(U)$ denote the class of holomorphic functions in U. For $a \in \mathbb{C}$ and $n \in \mathbb{N}^*$ we have

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U) : f(z) = a + a_n z^n + \dots, \ z \in U \},\$$
$$A_n = \{ f \in \mathcal{H}(U) : f(z) = z + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

with $A_1 = A$.

For integer $k \ge 0$, denote by Σ_k the class of meromorphic functions, defined in \dot{U} , which are of the form

$$f(z) = \frac{1}{z} + \sum_{n=k}^{\infty} a_n z^n.$$

A function $f \in \mathcal{H}(U)$ is said to be convex if it is univalent and f(U) is a convex domain. The function f is convex if and only if $f'(0) \neq 0$ and $\operatorname{Re}\left[\frac{zf''(z)}{f'(z)} + 1\right] > 0$, for $z \in U$ (see [2]).

We denote

$$K = \left\{ f \in A, \operatorname{Re}\left[\frac{zf''(z)}{f'(z)} + 1\right] > 0, \ z \in U \right\}$$

the set of convex functions.

[©] Camelia Mădălina Bălăeți, 2009

Let f and g be two analytic functions in U. The function f is said to be subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1, and such that $f(z) = g(w(z)), z \in U$.

If g is univalent, then $f \prec g$ if f(0) = g(0) and $f(U) \subset g(U)$.

Definition 1 ([2]). Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let *h* be univalent in *U*. If *p* is analytic in *U* and satisfies the (second-order) differential subordination

$$\psi(p(z), zp'(z), z^2 p''(z); z) \prec h(z), \ z \in U$$
(1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, if $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec p$ for all dominants q of (1) is said to be the best dominant of (1).

Note that the best dominant is unique up to a rotation of U.

If we require the more restrictive condition $p \in \mathcal{H}[a, n]$, then p will be called an (a, n) solution, q an (a, n) dominant and \tilde{q} the best (a, n) dominant.

We will need the following lemma, which is due to D.J.Hallenbeck and St. Ruscheweyh.

Lemma 1 ([1]). Let h be a convex in U, with $h(0) = a, \gamma \neq 0$ and $\operatorname{Re}\gamma \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z), \ z \in U$$

then

$$p(z) \prec q(z) \prec h(z)$$

where

$$q(z) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h(t) t^{\frac{\gamma}{n}-1} dt$$

The function q is convex and it is the best (a, n) dominant.

The following lemma is due to S.S. Miller and P.T. Mocanu.

Lemma 2 ([3]). Let q be a convex function in U and let

$$h(z) = q(z) + n\beta z q'(z)$$

where $\beta > 0$ and n is a positive integer. If $p \in \mathcal{H}[q(0), n]$ and

$$p(z) + \beta z p'(z) \prec h(z),$$

then

 $p(z) \prec q(z)$

and this result is sharp.

Lemma 3 ([2]). Let $f \in A$, $\gamma > 1$ and F is given by

$$F(z) = \frac{1+\gamma}{z^{\frac{1}{\gamma}}} \int_0^z f(t) t^{\frac{1}{\gamma}-1} dt$$

If

$$\operatorname{Re} \frac{zf''(z)}{f'(z)} + 1 > -\frac{1}{2}, \ z \in U$$

then $F \in K$.

Definition 2 ([5]). For $f \in \mathcal{H}(U)$, f(0) = 0 and $n \in \mathbb{N}$ we define the operator $I^n f$ by

$$I^{0}f(z) = f(z),$$

$$I^{1}f(z) = If(z) = \int_{0}^{z} f(t)t^{-1}dt,$$

$$I^{n}f(z) = I[I^{n-1}f(z)], \ z \in U.$$

Remark 1. For n = 1, $I^n f$ is the Alexander operator.

Remark 2. If we denote $l(z) = -\log(1-z)$, then

$$I^n f(z) = [\underbrace{(l * l * \dots * l)}_{n-times} * f](z), \ f \in \mathcal{H}(U), f(0) = 0.$$

By "*" we denote the Hadamard product or convolution (i.e. if $f(z) = \sum_{j=0}^{\infty} a_j z^j$, $g(z) = \sum_{j=0}^{\infty} b_j z^j$, then $(f * g)(z) = \sum_{j=0}^{\infty} a_j b_j z^j$).

Remark 3. $I^n f(z) = \int_0^z \int_0^{t_n} \dots \int_0^{t_2} \frac{f(t_1)}{t_1 t_2 \dots t_n} dt_1 dt_2 \dots dt_n.$

Remark 4. $D^n I^n f(z) = I^n D^n f(z) = f(z), f \in \mathcal{H}(U), f(0) = 0$, where $D^n f$ is the Sălăgean differential operator.

2 Main results

Definition 3. If $0 \le \alpha < 1$, k positive integer and $n \in \mathbb{N}$, let $\Sigma_k(\alpha, n)$ denote the class of functions $f \in \Sigma_k$ which satisfy the inequality

$$\operatorname{Re}\left[I^{n}(z^{2}f(z))\right]' > \alpha, \ z \in \dot{U}.$$
(2)

Theorem 1. If $0 \le \alpha < 1$, k positive integer and $n \in \mathbb{N}$, then

$$\Sigma_k(\alpha, n) \subset \Sigma_k(\delta, n+1), \tag{3}$$

where

$$\delta = \delta(\alpha, n) = 2\alpha - 1 + 2(1 - \alpha)\frac{1}{k+1}\beta\left(\frac{1}{k+1}\right)$$

and

$$\beta(x) = \int_0^z \frac{t^{x-1}}{1+t} dt.$$

Proof. Assume that $f \in \Sigma_k(\alpha, n)$. By using the properties of the operator $I^n f$ we have

$$I^{n}(z^{2}f(z)) = z \left[I^{n+1}(z^{2}f(z)) \right]', \ z \in \dot{U}.$$
(4)

Differentiating this equality, we obtain

$$\left[I^{n}(z^{2}f(z))\right]' = \left[I^{n+1}(z^{2}f(z))\right]' + z\left[I^{n+1}(z^{2}f(z))\right]''.$$
(5)

If we let

$$[I^{n+1}(z^2 f(z))]' = p(z)$$

with $p(z) \in \mathcal{H}[1, k+1], z \in \dot{U}$, then (5) becomes

$$\left[I^{n+1}(z^2 f(z))\right]' = p(z) + zp'(z), \ z \in \dot{U}.$$

Since $f \in \Sigma_k(\alpha, n)$, from Definition 3 we have

$$\operatorname{Re}[p(z) + zp'(z)] > \alpha, \ z \in \dot{U}$$

which is equivalent to

$$p(z) + zp'(z) \prec \frac{1 + (2\alpha - 1)z}{1 + z} \equiv h(z), \ z \in \dot{U}.$$

Therefore, from Lemma 1 for $\gamma = 1$, it results that

$$p(z) \prec q(z) \prec h(z), \ z \in U,$$

where

$$q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_0^z \frac{1+(2\alpha-1)t}{1+t} t^{\frac{1}{k+1}-1} dt$$
$$= (2\alpha-1) + 2(1-\alpha)\frac{1}{k+1}\beta\left(\frac{1}{k+1}\right)\frac{1}{z^{\frac{1}{k+1}}}.$$

Moreover, the function q is convex and is the best dominant.

From $p(z) \prec q(z), \ z \in \dot{U}$ it results that

$$\operatorname{Re}p(z) > \operatorname{Re}q(1) = \delta = (2\alpha - 1) + 2(1 - \alpha)\frac{1}{k + 1}\beta\left(\frac{1}{k + 1}\right).$$

But

$$[I^{n+1}(z^2 f(z))]' = p(z)$$

and

$$\operatorname{Re}\left[I^{n+1}(z^2f(z))\right]' > \delta_{z}$$

from Definition 3 we have $f \in \Sigma_k(\delta, n+1)$.

Theorem 2. Let q be a convex function, q(0) = 1 and let h be a function such that

$$h(z) = q(z) + z(k+1)q'(z), \ z \in U.$$

If $f \in \Sigma_k(\alpha, n)$ and satisfies the differential subordination

$$\left[I^n(z^2f(z))\right]' \prec h(z), \ z \in \dot{U}$$
(6)

then

$$\left[I^{n+1}(z^2f(z))\right]' \prec q(z), \ z \in \dot{U}$$

and this result is sharp.

Proof. By using the properties of the operator $I^n f$ we have

$$I^{n}(z^{2}f(z)) = z \left[I^{n+1}(z^{2}f(z)) \right]', \ z \in \dot{U}.$$
(7)

By differentiating (7), we obtain

$$\left[I^{n}(z^{2}f(z))\right]' = \left[I^{n+1}(z^{2}f(z))\right]' + z\left[I^{n+1}(z^{2}f(z))\right]''.$$
(8)

If we let

$$\left[I^{n+1}(z^2f(z))\right]' = p(z),$$

with $p(z) \in \mathcal{H}[1, k+1]$ then we obtain

$$p(z) + zp'(z) \prec h(z) = q(z) + z(k+1)q'(z), \ z \in U.$$

By using Lemma 2 for $\beta = 1$, we have

$$p(z) \prec q(z), \ z \in U,$$

or

$$\left[I^{n+1}(z^2f(z))\right]' \prec q(z), \ z \in \dot{U}$$

and this result is sharp.

Theorem 3. Let q be a convex function with q(0) = 1 and

$$h(z) = q(z) + z(k+1)q'(z), \ z \in U_{z}$$

If $f \in \Sigma_k(\alpha, n)$ and satisfies the differential subordination

$$\left[I^n(z^2 f(z))\right]' \prec h(z), \ z \in \dot{U}$$
(9)

then

$$\frac{I^n(z^2f(z))}{z} \prec q(z), \ z \in \dot{U}$$

and this result is sharp.

Proof. We let

$$p(z) = \frac{I^n(z^2 f(z))}{z}, \ z \in \dot{U}.$$
 (10)

By differentiating this relation, we obtain

$$[I^n(z^2f(z))]' = p(z) + zp'(z), \ z \in \dot{U}.$$

Then (9) becomes

$$p(z) + zp'(z) \prec h(z) = q(z) + z(k+1)q'(z), \ z \in \dot{U}.$$

By using Lemma 2 we have

$$p(z) \prec q(z), \ z \in \dot{U}$$

i.e.

$$\frac{I^n(z^2f(z))}{z} \prec q(z), \ z \in \dot{U}$$

and this result is sharp.

Theorem 4. Let $h \in \mathcal{H}(U)$, with h(0) = 1, and $h'(0) \neq 0$ which satisfies the inequality

$$\operatorname{Re}\left[1+\frac{zh''(z)}{h'(z)}\right] > -\frac{1}{2}, \ z \in U.$$

If $f \in \Sigma_k(\alpha, n)$ and satisfies the differential subordination

$$\left[I^n(z^2f(z))\right]' \prec h(z), \ z \in \dot{U}$$
(11)

then

$$\left[I^{n+1}(z^2f(z))\right]' \prec g(z), \ z \in \dot{U}$$

where

$$q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_0^z h(t)t^{\frac{1}{k+1}-1} dt, \ z \in U.$$
 (12)

The function q is convex and it is the best (1, k + 1) dominant.

By using the properties of the operator $I^n f$ we let

$$I^{n}(z^{2}f(z)) = z \left[I^{n+1}(z^{2}f(z)) \right]', \ z \in \dot{U}.$$
(13)

If we let

$$[I^{n+1}(z^2 f(z))]' = p(z)$$

with

$$p(z) \in \mathcal{H}[1, k+1]$$

and differentiating (13) we obtain

$$[I^n(z^2f(z))]' = p(z) + zp'(z), \ z \in \dot{U}$$

and (11) becomes

$$p(z) + zp'(z) \prec h(z), \ z \in \dot{U}.$$

By using Lemma 1 for $\gamma = 1$ and n = k + 1 we have

$$p(z) \prec q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_0^z h(t)t^{\frac{1}{k+1}-1}dt, \ z \in U,$$

i.e.

$$\left[I^{n}(z^{2}f(z))\right]' \prec q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_{0}^{z} h(t)t^{\frac{1}{k+1}-1} dt, \ z \in U.$$

Moreover the function q is the best (1, k + 1) dominant.

Theorem 5. Let $h \in H(U)$ with h(0) = 1, $h'(0) \neq 0$, which verifies the inequality

$$\operatorname{Re}\left[1+\frac{zh''(z)}{h'(z)}\right] > -\frac{1}{2}, \ z \in U.$$

If $f \in \Sigma_k(\alpha, n)$ and satisfies the differential subordination

$$\left[I^n(z^2f(z))\right]' \prec h(z), \ z \in \dot{U}$$
(14)

then

$$\frac{I^n(z^2f(z))}{z} \prec q(z), \ z \in \dot{U}$$

where

$$q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_0^z h(t)t^{\frac{1}{k+1}-1} dt, \ z \in U.$$

The function q is convex and is the best (1, k+1) dominant.

Proof. We let

$$p(z) = \frac{I^n(z^2 f(z))}{z}, \ z \in \dot{U}$$
 (15)

with $p(z) \in \mathcal{H}[1, k+1]$.

By differentiating (15), we obtain

$$\left[I^{n}(z^{2}f(z))\right]' = p(z) + zp'(z), \ z \in \dot{U},$$
(16)

then (14) becomes

$$p(z) + zp'(z) \prec h(z), \ z \in \dot{U}.$$

By using Lemma 1, we have

$$p(z) \prec q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_0^z h(t)t^{\frac{1}{k+1}-1}dt, \ z \in U,$$

i.e.

$$\left[I^{n}(z^{2}f(z))\right]' \prec q(z) = \frac{1}{(k+1)z^{\frac{1}{k+1}}} \int_{0}^{z} h(t)t^{\frac{1}{k+1}-1} dt, \ z \in U.$$

Moreover the function q is the best (1, k + 1) dominant.

Acknowledgements This work is supported by Romanian Ministry of Education and Research, CNCSIS 1463/2008.

References

- HALLENBECK D.J., RUSCHWEYH S. Subordination by convex functions. Proc. Amer. Soc., 1975, 52, 191–195.
- [2] MILLER S.S., MOCANU P.T. Differential Subordinations. Theory and Applications. Marcel Dekker Inc., New York, Basel, 2000.
- [3] MILLER S.S., MOCANU P.T., On some classes of first-order differential subordinations. Michigan Math. J., 1985, 32, 185–195.
- [4] OROS G.I. A new application of Sălăgean differential operator at the class of meromorphic functions. An. Univ. Oradea Fasc. Mat., 2004, X, 123–132.
- [5] SĂLĂGEAN G.ST. Subclasses of univalent functions. Lecture Notes in Math., Springer Verlag, 1983, 1013, 362–372.

University of Petroşani Universității Str., No. 20 332006 Petroşani, Romania E-mail: *madalina@upet.ro* Received April 27, 2009

44