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Applications of the integral operator to the class
of meromorphic functions

Camelia Mădălina Bălăeţi

Abstract. By using the Sălăgean integral operator Inf(z), z ∈ U , we introduce a
class of holomorphic functions denoted by Σk(α, n) and we obtain an inclusion relation
related to this class and some differential subordinations.
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1 Introduction and preliminaries

We denote the complex plane by C and the open unit disc by U

U = {z ∈ C : |z| < 1}

with
.
U = U − {0} .

Let H(U) denote the class of holomorphic functions in U .
For a ∈ C and n ∈ N∗ we have

H[a, n] = {f ∈ H(U) : f(z) = a + anzn + . . . , z ∈ U} ,

An =
{
f ∈ H(U) : f(z) = z + an+1z

n+1 + . . . , z ∈ U
}

with A1 = A.
For integer k ≥ 0, denote by Σk the class of meromorphic functions, defined in

.
U , which are of the form

f(z) =
1
z

+
∞∑

n=k

anzn.

A function f ∈ H(U) is said to be convex if it is univalent and f(U) is a convex

domain. The function f is convex if and only if f ′(0) 6= 0 and Re
[
zf ′′(z)
f ′(z)

+ 1
]

> 0,

for z ∈ U (see [2]).
We denote

K =
{

f ∈ A, Re
[
zf ′′(z)
f ′(z)

+ 1
]

> 0, z ∈ U

}

the set of convex functions.
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Let f and g be two analytic functions in U . The function f is said to be subor-
dinate to g, written f ≺ g or f(z) ≺ g(z), if there exists a function w analytic in U ,
with w(0) = 0 and |w(z)| < 1, and such that f(z) = g(w(z)), z ∈ U .

If g is univalent, then f ≺ g if f(0) = g(0) and f(U) ⊂ g(U).

Definition 1 ([2]). Let ψ : C3×U → C and let h be univalent in U . If p is analytic
in U and satisfies the (second-order) differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U (1)

then p is called a solution of the differential subordination. The univalent function
q is called a dominant of the solutions of the differential subordination, if p ≺ q for
all p satisfying (1). A dominant

∼
q that satisfies

∼
q ≺ p for all dominants q of (1) is

said to be the best dominant of (1).

Note that the best dominant is unique up to a rotation of U .
If we require the more restrictive condition p ∈ H[a, n], then p will be called an

(a, n) solution, q an (a, n) dominant and
∼
q the best (a, n) dominant.

We will need the following lemma, which is due to D. J. Hallenbeck and
St.Ruscheweyh.

Lemma 1 ([1]). Let h be a convex in U , with h(0) = a, γ 6= 0 and Reγ ≥ 0. If
p ∈ H[a, n] and

p(z) +
zp′(z)

γ
≺ h(z), z ∈ U

then
p(z) ≺ q(z) ≺ h(z)

where
q(z) =

γ

nz
γ
n

∫ z

0
h(t)t

γ
n
−1dt.

The function q is convex and it is the best (a, n) dominant.

The following lemma is due to S. S. Miller and P.T. Mocanu.

Lemma 2 ([3]). Let q be a convex function in U and let

h(z) = q(z) + nβzq′(z)

where β > 0 and n is a positive integer. If p ∈ H[q(0), n] and

p(z) + βzp′(z) ≺ h(z),

then
p(z) ≺ q(z)

and this result is sharp.
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Lemma 3 ([2]). Let f ∈ A, γ > 1 and F is given by

F (z) =
1 + γ

z
1
γ

∫ z

0
f(t)t

1
γ
−1

dt.

If

Re
zf ′′(z)
f ′(z)

+ 1 > −1
2
, z ∈ U

then F ∈ K.

Definition 2 ([5]). For f ∈ H(U), f(0) = 0 and n ∈ N we define the operator
Inf by

I0f(z) = f(z),

I1f(z) = If(z) =
∫ z

0
f(t)t−1dt,

Inf(z) = I[In−1f(z)], z ∈ U.

Remark 1. For n = 1, Inf is the Alexander operator.

Remark 2. If we denote l(z) = − log(1− z), then

Inf(z) = [(l ∗ l ∗ · · · ∗ l)︸ ︷︷ ︸
n−times

∗f ](z), f ∈ H(U), f(0) = 0.

By ” ∗ ” we denote the Hadamard product or convolution (i.e. if f(z) =∑∞
j=0 ajz

j , g(z) =
∑∞

j=0 bjz
j , then (f ∗ g)(z) =

∑∞
j=0 ajbjz

j).

Remark 3. Inf(z) =
∫ z
0

∫ tn
0 . . .

∫ t2
0

f(t1)
t1t2...tn

dt1dt2 . . . dtn.

Remark 4. DnInf(z) = InDnf(z) = f(z), f ∈ H(U), f(0) = 0, where Dnf is the
Sălăgean differential operator.

2 Main results

Definition 3. If 0 ≤ α < 1, k positive integer and n ∈ N, let Σk(α, n) denote the
class of functions f ∈ Σk which satisfy the inequality

Re
[
In(z2f(z))

]′
> α, z ∈ U̇ . (2)
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Theorem 1. If 0 ≤ α < 1, k positive integer and n ∈ N, then

Σk(α, n) ⊂ Σk(δ, n + 1), (3)

where

δ = δ(α, n) = 2α− 1 + 2(1− α)
1

k + 1
β

(
1

k + 1

)

and

β(x) =
∫ z

0

tx−1

1 + t
dt.

Proof. Assume that f ∈ Σk(α, n). By using the properties of the operator Inf we
have

In(z2f(z)) = z
[
In+1(z2f(z))

]′
, z ∈ U̇ . (4)

Differentiating this equality, we obtain
[
In(z2f(z))

]′ = [
In+1(z2f(z))

]′ + z
[
In+1(z2f(z))

]′′
. (5)

If we let [
In+1(z2f(z))

]′ = p(z)

with p(z) ∈ H[1, k + 1], z ∈ U̇ , then (5) becomes

[
In+1(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇ .

Since f ∈ Σk(α, n), from Definition 3 we have

Re[p(z) + zp′(z)] > α, z ∈ U̇

which is equivalent to

p(z) + zp′(z) ≺ 1 + (2α− 1)z
1 + z

≡ h(z), z ∈ U̇ .

Therefore, from Lemma 1 for γ = 1, it results that

p(z) ≺ q(z) ≺ h(z), z ∈ U̇ ,

where

q(z) =
1

(k + 1)z
1

k+1

∫ z

0

1 + (2α− 1)t
1 + t

t
1

k+1
−1dt

= (2α− 1) + 2(1− α)
1

k + 1
β

(
1

k + 1

)
1

z
1

k+1

.

Moreover, the function q is convex and is the best dominant.
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From p(z) ≺ q(z), z ∈ U̇ it results that

Rep(z) > Req(1) = δ = (2α− 1) + 2(1− α)
1

k + 1
β

(
1

k + 1

)
.

But [
In+1(z2f(z))

]′ = p(z)

and
Re

[
In+1(z2f(z))

]′
> δ,

from Definition 3 we have f ∈ Σk(δ, n + 1).

Theorem 2. Let q be a convex function, q(0) = 1 and let h be a function such that

h(z) = q(z) + z(k + 1)q′(z), z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination

[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (6)

then [
In+1(z2f(z))

]′ ≺ q(z), z ∈ U̇

and this result is sharp.

Proof. By using the properties of the operator Inf we have

In(z2f(z)) = z
[
In+1(z2f(z))

]′
, z ∈ U̇ . (7)

By differentiating (7), we obtain

[
In(z2f(z))

]′ = [
In+1(z2f(z))

]′ + z
[
In+1(z2f(z))

]′′
. (8)

If we let [
In+1(z2f(z))

]′ = p(z),

with p(z) ∈ H[1, k + 1] then we obtain

p(z) + zp′(z) ≺ h(z) = q(z) + z(k + 1)q′(z), z ∈ U̇ .

By using Lemma 2 for β = 1, we have

p(z) ≺ q(z), z ∈ U̇ ,

or [
In+1(z2f(z))

]′ ≺ q(z), z ∈ U̇

and this result is sharp.
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Theorem 3. Let q be a convex function with q(0) = 1 and

h(z) = q(z) + z(k + 1)q′(z), z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination
[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (9)

then
In(z2f(z))

z
≺ q(z), z ∈ U̇

and this result is sharp.

Proof. We let

p(z) =
In(z2f(z))

z
, z ∈ U̇ . (10)

By differentiating this relation, we obtain
[
In(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇ .

Then (9) becomes

p(z) + zp′(z) ≺ h(z) = q(z) + z(k + 1)q′(z), z ∈ U̇ .

By using Lemma 2 we have

p(z) ≺ q(z), z ∈ U̇

i.e.
In(z2f(z))

z
≺ q(z), z ∈ U̇

and this result is sharp.

Theorem 4. Let h ∈ H(U), with h(0) = 1, and h′(0) 6= 0 which satisfies the
inequality

Re
[
1 +

zh′′(z)
h′(z)

]
> −1

2
, z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination
[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (11)

then [
In+1(z2f(z)

]′ ≺ g(z), z ∈ U̇

where
q(z) =

1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U. (12)

The function q is convex and it is the best (1, k + 1) dominant.
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Proof. By applying Lemma 3 for the function given by (12) and function h, for
γ = k + 1, we obtain that the function q is convex.

By using the properties of the operator Inf we let

In(z2f(z)) = z
[
In+1(z2f(z))

]′
, z ∈ U̇ . (13)

If we let [
In+1(z2f(z))

]′ = p(z)

with
p(z) ∈ H[1, k + 1]

and differentiating (13) we obtain

[
In(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇

and (11) becomes
p(z) + zp′(z) ≺ h(z), z ∈ U̇ .

By using Lemma 1 for γ = 1 and n = k + 1 we have

p(z) ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U,

i.e. [
In(z2f(z))

]′ ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U.

Moreover the function q is the best (1, k + 1) dominant.

Theorem 5. Let h ∈ H(U) with h(0) = 1, h′(0) 6= 0, which verifies the inequality

Re
[
1 +

zh′′(z)
h′(z)

]
> −1

2
, z ∈ U.

If f ∈ Σk(α, n) and satisfies the differential subordination

[
In(z2f(z))

]′ ≺ h(z), z ∈ U̇ (14)

then
In(z2f(z))

z
≺ q(z), z ∈ U̇

where

q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U.

The function q is convex and is the best (1, k + 1) dominant.
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Proof. We let

p(z) =
In(z2f(z))

z
, z ∈ U̇ (15)

with p(z) ∈ H[1, k + 1].
By differentiating (15), we obtain

[
In(z2f(z))

]′ = p(z) + zp′(z), z ∈ U̇ , (16)

then (14) becomes
p(z) + zp′(z) ≺ h(z), z ∈ U̇ .

By using Lemma 1, we have

p(z) ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U,

i.e. [
In(z2f(z))

]′ ≺ q(z) =
1

(k + 1)z
1

k+1

∫ z

0
h(t)t

1
k+1

−1dt, z ∈ U.

Moreover the function q is the best (1, k + 1) dominant.
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