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Optimal control for one complex dynamic system, I

Alla Albu, Vladimir Zubov

Abstract. The optimal control problem of the metal solidification in casting is con-
sidered. The process is modeled by a three-dimensional two-phase initial-boundary
value problem of the Stefan type. A numerical algorithm is presented for solving the
direct problem. The optimal control problem was solved numerically using the gradi-
ent method. The gradient of the cost function was found with the help of conjugate
problem. The discreet conjugate problem was posed with the help of Fast Automatic
Differentiation technique.
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1 Introduction

An important class of heat transfer problems is that describing processes in which
the substance under study undergoes phase transitions accompanied by heat release
or absorption (Stefan problems). A key feature of these problems is that they involve
a moving interface between two phases (liquid and solid). The law of motion of the
interface is unknown in advance and is to be determined. It is on this interface that
heat release or absorption associated with phase transitions occurs. The thermal
properties of the substance on the different sides of the moving interface can be
different. Problems of this class are noticeably more complicated than those not
involving phase transitions.

We consider an interesting problem of this class, namely, the optimal control of
the process of solidification in metal casting. Figure 1 shows the experimental setup
for metal solidification. It consists of upper and lower parts. The upper part consists
of a furnace with a mold moving inside. The lower part is a cooling bath consisting of
a large tank filled with liquid aluminum whose temperature is somewhat higher than
the aluminum melting point. The cooling of liquid metal in the furnace proceeds
as follows. On the one hand, the mold is slowly immersed in the low-temperature
liquid aluminum, which causes the solidification of the metal. On the other hand,
the mold gains heat from the walls of the furnace, which prevents the solidification
process from proceeding too fast. The optimal control problem is to choose a regime
of metal cooling and solidification at which the solidification front has a preset shape
(or is close to it) and moves sufficiently slowly (at a speed close to the preset one).

An important part of the optimal control problem is the direct problem (of
finding the temperature at each point of the metal and determining the solidification
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front). We describe the mathematical formulation of the direct problem, its finite-
difference approximation, and a numerical algorithm for solving the direct problem.
The problem was studied for an object of the simplest shape (a parallelepiped) and
for an actual object of practice interest (Fig. 2). While discussing the numerical
results, we give primary attention to the evolution of the solidification front and to
how it is affected by the parameters of the problem.

The control function was approximated by a piecewise constant function. The
minimum value of a cost function was finding numerically with use of gradient
methods. The gradient of the cost function was found with the help of conjugate
problem. The discreet conjugate problem was posed with the help of Fast Automatic
Differentiation technique.

2 Mathematical formulation of the problem

The following optimal control problem of metal solidification in casting is
considered.

A mold with specified outer and inner boundaries is filled with liquid metal (the
longitudinal projections of an actual mold are presented in Fig. 2). The hatched
area in the Fig. 2 depicts the mold wall, and the internal unhatched area shows the
inside space filled with metal. The mold and the metal inside it are heated up to
prescribed temperatures Tform and Tmet, respectively. Next, the mold filled with
metal (which is hereafter referred to as the object) begins to cool gradually under
varying surrounding conditions. The different parts of the mold’s outer boundary are
under different thermal conditions (the laws of heat transfer with the surroundings
are different in these parts). Moreover, the thermal conditions affecting the parts
vary with time.

The process of cooling the object is described by the equation:

ρC
∂T

∂t
=

∂

∂x

(
K

∂T

∂x

)
+

∂

∂y

(
K

∂T

∂y

)
+

∂

∂z

(
K

∂T

∂z

)
, (x, y, z) ∈ Q. (1)

Here x, y, and z are the Cartesian coordinates of a point; t is time; Q is a domain
with a piecewise smooth boundary Γ; T (x, y, z, t) is the substance temperature at
the point with coordinates (x, y, z) at time t; ρ, C and K are the density, heat
capacity, and thermal conductivity of the substance respectively.

The conditions of heat transfer with the surrounding medium are set on the
boundary Γ of Q. As was mentioned above, these conditions depend on the given
surface point and time. However, all the heat transfer conditions can be written in
the general form:

α̃T + β̃Tn = γ̃. (2)

Here α̃, β̃, and γ̃ are given functions of the coordinates (x, y, z) of a point on Γ and

the temperature T (x, y, z, t), and
∂T

∂n
= Tn is the derivative of T in the direction

n – the external normal to the surface Γ. It should be noted that the coefficients
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ρ, C and K in (1) and (2) are different for the metal and the mold. They have the
form:

K(T ) =
{

K1(T ), (x, y, z) ∈ metal,
K2(T ), (x, y, z) ∈ mold,

K1(T ) =





kS , T < T1,
kL − kS

T2 − T1
T +

kST2 − kLT1

T2 − T1
, T1 ≤ T < T2,

kL, T ≥ T2,

K2(T ) =
{

kΦ1 , T ≤ T3,
kΦ2 , T > T3,

ρ(T ) =
{

ρ1(T ), (x, y, z) ∈ metal,
ρΦ, (x, y, z) ∈ mold,

ρ1(T ) =
{

ρS , T < T1,
ρL, T ≥ T2,

C(T ) =
{

C1(T ), (x, y, z) ∈ metal,
cΦ, (x, y, z) ∈ mold,

C1(T ) =
{

cS , T < T1,
cL, T ≥ T2.

The constants cS , cL, cΦ, ρS , ρL, ρΦ, kS , kL, kΦ1 , kΦ2 , T1, T2, and T3 in these
formulas are assumed to be known.

It should be noted that the thermodynamic coefficients have a jump at the metal-
mold interface. Two conditions are set at this surface, namely, the temperature and
the heat flux must be continuous.

Note also that the metal can be simultaneously in two phases: solid and liquid.
The domain separating the phases is determined by a narrow range of temperatures
[T1, T2], in which ρ, C and K change very rapidly.

Thus, the solution to the direct problem consists in determining a function
T (x, y, z, t) that satisfies Eq. (1) in Q, conditions (2) on the outer boundary Γ
of Q, and the continuity conditions for the temperature and the heat flux at the
metal-mold interface.

The optimal control problem is to choose a regime of metal cooling and solidifi-
cation at which the solidification front has a preset shape or is close to it (namely,
a plane orthogonal to the vertical axis of the object) and moves sufficiently slowly
(at a speed close to the preset one). The evolution of the solidification front is af-
fected by numerous parameters (for example, by the furnace temperature, the liquid
aluminum temperature, the depth to which the object is immersed in the liquid
aluminum, the speed at which the mold moves relative to the furnace, etc.). The
solidification front as a function of the velocity of the object is of special interest in
practice.

The speed ũ(t) of the displacement of foundry mold in the melting furnace was
chosen as the control U(t). The cost function is next:

I(U) =
1

t2 − t1

t2∫

t1

∫∫

S

[Zpl(x, y, t)− z∗(t)]2dxdydt. (3)
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Here t1 is the time, when the crystallization front is conceived; t2 is the time, when
the crystallization of metal completes; (x, y, Zpl(x, y, t)) are the real coordinates of
the interface at the time t; (x, y, Z∗(t)) are the desired coordinates of the interface
at the time t; S is the cross section of the mold which is filled by metal. The
control function may be restricted by some prescribed functions U1(t) and U2(t):
U1(t) ≤ U(t) ≤ U2(t).

3 Numerical algorithm for solving the direct problem

The time’s grid is introduced by relations: {tj}, j = 0, J , with the mesh sizes
τ j = tj − tj−1, j = 1, J .

The object being investigated is approximated by the body, which consists of
a finite number of rectangular parallelepipeds. The approximating body is placed
wholly into a certain large parallelepiped. For convenience in the further consider-
ation let us introduce the coordinate system, connected with the moving foundry
mold (see, Fig. 1). Axis Oz let direct vertically upward, the axis Ox will arrange
in the horizontal plane and will direct from left to right, and the axis Oy let select
so the coordinate system Oxyz would be right. The beginning O of this coordinate
system is compatible with the left, nearest to us vertex of the large parallelepiped,
situated on its bottom. In this large parallelepiped a basic non-uniform rectangular
grid is introduced:

{xn}, n = 0, N ; {yi}, i = 0, I; {zl}, l = 0, L;

with the mesh sizes: hx
n = xn+1 − xn, n = 0, N − 1; hy

i = yi+1 − yi, i = 0, I − 1;
hz

l = zl+1 − zl, l = 0, L− 1. This grid is introduced in such a way that all external
surfaces of the approximating body, and also surfaces which separate metal and form
would coincide with the grid surfaces.

Besides the basic grid, the auxiliary grid is built whose surfaces are parallel to
the surfaces of the basic grid and are displaced relative to it with a half-step in all
directions:

x̃0 = x0; x̃n = xn−1 + hx
n−1/2; n = 1, N ; x̃N+1 = xN ;

ỹ0 = y0; ỹi = yi−1 + hy
i−1/2; i = 1, I; ỹI+1 = yI ;

z̃0 = z0; z̃l = zl−1 + hz
l−1/2; l = 1, L; z̃L+1 = zL.

The planes x = x̃n, y = ỹi, and z = z̃l split the object into elementary volumes, or
elementary cells. An elementary cell is assigned by the indices (n, i, l) if the cell’s
vertex nearest to the coordinates origin O coincides with the nodal point (x̃n, ỹi, z̃l).
The volume of such an elementary cell is denoted by Vnil and its outer surface is
denoted by Snil.

Let us assume that the temperature of the medium within an elementary cell is
independent of the spatial coordinates but depends on time. Denote this tempera-
ture by Tnil(t).



OPTIMAL CONTROL FOR ONE COMPLEX DYNAMIC SYSTEM 7

Any elementary cell is either completely filled with a single medium (metal or
mold) or some part is filled with one medium and the remaining part with the other.
Let V 1

nil denote the part of Vnil filled with the metal and V 2
nil denote the part of Vnil

filled with the mold material. Similarly, S1
nil is the part of Snil that is adjacent to

V 1
nil and S2

nil is the part of Snil that is adjacent to V 2
nil.

The algorithm that solves the direct problem is based on the heat balance law
and on the reformulation from the problem in terms of temperature to terms of
enthalpy.

For any volume V with outer boundary S, we have the heat balance law

∫∫∫

V

[
H

(
T (x, y, z, tj+1)

)−H
(
T (x, y, z, tj)

)]
dV =

tj+1∫

tj

∫∫

S

K(T )Tndsdt. (4)

Here, H (T (x, y, z, t)) is the enthalpy function defined as:

H (T (x, y, z, t)) =
{

H1(T ), (x, y, z) ∈ metal,
H2(T ), (x, y, z) ∈ mold,

H1(T ) =





ρScST, T < T1,

ρScS(T2 − T1) + ρSγ

T2 − T1
T − ρSγT1

T2 − T1
, T1 ≤ T < T2,

ρLcL(T − T2) + ρScST2 + ρSγ, T ≥ T2,

(5)

H2(T ) = ρΦcΦT. (6)

Then relation (4) written for an elementary cell indexed by (n, i, l) becomes:
[
V 1

nilH1

(
T j+1

nil

)
+ V 2

nilH2

(
T j+1

nil

)]
−

[
V 1

nilH1

(
T j

nil

)
+ V 2

nilH2

(
T j

nil

)]
=

=

tj+1∫

tj




∫∫

S1
nil

K1(T̃nil(t))(T̃n(t))nilds +
∫∫

S2
nil

K2(T̃nil(t))(T̃n(t))nilds


 dt. (7)

Here T j
nil = Tnil(tj), K1(T̃nil(t))(T̃n(t))nil, and K2(T̃nil(t))(T̃n(t))nil are the heat flux

densities through the cell surface.
The subsequent transformations of (7) are similar to those proposed in [1–3] and

further developed in [4–7].
Let Mnil = V 1

nil/Vnil be the metal volume fraction in the elementary cell indexed
by (n, i, l) and Φnil = V 2

nil/Vnil be the mold volume fraction in this elementary cell.
Define the aggregate enthalpy density in the cell indexed by (n, i, l) at the time

tj as Ej
nil = MnilH1(T

j
nil) + ΦnilH2(T

j
nil). Taking into account (5) and (6), which

define H1(T ) and H2(T ), we obtain an expression for E(T j
nil):

Ej
nil ≡ E(T j

nil) =





anilT
j
nil, T j

nil < T1,

b1
nilT

j
nil − b2

nil, T1 ≤ T j
nil < T2,

d1
nilT

j
nil + d2

nil, T j
nil ≥ T2,
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where
anil = MnilρScS + ΦnilρΦcΦ,

b1
nil = Mnil(ρScS + ρSγ/(T2 − T1)) + ΦnilρΦcΦ, b2

nil = MnilρSγT1/(T2 − T1),

d1
nil = MnilρLcL + ΦnilρΦcΦ, d2

nil = Mnil(ρSγ + (ρScS − ρLcL)T2).

Now, the temperature is defined as a function of Ej
nil (this function is the inverse of

E(T j
nil)):

T j
nil ≡ β(Ej

nil) = βj
nil =





1
anil

Ej
nil, Ej

nil < anilT1,

1
b1
nil

Ej
nil +

b2
nil

b1
nil

, anilT1 ≤ Ej
nil < d1

nilT2 + d2
nil,

1
d1

nil

Ej
nil −

d2
nil

d1
nil

, Ej
nil ≥ d1

nilT2 + d2
nil.

The functions K1(T
j
nil) and K2(T

j
nil) can be expressed in terms of enthalpy:

K1(T
j
nil)≡Ω1(E

j
nil)=





kS , Ej
nil < ρScST1≡E1,

kL − kS

E2 − E1
Ej

nil+
kSE2 − kLE1

E2 − E1
, E1 ≤ Ej

nil < ρS(cST2 + γ)≡E2,

kL, Ej
nil ≥ E2,

K2(T
j
nil)≡Ω2(E

j
nil)=





kΦ1 , Ej
nil <ρΦcΦ(T3 − δ)≡E3,

kΦ2 − kΦ1

E4 − E3
Ej

nil+
kΦ1E4 − kΦ2E3

E4 −E3
, E3≤Ej

nil <ρΦcΦ(T3 + δ)≡E4,

kΦ2 , Ej
nil≥E4,

where δ << T3.
In (7), we proceed from the variable Tnil(t) to Enil(t) and obtain:

Vnil · (Ej+1
nil − Ej

nil) =

tj+1∫

tj




∫∫

S1
nil

A1(Ẽnil(t))ds +
∫∫

S2
nil

A2(Ẽnil(t))ds


 dt, (8)

where A1(Ẽnil(t)) = Ω1(Ẽnil(t))βn(Ẽnil(t)), A2(Ẽnil(t)) = Ω2(Ẽnil(t))βn(Ẽnil(t)).
We introduce the notation

E
j+1/3
nil = Enil

(
tj +

τ j+1

3

)
, E

j+2/3
nil = Enil

(
tj +

2τ j+1

3

)
.

The time discretization of Eq.(8) is based on the Peaceman-Rachford scheme
(see [8]):

Vnil · (Ej+1
nil −Ej

nil)=
2τ j+1

3




∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 1

3
nil )ds


+

τ j+1

3
×
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×




∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 2

3
nil )ds +

∫∫

S1y+
nil

S
S1y−

nil

A1(E
j
nil)ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j
nil)ds


+

+
2τ j+1

3




∫∫

S1y+
nil

S
S1y−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j+ 2

3
nil )ds


+ (9)

+
τ j+1

3




∫∫

S1z+
nil

S
S1z−

nil

A1(E
j
nil)ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j
nil)ds +

∫∫

S1z+
nil

S
S1z−

nil

A1(E
j+ 1

3
nil )ds+

+
∫

S2z+
nil

S
S2z−

nil

A2(E
j+ 1

3
nil )ds +

∫

S1z+
nil

S
S1z−

nil

A1(E
j+1
nil )ds +

∫

S2z+
nil

S
S2z−

nil

A2(E
j+1
nil )ds


 .

Here S1x+
nil denotes the part of S1

nil that belongs to the plane x = x̃n+1 and S1x−
nil de-

notes the part of S1
nil that belongs to the plane x = x̃n. S1y+

nil , ..., S1z−
nil , S2x+

nil , ..., S2z−
nil

are defined in a similar fashion.
We simultaneously add and subtract VnilE

j+1/3
nil and VnilE

j+2/3
nil on the left-hand

side of (9) and split this equation into three (with respect to the directions x, y
and z), thus, forming the following three subproblems:

(
j = 0, J − 1, n = 0, N, i = 0, I, l = 0, L

)

x− direction

Vnil · (Ej+ 1
3

nil − Ej
nil) =

τ j+1

3




∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 1

3
nil )ds +

+
∫∫

S1y+
nil

S
S1y−

nil

A1(E
j
nil)ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j
nil)ds +

∫∫

S1z+
nil

S
S1z−

nil

A1(E
j
nil)ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j
nil)ds


 ;

y − direction

Vnil · (Ej+ 2
3

nil − E
j+ 1

3
nil ) =

τ j+1

3




∫∫

S1y+
nil

S
S1y−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j+ 2

3
nil )ds +

+
∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 1

3
nil )ds +

∫∫

S1z+
nil

S
S1z−

nil

A1(E
j+ 1

3
nil )ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j+ 1

3
nil )ds


 ;
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z− direction

Vnil · (Ej+1
nil −E

j+ 2
3

nil ) =
τ j+1

3




∫∫

S1z+
nil

S
S1z−

nil

A1(E
j+1
nil )ds +

∫∫

S2z+
nil

S
S2z−

nil

A2(E
j+1
nil )ds +

+
∫∫

S1x+
nil

S
S1x−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2x+
nil

S
S2x−

nil

A2(E
j+ 2

3
nil )ds +

∫∫

S1y+
nil

S
S1y−

nil

A1(E
j+ 2

3
nil )ds +

∫∫

S2y+
nil

S
S2y−

nil

A2(E
j+ 2

3
nil )ds


 .

The thermal conductivities Ω1(Ẽ
j
nil) and Ω2(Ẽ

j
nil) on internal surfaces of the

elementary cell are approximated as:

Ω1(Ẽ
j
nil)

∣∣∣
S1x+

nil

=
Ω1(E

j
nil) + Ω1(E

j
n+1,il)

2
≡ Rj

n,

Ω1(Ẽ
j
nil)

∣∣∣
S1x−

nil

=
Ω1(E

j
n−1,il) + Ω1(E

j
nil)

2
≡ Rj

n−1,

Ω1(Ẽ
j
nil)

∣∣∣
S1y+

nil

=
Ω1(E

j
nil) + Ω1(E

j
n,i+1,l)

2
≡ R̂j

i ,

Ω1(Ẽ
j
nil)

∣∣∣
S1y−

nil

=
Ω1(E

j
nil) + Ω1(E

j
n,i−1,l)

2
≡ R̂j

i−1.

The notations R̃j
l and R̃j

l−1 for the surfaces S1z+
nil and S1z−

nil and the notations Bj
n,

Bj
n−1, B̂j

i , B̂j
i−1, B̃j

l , and B̃j
l−1 for Ω2(Ẽ

j
nil) are introduced in a similar manner.

For simplicity, the subsequent presentation of the algorithm is given for the
simplest domain – a rectangular parallelepiped.

The derivative βn(E) in the outward normal direction n on Γ are approximated
by the formula: βn(E) = (∇β,n), where, for example,

βn(Ej
nil)

∣∣∣
S1x+

nil

=
βj

n+1,il − βj
nil

hx
n

,
(
n = 0, N − 1; i = 0, I; l = 0, L

)
,

βn(Ej
nil)

∣∣∣
S1x−

nil

= −
βj

nil − βj
n−1,il

hx
n−1

,
(
n = 1, N ; i = 0, I; l = 0, L

)
.

With the notation introduced, the spatial approximation of the first subproblem
inside the domain under consideration can be written as:

E
j+ 1

3
nil −Ej

nil = ωj+1
nil




(
S1x+

nil R
j+ 1

3
n + S2x+

nil B
j+ 1

3
n

)
β

j+ 1
3

n+1,il − β
j+ 1

3
nil

hx
n

−
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−(S1x−
nil R

j+ 1
3

n−1 + S2x−
nil B

j+ 1
3

n−1 )
β

j+ 1
3

nil − β
j+ 1

3
n−1,il

hx
n−1


 + ξj

nil, (10)

(
n = 1, N − 1; i = 1, I − 1; l = 1, L− 1

)
,

where

ωj+1
nil =

τ j+1

3Vnil
, ξj

nil = ωj+1
nil

[(
S1y+

nil R̂j
i + S2y+

nil B̂j
i

) βj
n,i+1,l − βj

nil

hy
i

−

−
(
S1y−

nil R̂j
i−1 + S2y−

nil B̂j
i−1

) βj
nil − βj

n,i−1,l

hy
i−1

+

+
(
S1z+

nil R̃j
l + S2z+

nil B̃j
l

) βj
ni,l+1 − βj

nil

hz
l

−
(
S1z−

nil R̃j
l−1 + S2z−

nil B̃j
l−1

) βj
nil − βj

ni,l−1

hz
l−1

]
.

The relation (10) is valid for internal cells of the domain Q. If any of the
surfaces S1x+

nil , S1x−
nil , ..., S2z−

nil coincides with the outer boundary of the domain, then
the corresponding term in the heat balance equation is approximated taking into
account the boundary conditions. For this purpose, boundary conditions (2) on the
outer boundary Γ are rewritten in the general form:

K(T )Tn|Γ = (r(T )T + q(t))|Γ .

Since

K(T ) =

{
K1(T ), (x, y, z) ∈ S1

nil,

K2(T ), (x, y, z) ∈ S2
nil,

=

{
Ω1(E), (x, y, z) ∈ S1

nil,

Ω2(E), (x, y, z) ∈ S2
nil,

the last expression splits into two equalities:

Ω1(E)βn(E)|Γ = (r1(β(E))β(E) + q1(t))|Γ , (x, y, z) ∈ S1
nil, (11)

Ω2(E)βn(E)|Γ = (r2(β(E))β(E) + q2(t))|Γ , (x, y, z) ∈ S2
nil. (12)

These relations are used to derive a spatial approximation of the heat fluxes on
the outer boundary of the domain. For example, for n = 0, system (10) must be
supplemented by the equality:

E
j+ 1

3
0il − Ej

0il = ωj+1
0il


(S1x+

0il R
j+ 1

3
0 + S2x+

0il B
j+ 1

3
0 )

β
j+ 1

3
1il − β

j+ 1
3

0il

hx
0


+

+S1x−
0il

(
r1(β

j+ 1
3

0il )β
j+ 1

3
0il +q

j+ 1
3

1

)∣∣∣S1x−
0il

+S2x−
0il

(
r2(β

j+ 1
3

0il )β
j+ 1

3
0il +q

j+ 1
3

2

)∣∣∣S2x−
0il

+ξj
0il. (13)

Let the function β(Ej
nil) be represented in the form:

β(Ej
nil) = uj

nilE
j
nil + vj

nil, (14)
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where uj
nil =





1
anil

, Ej
nil < anilT1,

1
b1
nil

, anilT1 ≤ Ej
nil < d1

nilT2 + d2
nil,

1
d1

nil

, Ej
nil ≥ d1

nilT2 + d2
nil,

vj
nil =





0, Ej
nil < anilT1,

b2
nil

b1
nil

, anilT1 ≤ Ej
nil < d1

nilT2 + d2
nil,

−d2
nil

d1
nil

, Ej
nil ≥ d1

nilT2 + d2
nil.

Then Eq. (10) can be rewritten as:

E
j+ 1

3
nil − Ej

nil = ωj+1
nil

S1x+
nil R

j+ 1
3

n + S2x+
nil B

j+ 1
3

n

hx
n

×

×
(

u
j+ 1

3
n+1,ilE

j+ 1
3

n+1,il + v
j+ 1

3
n+1,il − u

j+ 1
3

nil E
j+ 1

3
nil − v

j+ 1
3

nil

)
−

−ωj+1
nil

S1x−
nil R

j+ 1
3

n−1 +S2x−
nil B

j+ 1
3

n−1

hx
n−1

(
u

j+ 1
3

nil E
j+ 1

3
nil +v

j+ 1
3

nil −u
j+ 1

3
n−1,ilE

j+ 1
3

n−1,il−v
j+ 1

3
n−1,il

)
+ξj

nil.

The resulting system of nonlinear algebraic equations for E
j+ 1

3
nil can be written as:

ÂnE
j+ 1

3
n−1,il−ĈnE

j+ 1
3

nil +B̂nE
j+ 1

3
n+1,il+D̂n = 0,

(
n = 1, N ; i = 0, I; l = 0, L

)
. (15)

Coefficients Ân, B̂n, Ĉn, and D̂n are given in ([9]).
Taking into account (14), Eq. (13) for n = 0 is written as:

E
j+ 1

3
0il = n0E

j+ 1
3

1il + m0, i = 0, I, l = 0, L. (16)

The following relation for n = N is derived by analogy with that for n = 0:

E
j+ 1

3
Nil = n1E

j+ 1
3

N−1,il + m1, i = 0, I, l = 0, L. (17)

Coefficients n0,m0, n1, and m1 are given in [9].
The resulting system of nonlinear algebraic equations (15)–(17) is divided into

(I +1)(L+1) subsystems. Each of them has the form of (15)–(17) with fixed indices
i ∈ 0, I and l ∈ 0, L and is solved irrespective of the other subsystems by applying
iteration and tridiagonal Gaussian elimination [8]. The coefficients Ân, B̂n, Ĉn, D̂n,
n0, m0, n1, and m1 in the subsystems are determined by the calculated values of
Ej+ 1

3 at the current iteration step. The value of Ej+ 1
3 at the next iteration step
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is determined by tridiagonal Gaussian elimination. The iteration halts after the
required accuracy was achieved.

The spatial approximations of the second and third subproblems are performed in
a similar manner with the use of the solution obtained for the previous subproblems.

If the considered domain is more complex and consists of a set of different par-
allelepipeds (see Fig. 2), minor modifications of the algorithm described must be
done. It should only be taken into account that the ranges of n, i, and l depend on
the values of the pairs of numbers (i, l), (n, l), and (n, i) respectively.

4 Approximation of boundary conditions

The mold and the metal are cooled via their interaction with the surroundings.
On the one hand, the object is slowly immersed in a liquid medium (aluminum)
of a low temperature, due to which the metal solidifies. On the other hand, the
body receives heat from the walls of the furnace, which slows down the process of
solidification.

Therefore, the individual parts of the outer boundary of the body are in different
thermal conditions. The basic types of thermal conditions at a point of the outer
boundary of the body can be described as follows.

1) The point is in the liquid aluminum. In this case, the following processes have
to be taken into account:
(i) the heat lost by the body due to its own radiation;
(ii) the heat gained from the surrounding liquid aluminum due to its radiation;
(iii) the heat transfer due to conduction between the liquid aluminum and the body.

2) The point is outside the liquid aluminum. In this case, the following processes
have to be taken into account:
(i) the heat lost by the body due to its own radiation;
(ii) the heat gained from the emitting walls of the furnace;
(iii) the heat gained from the emitting surface of the liquid aluminum.

One of the mechanisms of heat transfer in this problem is thermal radiation. It
can be computed as follows.

Consider two small areas (hereafter called elementary) in space (see Fig. 3).
Let 4s and n denote the size of the first area and its normal vector and 4S and
N denote the same characteristics for the second area. Assume that the first area
emits thermal energy diffusely and its emissivity is ε. According to [10], the radiation
energy flux 4q from the first area of temperature TSou through the second area is
calculated as

4q = I

(
n,

r
|r|

)
4s4ω,

where I =
1
π

εσT 4
Sou is the intensity of the emission (σ is the Stefan-Boltzmann

constant), 4ω is the solid angle at which the second area is seen from the center
of the first area, and r is the position vector beginning from the center of the first
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area and ending at the center of the second area (see Fig. 3). The solid angle 4ω is
determined by the formula

4ω =





1
|r|3 (N, r)4S, (N, r) > 0,

0, (N, r) ≤ 0.

Thus,

4q =
I(n, r)(N, r)

|r|4 4s4S.

If radiation is emitted by an extended body s, the radiation energy flux q from
it through the second elementary area is given by:

q = 4S

∫∫

S

(
1
π

εσT 4
Sou

)
(n(y1, y2), r(y1, y2))

|r(y1, y2)|4 (N, r(y1, y2))dsy, (18)

where y = (y1, y2) are local coordinates introduced on the source surface s.
In the space under study, we introduce a Cartesian coordinate system with its

origin at the center of4S and with the basis {e1, e2, e3}. Then the vector N normal
to the second area can be expressed as N = N1e1 +N2e2 +N3e3. The flux q in (18)
is represented by the sum of three fluxes:

q = [N1q1 + N2q2 + N3q3]4S,

where

qi =
∫∫

S

(
1
π

εσT 4
Sou

)
(n(y1, y2), r(y1, y2))

|r(y1, y2)|4 (ei, r(y1, y2))dsy.

The expressions for qi (i = 1, 2, 3) are derived assuming that the source surface is a
rectangle. The basis vectors of the coordinate system are chosen so that they form
a right-hand triple and e1 is orthogonal to the source plane and is directed toward
it. Assume that the source has the size l × h and ξ is the distance from this source
to the second elementary area.

a) The second elementary area is orthogonal to e1 (see Fig. 4). In this case,
N = (1, 0, 0), n = (−1, 0, 0). Then

q1 = M0

[
h√

ξ2 + h2
arctan

(
l√

ξ2 + h2

)
+

l√
ξ2 + l2

arctan

(
h√

ξ2 + l2

)]
,

where M0 =
1
2π

εσT 4
Sou.

b) The second elementary area is orthogonal to e2 (see Fig. 5). In this case,
N = (0, 1, 0), n = (−1, 0, 0). Then

q2 = M0

[
arctan

(
h

ξ

)
− ξ√

ξ2 + l2
arctan

(
h√

ξ2 + l2

)]
.
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c) The second elementary area is orthogonal to e3 (see Fig. 6). In this case,
N = (0, 0, 1), n = (−1, 0, 0). Then

q3 = M0

[
arctan

(
l

ξ

)
− ξ√

ξ2 + h2
arctan

(
l√

ξ2 + h2

)]
.

Now, let’s take a closer look at the description of the boundary conditions
(11) and (12), i.e. at a more detailed description of the functions r1 (β(E)), q1(t),
r2 (β(E)), and q2(t). For the sake of simplicity, the description of these functions is
given for a rectangular parallelepiped.

Consider the face of the parallelepiped which is parallel to the plane Y OZ and is
located closer to the right wall of the furnace (Fig. 1). As noted above, some areas
of this face can be in different thermal conditions.

For the considered face of the object all the cells are filled with the material of
the form. The considered face consists of this cell’s surfaces that are designated as
S2x+

Nil , (i = 0, I, l = 0, L). For the time t = tj , when the cell is located outside of
the liquid aluminum we have:

Ω2(E
j
Nil)βn(Ej

Nil)
∣∣∣
S2x+

Nil

= −σ ·
(
βj

Nil

)4
+ ϕs + ϕa, (19)

where ϕs is the radiation energy flux density of the whole right wall through the
surface S2x+

Nil (let us note that in this case the radiation from the left wall of the
furnace does not fall on the considered face of object), and ϕa is the radiation
energy flux density from the surface of liquid aluminum through this surface. The
values ϕs and ϕa are calculated by the formulas:

ϕs = qs(Xs,YSou−yi +LSou, ZSou−zl +HSou)− qs(Xs,YSou−yi, ZSou−zl +HSou)+

+qs(Xs, YSou − yi, ZSou − zl)− qs(Xs, YSou − yi + LSou, ZSou − zl), (20)

ϕa = qa(Za, Yal − yi + Lal, Xal −Xb + Hal)− qa(Za, Yal − yi, Xal −Xb + Hal). (21)

Here:
Xs is the distance from the surface S2x+

Nil of the considered cell to the nearest wall
of the furnace,
(XB, yi, zl) are the coordinates of center of the surface of the considered cell,
YSou is the ordinate of the lower vertex of the right wall of the furnace, nearest to
the point of origin O of the selected coordinate system,
ZSou is the z-coordinate of the lower bound of the wall of the furnace at the moment
t = tj ,
Xal, Yal are the abscess and the ordinate of the vertex of the surface of aluminum,
nearest to the point of origin O of the selected coordinate system,
Za = zl − Ual is the distance from the surface S2x+

Nil of the considered cell to the
surface of the liquid aluminum,

Ual =





Zal, object did not reach the surface of aluminum,

Zal +
Xb · Yb · Zal

Lal ·Hal −Xb · Yb
, object reached the surface of aluminum,
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Zal = ZSou −Hair,
Xb is the length of the parallelepiped along the Ox axis,
Yb is the length of the parallelepiped along the Oy axis,
Zb is the height of the parallelepiped along the Oz axis,
LSou is the length of the plate of the furnace along the Oy axis,
HSou is the height of the plate of the furnace along the Oz axis,
Hair is the distance from the furnace to the liquid aluminum,
Lal is the length of the aluminum surface along the Oy axis,
Hal is the length of the aluminum surface along the Ox axis.
Functions qs and qa are determined using the following formulas:

qs(ξ, l, h)=Ms ·
[

h√
ξ2 + h2

arctan

(
l√

ξ2 + h2

)
+

l√
ξ2 + l2

arctan

(
h√

ξ2 + l2

)]
, (22)

qa(ξ, l, h) = Ma ·
[
arctan

(
l

ξ

)
− ξ√

ξ2 + h2
arctan

(
l√

ξ2 + h2

)]
, (23)

where Ms =
1
2π

εsσT 4
Sou, Ma =

1
2π

εaσT 4
al, TSou is the temperature of the plate

of the furnace, Tal is the temperature of the liquid aluminum, εs is emissivity of
the wall of the furnace, εa is emissivity of the liquid aluminum.

When the cell is places outside the liquid aluminum then according to (12) and
(19) we have:

r2

(
β(Ej

Nil)
)∣∣∣

S2x+
Nil

= −σ · (βj
Nil)

3, q2(t)|S2x+
Nil

= ϕs + ϕa.

When the cell is places inside the liquid aluminum we have:

Ω2(E
j
Nil)βn(Ej

Nil)
∣∣∣
S2x+

Nil

= −λ · (βj
Nil − Tal)− σ · (βj

Nil)
4 + σ · (Tal)4,

and accordingly

r2

(
β(Ej

Nil)
)∣∣∣

S2x+
Nil

= −
(
σ · (βj

Nil)
3 + λ

)
, q2(t)|S2x+

Nil
= λ · Tal + σ · (Tal)4.

Here λ is the coefficient of heat exchange between the object and the liquid alu-
minum. Boundary conditions for the remaining five faces of the parallelepiped are
approximated analogously. The upper face of the parallelepiped is differed from the
rest because the outer boundary consists of both the cells containing the material
of the form and the cells containing the material of the metal, i.e. in this case both
conditions (11) and (12) operate.

5 Numerical results of solving the direct problem

First, the direct problem was studied for an object of the simplest shape – a
rectangular parallelepiped. This object was used to test and tune the algorithms
proposed for solving the problem.
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The direct problem was also solved for an actual object. Its longitudinal pro-
jections are displayed in Fig. 2. This object had two planes of symmetry and was
located symmetrically in the furnace. It consisted of five parallelepipeds. The exte-
rior view of its quarter is shown in Fig. 7. The object was immersed in the molten
aluminum up to the fourth parallelepiped. The speed ũ(t) of the displacement of
foundry mold was relied equal to zero, when it reached the maximum permissible
depth.

The numerical results presented below were obtained for this object and for the
following parameter values (given in SI units):

ρS = 8200.0, kS = 23.3, cS = 670.0, ρL = 7200.0,
kL = 15.2, cL = 790.0, ρΦ = 2700.0, kΦ1 = 4.7,
kΦ2 = 3.2, cΦ = 780.0, T1 = 1493.15, T2 = 1633.15,
T3 = 1100.15, δ = 20.0, γ = 234000.0, Tmet = 1973.15,
Tform = 1853.15, Lal = 0.500, Hal = 0.300, Hair = 0.070,
TSou = 1823.15, Tal = 1003.15, LSou = 0.450, HSou = 0.535,
λ = 1.0, εs = 0.8, εa = 0.8, Tpl = 0.5(T1 + T2),

Xb =0.07 (the length of a quarter of the casting along the Ox axis),
Yb =0.1 (the length of a quarter of the casting along the Oy axis),
Zb =0.435 (the length of the casting along the Oz axis).

The number tJ which determines the length of the interval of time [0, tJ ] was
selected so that the time during which the complete solidification of the metal in
the foundry mold occurs would not exceed the value tJ for all considered regimes of
the process of crystallization.

In the computation of the direct problem, primary attention was given to the
evolution of the solidification front. The dependance of this evolution as a function of
the velocity of the object is illustrated in Figures 8–15, which show lines of constant
temperature at different times in two cross sections ((a) and (b)) through the object’s
vertical axis of symmetry parallel to the object faces. Since the object is symmetric
about the vertical axis, the figures present only halves of the cross sections. The
light vertical and horizontal lines inside the object separate the metal and the mold.
The light curves show lines of constant temperature, and the heavy curve depicts
the contour line of T = Tpl. It separates the liquid and solid phases in the metal.
The figures with different numbers correspond to different times. Figures 8–11 (first
experiment) illustrate the process of metal solidification in a mold moving relative
to the furnace at the constant speed ũ(t) = 2 mm/min. In the second experiment
(Figures 12–15), the speed was piecewise constant. More specifically, it remained
constant in three time intervals. Over the first time interval, the first (narrowest)
parallelepiped was immersed in the coolant at the speed 20 mm/min. Over the
second and third time intervals, the second and third parallelepipeds were immersed
in the coolant at the speeds 10 and 5 mm/min respectively. Poor results were
obtained when the object moved at a constant low speed. The solidification of the
metal proceeded from two sides (lower and upper). This led to the formation of
bubbles of liquid metal that collapse inside the casting. It should be noted that
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the solidification front was nearly always far from a horizontal plane. In the second
experiment, the solidification front always intersected the metal transversally only
once and was noticeably more similar to a horizontal plane. No bubbles of liquid
metal were observed inside the casting during the entire process.
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Fig. 1 Fig. 2

Fig. 3 Fig. 4
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Fig. 5 Fig. 6

Fig. 7

Fig. 8 a,b Fig. 9 a,b
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Fig. 10 a,b Fig. 11 a,b

Fig. 12 a,b Fig. 13 a,b
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Fig. 14 a,b Fig. 15 a,b
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