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Conjugate-orthogonality and the complete
multiplication group of a quasigroup

G.Belyavskaya, A. Diordiev ∗

Abstract. In this note we establish connections between the orthogonality of con-
jugates of a finite or infinite quasigroup and some strictly transitive subsets of the
complete multiplication group of this quasigroup. These connections are used for the
investigation of orthogonality of distinct pairs of conjugates for quasigroups (loops)
from some classes. For finite quasigroups the quasi-identities corresponding to ortho-
gonality of pairs of conjugates are given.
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1 Introduction

A quasigroup is an ordered pair (Q, ·) (or (Q,A)) where Q is a set and (·) (or
(A)) is a binary operation on Q such that each of the equations ay = b and xa = b
is uniquely solvable for any pair of elements a, b in Q. It is known that the multi-
plication table of a finite quasigroup defines a Latin square and six (not necessarily
distinct) conjugates (or parastrophes) are associated with each quasigroup (Latin
square) [1, 12].

Two quasigroups (Q, A) and (Q,B) defined on a set Q are orthogonal if the
system of equations {A(x, y) = a,B(x, y) = b} is uniquely solvable for all a, b ∈ Q.
The notion of orthogonality plays an important role in the theory of Latin squares,
also in the quasigroup theory and in distinct applications.

There is significant interest in the investigation of quasigroups which are orthog-
onal to some their conjugates or two conjugates of which are orthogonal (so called
conjugate-orthogonal or parastrophic-orthogonal quasigroups).

Many articles were devoted to the investigation of various aspects of conjugate-
orthogonal quasigroups. Recall some of them. In [5, 7–9, 11, 16] the spectrum of
conjugate-orthogonal quasigroups (Latin squares) was studied.

Different identities associated with the conjugate-orthogonality and related com-
binatorial designs were considered in [4, 6, 13]. In particular, F. E. Bennet in [6] in-
vestigated the spectrum of the varieties of quasigroups with every one of eight short
conjugate-orthogonal identities (short two-variable identities).
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F.E. Bennet and H. Zhang [10] considered a problem related to the spectrum
of Latin squares where each conjugate is required to be orthogonal to precisely its
transpose from among the other five conjugates.

In [5,15] some quasi-identities of finite parastrophic-orthogonal quasigroups were
established.

In this paper we study properties of multiplication groups of conjugate-orthogonal
quasigroups. In particular, we prove that some strictly transitive subset of the com-
plete multiplicative group of a quasigroup corresponds to orthogonality of any two
from six conjugates of this quasigroup. We also give some quasi-identities related to
the orthogonality of two conjugates of a finite quasigroup (Q,A). The use of a crite-
rion of conjugate-orthogonality in the strictly transitive subset language allows easily
to obtain a number of useful statements with respect to the conjugate-orthogonality
of quasigroups and loops from some classes.

2 Preliminaries

A quasigroup (Q, ·) is finite of order n if the set Q is finite and |Q| = n.
A quasigroup with the left (right) identity f (e) is a quasigroup (Q, ·) such that

fx = x (xe = x) for every x ∈ Q. A loop is a quasigroup (Q, ·) with the identity
e : xe = ex = x for each x ∈ Q [1].

A loop (Q, ·) is called a Moufang loop if it satisfies the identity (zx ·y)x =
z(x · yx) [1].

A quasigroup is called an IP-quasigroup if there exist maps (permutations) Ir

and Il such that (yx) · Irx = y, Ilx · (xy) = y for any x, y ∈ Q [1].
The permutations La, Ra and Ia defined by Lax = ax, Rax = xa and x · Iax = a

for all x ∈ Q are called the left, right and middle translations of a quasigroup (Q, ·)
respectively [1, 3].

The multiplication group or the group associated with M or M(·) of a quasigroup
(Q, ·) (or the group associated with a quasigroup (Q, ·)) is the group generated by
all left and all right translations of (Q, ·): M =< La, Ra | a ∈ Q > [1].

The complete multiplication group M (or the complete group associated with a
quasigroup (Q, ·) [3]) is the group generated by all left, right and middle translations
of this quasigroup: M =< La, Ra, Ia | a ∈ Q >. It is evident that M ⊆ M .

With any quasigroup (Q, ·) the system Σ of six (not necessarily distinct)
conjugates (parastrophes) is associated:

Σ =
{

(·), (·)−1 = (\),−1(·) = (/),−1
(
(·)−1

)
,
(−1(·))−1

, (∗)
}

,

where x · y = z ⇔ x\z = y ⇔ z/y = x ⇔ y ∗ x = z.
It is known [14] that the number of different conjugates in Σ can be 1,2,3 or 6.
If a quasigroup operation is denoted by A, then a quasigroup (Q,A) (or simply

A) has the following system Σ of conjugates:

Σ =
{

A,rA,lA,lrA,rlA,sA
}

.
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Here we use very suitable designation of conjugates of V. D. Belousov from [4], where

rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1, sA = A∗,

A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x, A∗(x, y) = A(y, x).

Note that (−1(A−1)
)−1 =rlrA =−1

(
(−1A)−1

)
=lrlA =sA

and rrA =llA = A.
In general M(·) 6= Mσ(·), where σ(·) is some conjugate of (·). But V.D. Belousov

proved that the complete multiplication group M (·) is always invariant with respect
to conjugacy as according to [3]

M r(·) =< L−1
a , Ia, Ra >, M l(·) =< I−1

a , R−1
a , L−1

a >,

M lr(·) =< R−1
a , I−1

a , La >, M rl(·) =< Ia, L
−1
a , R−1

a >,

M s(·) =< Ra, La, I
−1
a > for all a ∈ Q.

A quasigroup operation (·) and its inverse operations (\) and (/) are connected
by the identities:

x(x\y) = y, x\xy = y, (y/x)x = y, yx/x = y.

The quasigroup (Q, ·, \, /) is called the primitive quasigroup corresponding to a quasi-
group (Q, ·) [1].

Let Q be a finite or infinite set, A,B be operations on Q, then the right, left
multiplications A ·B, A ◦B of Mann are defined in the following way [2]:

(A ·B)(x, y) = A(x,B(x, y)), (A ◦B)(x, y) = A(B(x, y), y).

If A and B are quasigroups, then A · B (A ◦ B) is always invertible from the
right (from the left), that is the equation (A · B)(a, y) = b ( (A ◦ B)(x, a) = b ) has
a unique solution.

According to the criterion of Belousov [2] two quasigroups (Q,A) and (Q,B) are
orthogonal (shortly, A ⊥ B) if and only if the operation A·rB (A◦lB) is a quasigroup.

3 Orthogonality of a quasigroup to its conjugates and strictly
transitive subsets of the multiplication group

Recall that the set S of maps on a set Q is called strictly transitive (more
precisely, the set S acts on Q strictly transitively) if for any pair of elements
(a, b) ∈ Q2 there exists a unique map α of S such that αa = b.

Let (Q,A) be a quasigroup and (Q,σA) be its conjugate. It is evident that the sets
{La | a ∈ Q} and {Ra | a ∈ Q}, where La, Ra are translations of A (σA), form strictly
transitive subsets in the multiplication group MA of the respective quasigroup.
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We shall show that some strictly transitive subset of the multiplicative group
MA corresponds to the orthogonality A ⊥σA.

It is easy to see that if A ⊥ B, then sA ⊥sB, so we have the following

Proposition 1. Let (Q,A) be a quasigroup. Then

A ⊥rA ⇔sA ⊥rlA, A ⊥lA ⇔sA ⊥lrA, A ⊥rlA ⇔sA ⊥rA,

A ⊥lrA ⇔sA ⊥lA, rA ⊥lA ⇔rlA ⊥lrA, lA ⊥rlA ⇔lrA ⊥rA.

Define the following collection of elements of the multiplication group MA of a
quasigroup (Q,A):

L2 = {L2
x |x ∈ Q}, R2 = {R2

x |x ∈ Q}, RL = {RxLx |x ∈ Q},

LR = {LxRx |x ∈ Q}, RL−1 = {RxL−1
x |x ∈ Q},

where Lxy = A(x, y), Rxy = A(y, x) and the permutations in the products act from
the right to the left.

Theorem 1. Let (Q,A) be a quasigroup. Then

A ⊥rA (sA ⊥rlA) ⇔ L2 is a strictly transitive subset (s.t.subset) of MA;
A ⊥lA (sA ⊥lrA) ⇔ R2 is a s.t.subset of MA;
A ⊥rlA (sA ⊥rA) ⇔RL is a s.t.subset of MA;
A ⊥lrA (sA ⊥lA) ⇔ LR is a s.t.subset of MA;

A ⊥sA ⇔RL−1 is a s.t.subset of MA.

Proof. By the criterion of Belousov A ⊥rA if and only if the operation B(x, y) =
A(x,A(x, y)) is a quasigroup, that is the equation A(x, A(x, a)) = b or L2

xa = b has
a unique solution x for any pair (a, b) ∈ Q2 as the operation B is always invertible
from the right. It means that L2 is a strictly transitive set.

A ⊥lA if and only if the equation A(A(a, y), y) = b or R2
ya = b has a unique

solution y for any pair (a, b) ∈ Q2.

By Proposition 1, A ⊥rlA (sA ⊥rA) if and only if the equations sA(x,A(x, a)) = b,
A(A(x, a), x) = b , RxLxa = b have a unique solution x for any (a, b) ∈ Q2.

Analogously, A ⊥lr A (sA ⊥l A ) if and only if the equations (sA ◦ A)(a, y) =
b, sA(A(a, y), y) = A(y,A(a, y)) = b, LyRya = b have a unique solution y for any
(a, b) ∈ Q2.

A ⊥sA if and only if the equation A(x,lrA(x, a)) = LxR−1
x a = b has a unique

solution since if lrA(x, a) = t, then rA(t, a) = x, A(t, x) = a, t = R−1
x a.

For the orthogonality sA ⊥rlA, sA ⊥lrA the statements follow from Pro-
position 1. ¤
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Note that an analog of Theorem 1 for finite quasigroups was proved
in [15, Theorem 9].

If (Q, ·) is a finite quasigroup then the conditions of conjugate-orthogonality
from Theorem 1 are equivalent to some quasi-identities in the primitive quasigroup
(Q, ·, \, /).

Corollary 1. Let (Q,A) be a finite quasigroup. Then

(·) ⊥r(·) ⇔ x · xz = y · yz ⇒ x = y;
(·) ⊥l(·) ⇔ zx · x = zy · y ⇒ x = y;

(·) ⊥rl(·) ⇔ xz · x = yz · y ⇒ x = y;
(·) ⊥lr(·) ⇔ x · zx = y · zy ⇒ x = y;

(·) ⊥s(·) ⇔ (x\z)x = (y\z)y ⇒ x = y;
or x(z/x) = y(z/y) ⇒ x = y.

Proof follows from Theorem 1 if we take into account that

L−1
x z = x\z, R−1

x z = z/x (1)

and that the strict transitivity of a set of maps S = {α1, α2, . . . , αn} on a finite set
Q means that αix = αjx ⇒ i = j for any x ∈ Q. ¤

These quasi-identities for the finite case were also established in [15, Theorem 10]
and [5, Theorem 1].

From the conditions of conjugate-orthogonality of Theorem 1 some properties of
quasigroups (loops) of distinct classes easy follow.

At first we remind (see, for example, [1,12]) that a quasigroup (Q, ·) is diagonal if
the map x → xx = x2 is a permutation; the left (right) alternative law is x·xy = xx·y
(yx · x = y · xx); the elastic law is xy · x = x · yx; a diassociative loop is a loop any
two elements of which generate a subgroup.

Proposition 2. 1) If a commutative quasigroup (Q,A) is orthogonal to one of its
conjugates different from sA, then it is orthogonal to the rest ones (except sA). If, in
addition, (Q,A) is a loop then it is diagonal.

2) If a quasigroup (Q, A) has the right (left) identity e (f) and A ⊥rA or A ⊥rlA
(A ⊥lA or A ⊥lrA), then it is diagonal.

3) If a quasigroup (Q,A) satisfies the left (right) alternative law and A ⊥r A
(A ⊥lA) then it is diagonal. Conversely, for any diagonal quasigroup with the left
(right) alternative law A ⊥r A (A ⊥l A). For any diagonal and diassociative loop
A ⊥rA and A ⊥lA.

4) If in a quasigroup (Q,A) the elastic law holds, then A ⊥rlA ⇔ A ⊥lrA. If
(Q,A) is a loop with the elastic low and A ⊥rlA, then A is diagonal.

5) Any diagonal Moufang loop (in particular, a diagonal group) (Q,A) is ortho-
gonal to each of its conjugates, except sA.
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Proof. 1) In a commutative quasigroup the equality Rx = Lx holds for each x ∈ Q,
so all collections L2, R2, RL and LR coincide. In a loop (Q, ·) with the identity e
the equations L2

xe = b, x · xe = b, x2 = b have a unique solution x for any b ∈ Q if
(·) ⊥r(·).

2) If (·) ⊥r(·) ( (·) ⊥rl(·)), then the equation L2
xe = b or x2 = b (RxLxe = b or

x2 = b) has a unique solution for any b ∈ Q. Analogously, if (·) ⊥l(·) or (·) ⊥lr(·).
3) If (·) ⊥r(·) ((·) ⊥l(·)), then L2

xa = x ·xa = x2 ·a = b, x2 = b/a (R2
xa = ax ·x =

a · x2 = b, x2 = a\b). Conversely, if (Q, ·) is diagonal and satisfies the left (right)
alternative law then x2 = b ⇒ x2 · a = x · xa = ba = c (x2 = b ⇒ a · x2 = ax · x =
ab = c), where c is any element of Q. Thus, the equation L2

xa = c (R2
xa = c) has a

unique solution for any a, c ∈ Q. If a loop is diassociative, then it satisfies the left
and right alternative lows, so the last statement is true as well.

4) In a quasigroup with the elastic law RL is a strictly transitive set if and only
if LR is a strictly transitive set, since RxLxa = LxRxa. In a loop with elastic low
RxLxe = b ⇒ x2 = b.

5) Any Moufang loop (Q, A) is diassociative and satisfies the left and the right
alternative laws and the elastic low, so A ⊥r A, A ⊥l A and A ⊥rl A by 3),
and A ⊥lr A by 4). It is known that any loop A can not be selforthogonal
(A 6⊥s A). Indeed, the equation RxL−1

x a = a, a 6= e has two solutions x = a
and x = e. ¤

Note that item 5) of Proposition 2 was proved in [5] for finite Moufang loops.
It is known that a Moufang loop (Q,A), just as a group, of odd order is diagonal, so
by Proposition 2 it is orthogonal to each its conjugate, except A∗ (see also [1, 5]).

4 Orthogonality of conjugates of a quasigroup and strictly
transitive subsets of the complete multiplication group

Now we consider conditions for the orthogonality σA ⊥τA, where σA, τA 6= A.
Denote rA = (\), lA = (/), then

R\
xy = y\x = L−1

y x = Ixy, L/
xy = x/y = R−1

y x = I−1
x y, (2)

and
L−1

x R\
x = L−1

x Ix, L/
xLx = I−1

x Lx, R−1
x R\

x = R−1
x Ix, (3)

where y · Ixy = x for any y ∈ Q.
Consider the following collections of permutations of the complete multiplication

group MA of a quasigroup (Q,A):

I−1L = {L/
xLx |x ∈ Q} = {I−1

x Lx |x ∈ Q},
I2 = {(R\

x)2 |x ∈ Q} = {I2
x |x ∈ Q},

IL = {(L/
x)−1Lx |x ∈ Q} = {IxLx |x ∈ Q},

R−1I = {R−1
x R\

x |x ∈ Q} = {R−1
x Ix |x ∈ Q}.
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Theorem 2. Let (Q,A) be a quasigroup. Then
rA ⊥lA (rlA ⊥lrA) ⇔ I−1L is a s.t.subset of MA,

rA ⊥lrA (lA ⊥rlA) ⇔ I2 is a s.t.subset of MA,
rA ⊥rlA ⇔ IL is a s.t.subset of MA,

lA ⊥lrA ⇔R−1I is a s.t.subset of MA.

Proof. By the Belousov criterion and Proposition 1:
lA ⊥r A (rlA ⊥lr A) if and only if the equations lA(x,A(x, a)) = b, L

/
xLxa =

I−1
x Lxa = b have a unique solution x for any (a, b) ∈ Q2. Thus, I−1L is a s.t.subset

of MA.
rA ⊥lr A (lA ⊥rl A) if and only if the equations lA(x,lA(x, a)) = b, (L/

x)2a =
b, I2

xb = a have a unique solution x for any (a, b) ∈ Q2. Thus, I2 is a s.t.subset of
MA.

rA ⊥rlA if and only if the equations rA(x,lA(x, a)) = b, A(x, b) =lA(x, a), Lxb =
L

/
xa = I−1

x a , IxLxb = a have a unique solution x for any (a, b) ∈ Q2. Hence, IL is
a s.t.subset of MA.

And finally, lA ⊥lrA if and only if the equations lA(x,sA(x, a)) = b, A(b, A(a, x)) =
x, rA(b, x) = A(a, x), R

\
xb = Rxa, R−1

x Ixb = a have a unique solution, that is R−1I
is a s.t.subset of MA.

The rest four cases of possible orthogonality of conjugates were considered in
Theorem 1. ¤
Remark 1. The conditions of Theorem 2 can be also obtained from Theorem 1 if
instead of a quasigroup A one takes the corresponding conjugate.

Remark 2. Note that there are quasigroups all subsets of Theorem 1 and Theorem 2
are strictly transitive. All conjugates of these quasigroups are distinct and pairwise
orthogonal. An example of such quasigroup over the field of rational numbers:
xy = 2x + 3y is given by V.D. Belousov in [4, p. 66].

Corollary 2. If (Q, ·) is a finite quasigroup, then
r(·) ⊥l(·) (rl(·) ⊥lr(·)) ⇔ x/(xz) = y/(yz) ⇒ x = y or x\(z\x) = y\(z\y) ⇒ x = y,

r(·) ⊥lr(·) (l(·) ⊥rl(·)) ⇔ (z\x)\x = (z\y)\y ⇒ x = y or
x/(x/z) = y/(y/z) ⇒ x = y,

r(·) ⊥rl(·) ⇔ xz\x = yz\y ⇒ x = y or x\(x/z) = y\(y/z) ⇒ x = y,
l(·) ⊥lr(·) ⇔ (z\x)/x = (z\y)/y ⇒ x = y or x/(zx) = y/(zy) ⇒ x = y.

Proof. Prove the first quasi-identities in every pair of equivalent ones. The second
quasi-identity can be obtained by change of the corresponding strictly transitive set
by the set with inverse permutations and taking into account (2), (3).

I−1L : L
/
xLxz = L

/
yLyz ⇒ x = y or x/(xz) = y/(yz) ⇒ x = y,

I2 : (R\
x)2z = (R\

y)2z ⇒ x = y or (z\x)\x = (z\y)\y ⇒ x = y,
IL : R

\
xLxz = R

\
yLyz ⇒ x = y or (xz)\x = (yz)\y ⇒ x = y,

R−1I : R−1
x R

\
xz = R−1

y R
\
yz ⇒ x = y or (z\x)/x = (z\y)/y ⇒ x = y. ¤
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The following proposition eliminates the orthogonality of some conjugates (σA 6⊥τ

A) for quasigroups of some classes.

Proposition 3. 1) If (Q,A) is a commutative quasigroup, then rA ⊥l A ⇔
rA ⊥rlA ⇔lA ⊥lrA ⇔rlA ⊥lrA and A 6⊥sA, lA 6⊥rlA, rA 6⊥lrA.

2) If a quasigroup (Q,A) has the right (left) identity e (f), then rA 6⊥rlA (lA 6⊥lrA).

3) If (Q, A) is an IP-quasigroup then rA 6⊥rlA and lA 6⊥lrA.

4) For a loop (Q,A) A 6⊥sA and the orthogonality of conjugates from Theorem 2
is impossible.

Proof. 1) The first statements follows from Proposition 1 and Theorem 2 since
in a commutative quasigroup Ix = I−1

x , Rx = Lx, so I−1L = IL and R−1I is a
s.t.subset of MA. if and only if I−1R = IL is a s.t.subset of MA. In a commutative
quasigroup R−1

a x = L−1
a x, so x/a = a\x, (a\x)a = x, (R\

x)2a = (a\x)\x = a for any
x ∈ Q. Hence, I2 is not strictly transitive and so rA 6⊥lrA, lA 6⊥rlA by Theorem 2.
A 6⊥sA in view of Theorem 1 since in this case R−1L = ε (the identity permutation).

2) By Theorem 2 r(·) ⊥rl(·) if and only if the equations R
\
xLxa = b, (xa)\x = b,

xa · b = x, RbRax = x have a unique solution x for any (a, b) ∈ Q2, l(·) ⊥lr (·) if and
only if the equations R−1

x R
\
xa = b, a\x = bx, L−1

a x = Lbx, LaLbx = x have a unique
solution for any (a, b) ∈ Q2. But by a = b = e (a = b = f) ReRex = x (LfLfx = x)
for any x ∈ Q, so r(·) 6⊥rl(·) and l(·) 6⊥lr(·).

3) Let (Q,A) be an IP -quasigroup, then R−1
a = RIra, L−1

a = LIla and RIraRax =
R−1

a Rax = x, LIlaLax = L−1
a Lax = x for any x ∈ Q, so as above rA 6⊥rlA and lA 6⊥lrA.

4) Let (Q, ·) be a loop with the identity e. Then r(·) 6⊥rl(·) and l(·) 6⊥lr(·) by
item 2).

r(·) 6⊥l(·) (rl(·) 6⊥lr(·)) in view of Theorem 2 as I−1
x Lxe = L

/
xLxe = x/(xe) = e

for any x ∈ Q and
r(·) 6⊥lr(·) (l(·) 6⊥rl(·)) by Theorem 2 since I2

xe = R
\
xR

\
xe = (e\x)\x = e for any

x ∈ Q. ¤
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Buletinul Academiei de ştiinţe a Republicii Moldova, Matematica, 2005, No. 3(49), 19–32.

[6] Bennet F.E. The spectra of a variety of quasigroups and related combinatorial designs.
Discrete Mathematics, 1989, 77, 29–50.

[7] Bennet F. E. Latin squares with pairwise orthogonal conjugates. Discrete Mathematics, 1981,
36, 117–137.

[8] Bennet F. E. On conjugate orthogonal idempotent Latin squares. Ars. Combinatorica, 1985,
19, 37–50.

[9] Bennet F.E., Mendelsohn N. S. Conjugate orthogonal Latin square graphs. Congressus
Numerantium, 1979, 23, 179–192.

[10] Bennet F.E., Hantao Zhang. Latin squares with self-orthogonal conjugates. Discrete
Mathematics, 2004, 284, 45–55.

[11] Chaffer R.A., Lieberman D. J., Smith D.D. The number of orthogonal conjugates of a
quasigroup. Congressus Numerantium, 1982, 169–180.
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