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About Division of d-Convex Simple Graphs

in M-Prime Graphs

Nadejda Sur∗

Abstract. In this article we research the structure of d-convex simple graphs in
order to extend the already known classes of graphs of this type. We do this using
some new operations and new graphs. We introduce the notion of M-prime graphs and
split all d-convex simple graphs into M-prime graphs using the M operation. After
that we describe all M-prime graphs we know.
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1 Preliminary Considerations

After we obtained an iterative method of the characterisation of all d-convex
simple graphs [3], we observe that this method allow us to construct d-convex simple
graphs, which are complicated enough, but it says few things about the structure of
these graphs, what they look like and how diverse they are. Therefore, to learn this
structure, which would allow us to resolve some application problems, like in [4],
we start to study these graphs via special classes, to be precise we want to extend
the already known classes of d-convex simple graphs from [5, 6]. So we introduce a
new operation M [1, 2], that is algebraic on all known classes of these graphs and
allows us to do this extensions by using only one new graph. In this article, using
the M-operation and some new operations on this set of graphs, we will define new
classes of d-convex simple graphs, which extend the already known classes of d-
convex simple graphs and have visible structure, our goal being to characterise as
many d-convex simple graphs as it is possible.

Definition 1. [5, 6] An undirected graph G = (X, U) is called d-convex simple if
any subset of vertexes A ⊂ X, 2 < |A| < |X| is not d-convex.

Let us denote by Γ(x) the neighbourhood of vertex x, i. e. Γ(x) = {y ∈ X|x ∼
y}. We will say that vertex x dominates the vertex y if Γ(x) ⊃ Γ(y) and vertex y
is called a copy for vertex x (x 6= y), in graph G = (X; U) if Γ(x) = Γ(y) [5].

Definition 2. [5] The subset of vertexes D is called dominating in graph G = (X, U)
if for ∀x ∈ X, ∃y ∈ D such that y dominates x, where it is possible that y = x.
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In [5] it is shown that all dominating sets that are minimal by inclusions, of a
graph G are isomorphic and each of them generates the same subgraph G0, called
the atom of graph G. To construct G0 we have first to find the sets:

S = {x ∈ X : ∀y ∈ X ⇒ Γ(x) * Γ(y)};

R = {x ∈ X\S : ∀y ∈ X ⇒ Γ(x) 6⊂ Γ(y)}.

Then for ∀x ∈ R form the set R(x) = {x} ∪ {y ∈ R : Γ(x) = Γ(y)}. By this
way R is divided into classes of equivalence. G0 is formed from S and one vertex
from each class of equivalence. For each vertex x0 ∈ G0 we can find a vertex x ∈ G
such that x corresponds to x0, because G0 is a copy of a subgraph of G. We denote
by L(G, G0) a new graph that is obtained from G, G0 and the following edges: for
each vertex x0 ∈ G0 we will add all edges between x0 and all vertexes from Γ(x). It
is easy to see that in the graph L(G, G0) the pair x, x0 will be adjacent to the same
vertexes, so the pairs of such kind will be pairs of copies. The next theorem is true:

Theorem 1. [5, 6] If G is a connected graph, without cycles of length three (called
triangles), then the graph L(G, G0) is d-convex simple, where G0 is the atom of the
graph G.

Let G1 and G2 be two d-convex simple graphs, which have one pair of copies
x1, x2 ∈ G1 and y1, y2 ∈ G2. Let us denote by Mx1=y1

x2=y2 (G1, G2) the graph obtained
from G1 and G2 by pasting together x1 with y1 and x2 with y2. The new graph G =
Mx1=y1

x2=y2 (G1, G2) contains two vertexes less than the union of graphs G1 and G2 and
as many edges as have G1 and G2 together (Fig. 1). We will write G = M(G1, G2)
if we know the pairs of vertexes that participate in forming the new graph G.
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Figure 1.

Theorem 2. [1,2] If G1 and G2 are two d-convex simple graphs, where one pair of
copies, x1, x2 ∈ G1 and y1, y2 ∈ G2 exists, then the graph G = Mx1=y1

x2=y2 (G1, G2) is
also d-convex simple.

From this theorem it results that the operation M introduced above is an al-
gebraic operation on the set of d-convex simple graphs. In [1] this operation M is
studied on some known classes of d-convex simple graphs [5] namely:
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1. A is the set of all d-convex simple graphs without cycles of length 3, where
each vertex is dominated by other;

2. F are graphs without cycles of length 3 and without generated subgraphs F
(Fig. 2a);

3. H1 are hereditary-modular graphs, i.e. bipartite graphs where each isometric
cycle is of length 4;

4. H2 are chordal graphs, i.e. bipartite graphs where each generated cycle is of
length 4;

5. H3 are hereditary by distance graphs, i.e. graphs without cycles of length 3
and where each generated connected subgraph is isometric;

6. P is the set of d-convex simple and planar graphs.

F : H :

y2y1

a) b)
Figure 2.

Let SF , SH1, SH2, SH3 be all d-convex simple graphs from classes of graphs
F , H1, H2, H3 respectively. The next lemmas are true:

Lemma 1. [5] If G is a graph from the class A, then G is d-convex simple.

Lemma 2. [5] If G is a d-convex simple graph without generated subgraphs F
(Fig. 2a), then G is from A.

Also, in [5] is proved next relation:

P ⊂ SH3 ⊂ SH2 ⊂ SH1 ⊂ SF ⊂ A.

We have to say that reverse affirmations of Lemmas 1, 2 are false, because a
d-convex simple graph that is not in A is the graph H illustrated in Fig. 2b and a
d-convex simple graph that contains F as a generated subgraph and belongs to the
class A is the graph L(F, F0).

Theorem 3. [5] Let G be a locally finite graph then:

1. G ∈ A if and only if G = L(Γ, Γ0), where Γ is a connected graph without
cycles of length 3, Γ0 is the atom of Γ;
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2. G ∈ SF if and only if G = L(Γ, Γ0), where Γ ∈ F ;

3. G ∈ SHi if and only if G = L(Γ, Γ0), where Γ ∈ Hi, i = 1, 2, 3;

4. G ∈ P if and only if G = L(Γ, Γ0), where Γ is a tree with at least 3 vertexes.

From this theorem and L operation it results that the graphs of classes P, SH1,
SH2, SH2, SF , A have at least one pair of vertexes copies and then we can apply
the M operation to them.

Theorem 4. [1] For any two finite graphs G1 and G2 are true the next affirmations:

1. If G1, G2 ∈ A, then G = M(G1, G2) ∈ A;

2. If G1, G2 ∈ SF , then G = M(G1, G2) ∈ SF ;

3. If G1, G2 ∈ SHi, then G = M(G1, G2) ∈ SHi, i = 1, 2, 3;

4. If G1, G2 ∈ P, then G = M(G1, G2) ∈ P;

5. If G1, G2 are two d-convex simple and bipartite graphs which have at least one
pair of copies, then G = M(G1, G2) is also d-convex simple and bipartite.

In other words, theorem 6 asserts that the introduced operation M is algebraic
on all mentioned classes, where the class A is the vastest. Lemma 4 asserts that all
d-convex simple graphs without generated subgraph F are from A. It results that a
new class of d-convex simple graphs should have only graphs with F as a subgraph
and some vertexes that are not dominated.

2 Extensions of Classes of d-Convex Simple Graphs

Let us denote by C a class of d-convex simple graphs, for example one of classes
we have mentioned above .

Let G be a d-convex simple graph, not from C, which has at least one pair of
copies vertexes, because we need that G could participate in the operation M with
other graphs. For example if we consider that C = A then as G the graph H (Fig.
2b) can be toked.

Definition 3. The set of all graphs that could be obtained from the graph G and
graphs of set C, by using the M operation a finite number of times, is called the
extension of class C by graph G and denoted C[G].

The next properties are true:

1. C[G] is a class of d-convex simple graphs;

2. C ⊂ C[G];

3. If C1 ⊂ C2, then C1[G] ⊂ C2[G];
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4. If C1 ⊂ C2 and G /∈ C2, then C1[G] 6⊂ C2.

Now we can form the extensions of known classes of d-convex simple graphs by
graph H (Fig. 2b). We obtain P[H], SHi[H], i = 1, 2, 3, SF [H], A[H]. The next
relation is true:

P[H] ⊂ SH3[H] ⊂ SH2[H] ⊂ SH1[H] ⊂ SF [H] ⊂ A[H].

Moreover, it is also true that A ⊂ A[H], so the class A[H] is larger than all
classes of d-convex simple graphs known by now.

But the graph H is not the unique graph that can make extensions, and any
other graph, that has the same properties generate with A new extensions. We
can also make extension of extension of some classes of graphs. Let σ be a set of
d-convex simple graphs and C be a class of d-convex simple graphs such that the
graphs of the set σ are not from class C, then:

Definition 4. The set of all graphs that could be obtained from the graphs of the
set σ and graphs of set C, by using the M operation a finite number of times, is
called the extension of class C by the set σ and denoted C[σ].

The next properties are true:

1. C ⊂ C[σ] ⊂ G, where G is the set of all d-convex simple graphs;

2. C[σ1 ∪ σ2] = C[σ1][σ2] = C[σ2][σ1].

Definition 5. We will say that the d-convex simple graph G is divisible with respect
to the M operation if there exist two d-convex simple graphs G1 and G2 such that
G = M(G1, G2). In this case the graphs G1 and G2 will be called divisors of the
graph G.

Definition 6. The d-convex simple graph G is called M-prime if it is not divisible
with respect to the M operation.

It is easy to see that the graph H (Fig. 2b) is a M-prime graph.

Theorem 5. The d-convex simple graph G is divisible with respect to the M oper-
ation if and only if there exists a pair of copies vertexes z1 and z2 in G such that
as result of the elimination of the vertexes z1, z2 from G, we obtain an unconnected
graph.

Proof. Necessity: Let G be a d-convex simple graph that is divisible with respect
to the M operation, then by the definition of divisibility there are d-convex simple
graphs G1, G2, with pairs of copies vertexes x1, x2 and y1, y2 respectively, such that
G = Mx1=y1

x2=y2 (G1, G2). As result of the elimination from the graph G of the vertexes
z1 = x1 = y1, z2 = x2 = y2, the obtained graph is obviously unconnected.

Sufficiency: Let G be a d-convex simple graph, where there exists a pair of
vertexes copies z1, z2, such that as result of the elimination of the vertexes z1, z2
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from G, we obtain a graph with two components, not necessarily connected. Let
us denote by G1 and G2 each of components and make the next changes: in the
first component we add two vertexes x1, x2, and all vertexes from G1 which were
adjacent with z1, z2 in G now will be adjacent with x1, x2; in the second component
we also add two vertexes y1, y2 and make the same thing, i.e. all vertexes from G2

which were adjacent with z1, z2 in G now will be adjacent with y1, y2. Of course
G = Mx1=y1

x2=y2 (G1, G2). It remains to prove that the graphs G1 and G2 are d-convex
simple. Let us show that G1 is d-convex simple, the fact that G2 is d-convex simple
can be proved by analogy. First we want to show that d− convG1({x1, x2}) = XG1 .
Indeed, if we construct d-convex hull in G of any two vertexes v1 and v2 that are not
from G1, then there must be obligatory the vertexes z1 and z2, which would attract
in this hull all vertexes from G1. From this result

d − convG1({x1, x2}) = XG1 . (∗)

Let now x, y be two vertexes from G1 at distance two. As above, because G is
d-convex simple we have

d − convG({x, y}) = ∪∞

i=0Bi = XG.

Results that ∃k ≥ 0 such that z1, z2 ∈ Bk and z1, z2 /∈ Bk−1 and all vertexes from
Bk, except z1, z2, are from G1, because after the elimination of z1, z2 from G an
unconnected graph remained. We construct by the same way the convex hull of
vertexes x, y in G1 until we come to the set Bk, where instead of vertexes z1, z2, we
have x1, x2. So we have that {x1, x2} ⊂ d − conv({x, y}, from (∗) it results that

G1 = d − convG1({x1, x2}) ⊆ d − convG1({x, y}).

The reverse inclusions is obvious so we have that G1 is a d-convex simple graph.

From this theorem follows the next corollary:

Corollary. Decomposition of an arbitrary d-convex simple graph into M-prime
graphs is unique.

3 The Sets of M-Prime Graphs

Let us denote by B the set of all M-prime graphs from G\A, by B1 those
graphs from B which have at least one pair of vertexes copies, and denote by
B2 the rest graphs from B, i.e. those graphs where don’t exist pairs of copies
vertexes. We have B1 6= ∅ because H ∈ B1 (Fig. 2b). Let us see that
B2 6= ∅, too. For that we construct the graphs Jk = (Xk, Uk), ∀k ∈ N, where
Xk = {z1, z2, z3, z4, z5, z6, x1, y1, x2, y2, . . . , xk, yk},
Uk = {(z1, z4); (z1, z5); (z2, z5); (z2, z6); (z3, z4); (z3, z6)}∪
∪{(xi, z4); (xi, z5); (xi, z6) | ∀i ∈ {1, 2, . . . , k}}∪
∪{(yi, z1); (yi, z2); (yi, z3) | ∀i ∈ {1, 2, . . . , k}}, Fig. 3.
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By direct verification we can see that graphs Jk, ∀k ∈ N are d-convex simple and
that no one vertex is dominated and respectively does not exist any pair of copies
vertexes, therefore it results {Jk, ∀k ∈ N} ⊂ B2. So we have that B2 6= ∅.
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Figure 3.

Let now G = (X, U) be an arbitrary, undirected, d-convex simple graph that
contains one pair of copies vertex x1 and x2. From this graph we form a new graph,
where we add one more vertex copy x3 of vertexes x1, x2. Let us denote this graph
by G++ (this notation is borrowed from the language C++, where i++ increases
the value of i by one entity).

Lemma 3. For any finite graph G are true the next assertions:

1. If G ∈ G, then G++ ∈ G;

2. If G ∈ A, then G++ ∈ A;

3. If G ∈ B, then G++ ∈ B;

Proof. 1. Indeed, let G ∈ G be any d-convex simple graph that contains one pair
of copies x1, x2, and x3 is their new copy in G++. Then the d-convex hull
of any two nonadjacent vertexes from G will contain together with x1, x2 the
vertex x3, in G++. The d-convex hull of vertexes x3, y, ∀y ∈ G, y 6∼ x3,
will contain the same vertexes as the convex hull of vertexes x1, y or x2, y,
because they are copies, but the d-convex hull of each of the last pair contains
all vertexes of G, because G is d-convex simple. So we have showed that the
d-convex hull of any pair of nonadjacent vertexes of G++ contains all vertexes
of this graph, from which it results that G++ is d-convex simple: G++ ∈ G.
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2. Let G ∈ A, so G is a d-convex simple graph, where any vertex is dominated by
other. From the first part of this proof we have that G++ is d-convex simple,
remains to show that G++ does not contain vertexes, that are not dominated.
The new added vertex x3 is dominated by their copies x1 and x2, all other
vertexes being dominated by condition, it results G++ ∈ A.

3. Let G ∈ B, so G is a d-convex simple graph which has at least one vertex v
that is not dominated and let G have a pair of copies vertexes x1, x2. Then
from the first part of this proof we have that G++ is d-convex simple, where
the vertex v is not dominated, because x3 cannot dominate v as a copy of x1,
otherwise x1 dominates v in G, too. Other new vertexes that should dominate
the vertex v also do not exists, it results G++ ∈ B.

So we have introduced an operation that allows us the multiplication of copies
vertexes, i.e. if we have a d-convex simple graph G with a pair of copies vertexes,
then we can form a new d-convex simple graph, analogical with G, but where instead
of two copies vertexes we have n copies vertexes, ∀n ∈ N, n is fixed. For example, by
using operation of multiplication, we obtain from the graph H (Fig. 2b) a countable
set of M-prime graphs and with vertexes that are not dominated: {Hk |k ∈ N}, Fig.
4.

H :

y2y1

Hk :

yk
b

b

b

y2y1

a) b)
Figure 4.

If a graph G contains more than one pair of copies vertexes, then we can use the
operation of multiplication over all of them, or only on some of them arbitrary, not
necessarily equal numbers of times.

The reverse operation it is also true, i.e. if we have a d-convex simple graph
G and x1, x2, x3 are three copies vertexes of G, then the graph G−−, where x3 is
missing, will be also d-convex simple.

Let us now have a d-convex simple graph G and v an arbitrary vertex of it. Let
us form the graph G++, where we have added a copy vertex for v, which we denote
v′. The next lemma is true:

Lemma 4. If G is a d-convex simple graph then G++ is also d-convex simple.
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Proof. Let G ∈ G be any d-convex simple graph and v an arbitrary vertex of it.
Let us form the graph G++, where v has a copy v′. The d-convex hull of any two
nonadjacent vertexes from G, different from v and v′, will contain together with v
the vertex v′ in G++. G is d-convex simple, we have that v is not a suspended vertex,
i.e. v is adjacent to at least two nonadjacent vertexes, because G does not contain
triangles, so we have that d-segment 〈v, v′〉 contains at least two nonadjacent vertexes
x, x′, and d-convex hull of these will contains all vertexes of G. By this way we obtain
〈v, v′〉 = XG++ . Let now y be a vertex from G such that d(v, y) = 2. d-Segment
〈v, y〉 will contain in G at least two nonadjacent vertexes w1, w2, which in G++ will
be also adjacent with v′, so we have 〈v, y〉 = G++. But 〈v′, y〉 = 〈v, y〉 = XG++ . We
have already proved that d-convex hull of any two vertexes at distance two in G++

contains all vertexes of this graph, result the graph G++ is d-convex simple.

The last lemma allows to use the operation of multiplication in one d-convex
simple graph on any vertex we want and new graph will be also d-convex simple. So
we can construct from graphs of set B2 the graphs, that will belong to B1, or even
to A, if we will duplicate all vertexes that are not dominated. We observe that the
graphs H, Hk (Fig. 4) can be obtained by using the operation of multiplication on
vertex y1 in graph J1 (Fig. 3a). In Fig. 5 we have other graphs that are derived
from the graph J1.

x̃1

x1

z6

z̃6

z2

z̃2

Figure 5.

Thus we are as close as it was possible to the description of d-convex simple
M-prime graphs, with vertexes that are not dominated. Now let us prove the next
theorem:

Theorem 6. The next relations are true:

A[B] = A[B1] ∪ B2 = G;

Proof. The equality A[B] = A[B1]∪B2 is true because the graphs of B2 have not pairs
of copies vertexes, so they cannot participate in the M-operation and respectively
cannot generate new graphs in this way.

The inclusion A[B] = A[B1] ∪ B2 ⊆ G is true, because we have already proved
that the M-operation is algebraic on G. Let us prove the reverse inclusion.

Let G ∈ G be any d-convex simple graph. If G has not any pair of copies vertexes
then G ∈ B2. Otherwise G ∈ A[B1]. So we have G ⊆ A[B1] ∪ B2.
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The last theorem is very close to our goal, the goal which would be achieved if
we could describe in some way all graphs from B.
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