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Ore extensions over 2-primal Noetherian rings

V.K.Bhat
∗

Abstract. Let R be a ring and σ an automorphism of R. We prove that if R is a 2-
primal Noetherian ring, then the skew polynomial ring R[x;σ] is 2-primal Noetherian.
Let now δ be a σ-derivation of R. We say that R is a δ-ring if aδ(a) ∈ P (R) implies
a ∈ P (R), where P (R) denotes the prime radical of R. We prove that R[x; σ, δ] is a
2-primal Noetherian ring if R is a Noetherian Q-algebra, σ and δ are such that R is
a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R and σ(P ) = P , P being any minimal prime
ideal of R. We use this to prove that if R is a Noetherian σ(∗)-ring (i.e. aσ(a) ∈ P (R)
implies a ∈ P (R)), δ a σ-derivation of R such that R is a δ-ring and σ(δ(a)) = δ(σ(a)),
for all a ∈ R, then R[x; σ, δ] is a 2-primal Noetherian ring.

Mathematics subject classification: Primary 16XX; secondary 16S36, 16N40,
16P40, 16W20, 16W25.

Keywords and phrases: 2-primal, minimal prime, prime radical, nil radical, auto-
morphism, derivation.

1 Introduction

A ring R always means an associative ring. Q denotes the field of rational
numbers. Spec(R) denotes the set of prime ideals of R. MinSpec(R) denotes the
set of minimal prime ideals of R. P (R) and N(R) denote the prime radical and the
set of nilpotent elements of R, respectively. Let I and J be any two ideals of a ring
R. Then I ⊂ J means that I is strictly contained in J . Let I be an ideal of a ring
R such that σm(I) = I for some integer m ≥ 1, we denote ∩m

i=1σ
i(I) by I0.

This article concerns the study of Ore extensions in terms of 2-primal rings.
2-primal rings have been studied in recent years and the 2-primal property is being
studied for various types of rings. In [18], G.Marks discusses the 2-primal property
of R[x;σ, δ], where R is a local ring, σ is an automorphism of R and δ is a σ-derivation
of R.

Recall that a σ-derivation of R is an additive map δ : R → R such that δ(ab) =
δ(a)σ(b) + aδ(b), for all a, b ∈ R. In case σ is the identity map, δ is called just a
derivation of R. For example for any endomorphism τ of a ring R and for any a ∈ R,
̺ : R → R defined as ̺(r) = ra − aτ(r) is a τ -derivation of R.

Let σ be an endomorphism of a ring R and δ : R → R any map. Let
φ : R → M2(R) be a homomorphism defined by
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φ(r) =

(

σ(r) 0
δ(r) r

)

, for all r ∈ R.

Then δ is a σ-derivation of R.

Also let R = K[x], K a field. Then the formal derivative d/dx is a derivation
of R.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak
in [15] and Shin in [20]. 2-primal near rings have been discussed by Argac and
Groenewald in [2]. Recall that a ring R is called 2-primal if the set of nilpotent
elements of R coincides with the prime radical of R (G. Marks [18]), or equivalently if
its radical contains every nilpotent element of R, or if P (R) is a completely semiprime
ideal of R. An ideal I of a ring R is called completely semiprime if a2 ∈ I implies
a ∈ I for a ∈ R.

We also note that a reduced ring (i. e. a ring with no nonzero nilpotent elements)
is 2-primal and a commutative ring is also 2-primal. For further details on 2-primal
rings, we refer the reader to [5, 11,14,15,20].

Recall that R[x;σ, δ] is the skew polynomial ring with coefficients in R in which
multiplication is subject to the relation ax = xσ(a) + δ(a) for all a ∈ R. We denote
R[x;σ, δ] by O(R). In case σ is the identity map, we denote the ring of differential
operators R[x; δ] by D(R), if δ is the zero map, we denote the skew polynomial ring
R[x;σ] by S(R).

Recall that in Krempa [16], a ring R is called σ-rigid if there exists an endomor-
phism σ of R with the property that aσ(a) = 0 implies a = 0 for a ∈ R. In [17],
Kwak defines a σ(∗)-ring R to be a ring if aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R
and establishes a relation between a 2-primal ring and a σ(∗)-ring. The property is
also extended to the skew-polynomial ring S(R).

Remark 1. If R is a ring and σ an automorphism of R such that R is a σ(∗)-ring,
then R is 2-primal.

Proof. We will show that P (R) is a completely semiprime ideal of R. Let a ∈ R be
such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(P (R)) = P (R).
Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).

In Theorem 12 of [17], Kwak has proved that if R is a σ(∗)-ring such that
σ(P (R)) = P (R), then R[x;σ] is 2-primal if and only if P (R)[x;σ] = P (R[x;σ]).

Hong, Kim and Kwak have proved in Corollary 2.8 of [13] that if R is a 2-primal
ring and every simple singular left R-module is p-injective, then every prime ideal
of R is maximal. In particular, every prime factor ring of R is a simple domain.

It is known (Theorem 1.2 of Bhat [5]) that if R is 2-primal Noetherian Q-algebra
and δ is a derivation of R, then D(R) is 2-primal. We also note that if R is a
Noetherian ring, then even R[x] need not be 2-primal.

Example 1. Let R = M2(Q), the set of 2×2 matrices over Q. Then R[x] is a prime
ring with non-zero nilpotent elements and, so can not be 2-primal.
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Let now R be a 2-primal ring. Is O(R) also a 2-primal ring? For the time being
we are not able to answer this question, but towards this we have the following.

Let R be a ring, σ be an automorphism of R and δ be a σ-derivation of R. We
say that R is a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R). We note that a ring with
identity is not a δ-ring. We ultimately prove the following:

1. Let R be a 2-primal Noetherian ring. Then S(R) is 2-primal Noetherian. This
is proved in Theorem 2.

2. Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and δ a
σ-derivation of R such that R is a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R;
σ(P ) = P for all P ∈ MinSpec(R) and δ(P (R)) ⊆ P (R). Then O(R) is
2-primal Noetherian. This is proved in Theorem 6.

3. Let R be a Noetherian ring, which is also an algebra over Q. Let σ be an
automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation of R
such that σ(δ(a)) = δ(σ(a)), for all a ∈ R and R is a δ-ring. Then R[x;σ, δ] is
2-primal Noetherian.

Before proving (2) and (3) above, we find a relation between the minimal prime
ideals of R and those of the Ore extension O(R), where R is a Noetherian Q-algebra,
σ an automorphism of R and δ a σ-derivation of R. This is proved in Theorem 3.

Ore-extensions including skew-polynomial rings and differential operator rings
have been of interest to many authors. See [1, 3, 4, 6–8,12,16,17].

2 Skew polynomial ring S(R)

Recall that an ideal I of a ring R is called σ-invariant if σ(I) = I. Also I is
called completely prime if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. We also note
that in a right Noetherian ring R, MinSpec(R) is finite (Theorem 2.4 of Goodearl
and Warfield [10]), and for any P ∈ MinSpec(R), σt(P ) ∈ MinSpec(R) for all
integers t ≥ 1. Let MinSpec(R) = {P1, P2, . . . , Pn}. Let σmi(Pi) = Pi, for some
positive integers mi, 1 ≤ i ≤ n, and u = m1.m2...mn. Then σu(Pi) = Pi for all
Pi ∈ MinSpec(R). We use same u henceforth, and as mentioned in introduction
above, we denote ∩u

i=1σ
i(P ) by P 0, P being any minimal prime ideal of R.

Proposition 1. Let R be a right Noetherian ring. Let σ be an automorphism of R.
Then σ(N(R)) = N(R).

Proof. Denote N(R) by N . We have σ(N) ⊆ N as R is right Noetherian, therefore,
σ(N) is a nilpotent ideal of R by Theorem 5.18 of Goodearl and Warfield [10]. Now
let n ∈ N . Then σ being an automorphism of R implies that there exists a ∈ R
such that n = σ(a). Now I = σ−1(N) = {a ∈ R such that σ(a) = n ∈ N} is an
ideal of R. Now I is nilpotent, so I ⊆ σ(N), which implies that N ⊆ σ(N). Hence
σ(N) = N .



ORE EXTENSIONS OVER 2-PRIMAL NOETHERIAN RINGS 37

Proposition 2. Let R be a Noetherian ring and σ an automorphism of R. Then
S(N(R)) = N(S(R)).

Proof. It is easy to see that S(N(R)) ⊆ N(S(R)). We will show that N(S(R)) ⊆
S(N(R)). Let f =

∑m
i=0 xiai ∈ N(S(R)). Then f(S(R)) ⊆ N(S(R)), and f(R) ⊆

N(S(R)). Let (f(R))k = 0, k > 0. Then equating leading term to zero, we get
(xmamR)k = 0. This implies on simplification that

xkmσ(k−1)m(amR) · σ(k−2)m(amR) · σ(k−3)m(amR) . . . amR = 0.

Therefore,

σ(k−1)m(amR) · σ(k−2)m(amR) · σ(k−3)m(amR) . . . amR = 0 ⊆ P ,

for all P ∈ MinSpec(R). Now there are two cases:

1. u ≥ m.

2. m ≥ u.

If u ≥ m, then we have

σ(k−1)u(amR) · σ(k−2)u(amR) · σ(k−3)u(amR) . . . amR ⊆ P .

This implies that σ(k−j)u(amR) ⊆ P , for some j, 1 ≤ j ≤ k, i. e. amR ⊆
σ−(k−j)u(P ) = P . So we have amR ⊆ P , for all P ∈ MinSpec(R). There-
fore, am ∈ P (R) = N(R). Now xmam ∈ S(N(R)) ⊆ N(S(R)) implies that
∑m−1

i=0 xiai ∈ N(S(R)), and with the same process, in a finite number of steps,
it can be seen that ai ∈ P (R) = N(R), 0 ≤ i ≤ m − 1. Therefore f ∈ S(N(R)).
Hence N(S(R)) ⊆ S(N(R)) and the result follows. The other case is similar.

Theorem 1. (Theorem 2.4, (2) of Bhat [4]) Let R be a Noetherian ring and
σ an automorphism of R. Then P ∈ MinSpec(S(R)) if and only if there exists
L ∈ MinSpec(R) such that S(P ∩ R) = P and P ∩ R = L0.

Proof. Let L ∈ MinSpec(R). Then σu(L) = L for some integer u ≥ 1. Then by
Lemma 10.6.12 of McConnell and Robson [19] and by Theorem 7.27 of Goodearl
and Warfield [10], S(L0) ∈ MinSpec(S(R)).

Conversely suppose that P ∈ MinSpec(S(R)). Then P ∩ R = U0 for some
U ∈ Spec(R) and U contains a minimal prime ideal U1. Now P ⊇ S(R)U0

1 , which
is a prime ideal of S(R). Hence P = S(R)U0

1 .

We are now in a position to prove the main result of this section in the form of
the following Theorem.

Theorem 2. Let R be a 2-primal Noetherian ring. Then S(R) is 2-primal
Noetherian.
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Proof. R is Noetherian implies S(R) is Noetherian follows from Hilbert Basis Theo-
rem, namely Theorem 1.12 of Goodearl and Warfield [10]. Now R is 2-primal implies
N(R) = P (R) and Proposition 1 implies that σ(N(R)) = N(R). Therefore S(N(R))
and S(P (R)) are ideals of S(R) and S(N(R)) = S(P (R)). Now by Proposition 2
S(N(R)) = N(S(R)).

We now show that S(P (R)) = P (S(R)). It is easy to see that S(P (R)) ⊆
P (S(R)). Now let g =

∑t
i=0 xibi ∈ P (S(R)). Then g ∈ Pi, for all Pi ∈

MinSpec(S(R)). Now Theorem 1 implies that there exists Ui ∈ MinSpec(R) such
that Pi = S((Ui)

0). Now it can be seen that Pi are distinct implies that Ui are
distinct. Therefore g ∈ S((Ui)

0). This implies that bi ∈ (Ui)
0 ⊆ Ui. Thus we

have bi ∈ Ui, for all Ui ∈ MinSpec(R). Therefore bi ∈ P (R), which implies that
g ∈ S(P (R)). Therefore P (S(R)) ⊆ S(P (R)), and hence S(P (R)) = P (S(R)).

Thus we have P (S(R)) = S(P (R)) = S(N(R)) = N(S(R)). Hence S(R)
is 2-primal.

Question 1. Let R be a 2-primal ring. Is S(R) 2-primal? The main difficulty is
that Proposition 2 and Theorem 1 do not hold.

3 Ore extension O(R)

We begin with the following definition:

Definition 1. Let R be a ring. Let σ be an automorphism of R and δ a σ-derivation
of R. We say that R is a δ-ring if δ(a) ∈ P (R) implies a ∈ P (R).

Recall that an ideal I of a ring R is called δ-invariant if δ(I) ⊆ I. If an ideal I
of R is σ-invariant and δ-invariant, then O(I) is an ideal of O(R) as for any a ∈ I,
σj(a) ∈ I and δj(a) ∈ I for all positive integers j.

Gabriel proved in Lemma 3.4 of [9] that if R is a Noetherian Q-algebra and δ
is a derivation of R, then δ(P ) ⊆ P , for all P ∈ MinSpec(R). We generalize this
for σ-derivation δ of R and give a structure of minimal prime ideals of O(R) in the
following Theorem.

Theorem 3. Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and
δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a)), for a ∈ R. Then:

1. P1 ∈ MinSpec(R) such that σ(P1) = P1 implies O(P1) ∈ MinSpec(O(R)).

2. P ∈ MinSpec(O(R)) such that σ(P∩R) = P∩R implies P∩R ∈ MinSpec(R).

Proof. (1) Let P1 ∈ MinSpec(R) with σ(P1) = P1. Let T = R[[t;σ]], the skew
power series ring. We note that multiplication in R[[t;σ]] is determined by the
computation ax = xσ(a) for all a ∈ R. Now we know that

etδ =
∑

∞

n=0
tn

n! δ
n
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and it can be seen that etδ is an automorphism of T . Now P1T ∈ Spec(T ). Suppose
if possible that P1T /∈ MinSpec(T ) and P2 ⊂ P1T be a minimal prime ideal of
T . Then P2 ∩ R ⊂ P1T ∩ R = P1, which is not possible as P1 ∈ MinSpec(R).
Therefore P1T ∈ MinSpec(T ). We also know that (etδ)k(P1T ) ∈ MinSpec(T ) for
all integers k ≥ 1. Now T is Noetherian by Exercise (1ZA(c)) of Goodearl and
Warfield [10], and therefore, Theorem 2.4 of Goodearl and Warfield [10] implies that
MinSpec(T ) is finite. So there exists an integer n ≥ 1 such that (etδ)n(P1T ) = P1T ,
i. e. (entδ)(P1T ) = P1T . But R is a Q-algebra, therefore, etδ(P1T ) = P1T . Now for
any a ∈ P1, a ∈ P1T also, and so etδ(a) ∈ P1T , i. e.

a + tδ(a) + (t2/2!)δ2(a) + · · · ∈ P1T ,

which implies that δ(a) ∈ P1. Therefore δ(P1) ⊆ P1.
Now on the same lines as in Theorem 2.22 of Goodearl and Warfield [10], it can

be easily seen that O(P1) ∈ Spec(O(R)). Suppose that O(P1) /∈ MinSpec(O(R)),
and P2 ⊂ O(P1) is a minimal prime ideal of O(R). Then we have P2 = O(P2 ∩R) ⊂
O(P1) ∈ MinSpec(O(R)). Therefore P2 ∩ R ⊂ P1, which is a contradiction as
P2 ∩ R ∈ Spec(R). Hence O(P1) ∈ MinSpec(O(R)).

(2) Let P ∈ MinSpec(O(R)) with σ(P ∩R) = P ∩R. Then on the same lines as
in Theorem 2.22 of Goodearl and Warfield [10], it can be seen that P ∩R ∈ Spec(R)
and O(P ∩ R) ∈ Spec(O(R)). Therefore O(P ∩ R) = P . We now show that
P ∩ R ∈ MinSpec(R). Suppose that U ⊂ P ∩ R, and U ∈ MinSpec(R). Then
O(U) ⊂ O(P ∩ R) = P . But O(U) ∈ Spec(O(R)) and, O(U) ⊂ P , which is not
possible. Thus we have P ∩ R ∈ MinSpec(R).

Recall that in Proposition 1.11 of Shin [20], it has been proved that a ring R is
2-primal if and only if each minimal prime ideal of R is a completely prime ideal.

Proposition 3. Let R be a 2-primal ring. Let σ be an automorphism of R and δ
a σ-derivation of R such that δ(P (R)) ⊆ P (R). If P ∈ MinSpec(R) is such that
σ(P ) = P , then δ(P ) ⊆ P .

Proof. Let P ∈ MinSpec(R). Now P is a completely prime ideal, therefore, for any
a ∈ P , there exists b /∈ P such that ab ∈ P (R) by Corollary 1.10 of Shin [20]. Now
δ(P (R)) ⊆ P (R), and therefore δ(ab) ∈ P (R); i. e. δ(a)σ(b) + aδ(b) ∈ P (R) ⊆ P .
Now aδ(b) ∈ P implies that δ(a)σ(b) ∈ P . Now σ(P ) = P implies that σ(b) /∈ P
and since P is completely prime in R, we have δ(a) ∈ P . Hence δ(P ) ⊆ P .

Theorem 4. Let R be a ring. Let σ be an automorphism of R and δ a σ-derivation
of R such that R is a δ-ring and δ(P (R)) ⊆ P (R). Then R is 2-primal.

Proof. Define a map ρ : R/P (R) → R/P (R) by ρ(a + P (R)) = δ(a) + P (R) for
a ∈ R and τ : R/P (R) → R/P (R) a map by τ(a + P (R)) = σ(a) + P (R) for a ∈ R,
then it can be seen that τ is an automorphism of R/P(R) and ρ is a τ -derivation
of R/P(R). Now aδ(a) ∈ P (R) if and only if (a + P (R))ρ(a + P (R)) = P (R) in
R/P(R). Thus as in Proposition 5 of Hong, Kim and Kwak [12], R is a reduced ring
and, therefore as mentioned in introduction, R is 2-primal.
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Proposition 4. Let R be a ring. Let σ be an automorphism of R and δ a
σ-derivation of R. Then:

1. For any completely prime ideal P of R with σ(P ) = P and δ(P ) ⊆ P , O(P )
is a completely prime ideal of O(R).

2. For any completely prime ideal U of O(R), U ∩ R is a completely prime ideal
of R.

Proof. (1) Let P be a completely prime ideal of R. Now let f(x) =
∑n

i=0 xiai ∈
O(R) and g(x) =

∑m
j=0 xjbj ∈ O(R) be such that f(x)g(x) ∈ O(P ). Suppose

f(x) /∈ O(P ). We will show that g(x) ∈ O(P ). We use induction on n and m.
For n = m = 1, the verification is easy. We check for n = 2 and m = 1. Let
f(x) = x2a + xb + c and g(x) = xu + v. Now f(x)g(x) ∈ O(P ) with f(x) /∈ O(P ).
The possibilities are a /∈ P or b /∈ P or c /∈ P or any two out of these three do not
belong to P or all of them do not belong to P . We verify case by case.

Let a /∈ P . Since x3σ(a)u + x2(δ(a)u + σ(b)u + av) + x(δ(b)u + σ(c)u + bv) +
δ(c)u + cv ∈ O(P ), we have σ(a)u ∈ P , and so u ∈ P . Now δ(a)u + σ(b)u + av ∈ P
implies av ∈ P , and so v ∈ P . Therefore g(x) ∈ O(P ).

Let b /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then σ(a) ∈ P and therefore a,
δ(a) ∈ P . Now δ(a)u+σ(b)u+av ∈ P implies that σ(b)u ∈ P which in turn implies
that b ∈ P , which is not the case. Therefore we have u ∈ P . Now δ(b)u+σ(c)u+bv ∈
P implies that bv ∈ P and therefore v ∈ P . Thus we have g(x) ∈ O(P ).

Let c /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then as above a, δ(a) ∈ P . Now
δ(a)u + σ(b)u + av ∈ P implies that σ(b)u ∈ P . Now u /∈ P implies that σ(b) ∈ P ;
i. e. b, δ(b) ∈ P . Also δ(b)u + σ(c)u + bv ∈ P implies σ(c)u ∈ P and therefore
σ(c) ∈ P which is not the case. Thus we have u ∈ P . Now δ(c)u + cv ∈ P implies
cv ∈ P , and so v ∈ P . Therefore g(x) ∈ O(P ).

Now suppose the result is true for k, n = k > 2 and m = 1. We will prove for
n = k + 1. Let f(x) = xk+1ak+1 + xkak + · · · + xa1 + a0, and g(x) = xb1 + b0 be
such that f(x)g(x) ∈ O(P ), but f(x) /∈ O(P ). We will show that g(x) ∈ O(P ). If
ak+1 /∈ P , then equating coefficients of xk+2, we get σ(ak+1)b1 ∈ P , which implies
that b1 ∈ P . Now equating coefficients of xk+1, we get σ(ak)b1 + ak+1b0 ∈ P , which
implies that ak+1b0 ∈ P , and therefore b0 ∈ P . Hence g(x) ∈ O(P ).

If aj /∈ P , 0 ≤ j ≤ k, then using induction hypothesis, we get that g(x) ∈ O(P ).
Therefore the statement is true for all n. Now using the same process, it can be
easily seen that the statement is true for all m also.

(2) Let U be a completely prime ideal of O(R). Suppose a, b ∈ R are such that
ab ∈ U ∩ R with a /∈ U ∩ R. This means that a /∈ U as a ∈ R. Thus we have
ab ∈ U ∩ R ⊆ U , with a /∈ U . Therefore we have b ∈ U , and thus b ∈ U ∩ R.

Corollary 1. Let R be a ring and σ an automorphism of R. Then:

1. For any completely prime ideal P of R with σ(P ) = P , S(P ) is a completely
prime ideal of S(R).
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2. For any completely prime ideal U of S(R), U ∩ R is a completely prime ideal
of R.

Corollary 2. Let R be a ring, σ an automorphism of R and δ a σ-derivation of R
such that R is moreover a δ-ring and δ(P (R)) ⊆ P (R). Let P ∈ MinSpec(R) be
such that σ(P ) = P . Then O(P ) is a completely prime ideal of O(R).

Proof. R is 2-primal by Theorem 4, and so by Proposition 3 δ(P ) ⊆ P . Further
more as mentioned in Proposition 3 above, P is a completely prime ideal of R. Now
use Proposition 4, and the proof is complete.

We now prove the following Theorem, which is crucial in proving Theorem 6.

Theorem 5. Let R be a ring, σ an automorphism of R and δ a σ-derivation of R
such that R is a δ-ring and δ(P (R)) ⊆ P (R) and σ(P ) = P for all P ∈ MinSpec(R).
Then O(R) is 2-primal if and only if O(P (R)) = P (O(R)).

Proof. Let O(R) be 2-primal. Now by Corollary 2 P (O(R)) ⊆ O(P (R)). Let f(x) =
∑n

j=0 xjaj ∈ O(P (R)). Now R is a 2-primal subring of O(R) by Theorem 4, which
implies that aj is nilpotent and thus aj ∈ N(O(R)) = P (O(R)), and so we have
xjaj ∈ P (O(R)) for each j, 0 ≤ j ≤ n, which implies that f(x) ∈ P (O(R)). Hence
O(P (R)) = P (O(R)).

Conversely suppose O(P (R)) = P (O(R)). We will show that O(R) is 2-primal.
Let g(x) =

∑n
i=0 xibi ∈ O(R), bn 6= 0, be such that (g(x))2 ∈ P (O(R)) = O(P (R)).

We will show that g(x) ∈ P (O(R)). Now leading coefficient σ2n−1(an)an ∈ P (R) ⊆
P , for all P ∈ MinSpec(R). Now σ(P ) = P and since R is 2-primal by The-
orem 4, therefore, P is completely prime. Therefore we have an ∈ P , for all
P ∈ MinSpec(R); i. e. an ∈ P (R). Now since δ(P (R)) ⊆ P (R) and σ(P ) = P for all
P ∈ MinSpec(R), we get (

∑n−1
i=0 xibi)

2 ∈ P (O(R)) = O(P (R)) and as above we get
an−1 ∈ P (R). With the same process in a finite number of steps we get ai ∈ P (R) for
all i, 0 ≤ i ≤ n. Thus we have (g(x)) ∈ O(P (R)), i. e. (g(x)) ∈ P (O(R)). Therefore
P (O(R)) is a completely semiprime ideal of O(R). Hence O(R) is 2-primal.

Theorem 6. Let R be a Noetherian Q-algebra, σ an automorphism of R and δ a σ-
derivation of R such that R is a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R; σ(P ) = P
for all P ∈ MinSpec(R) and δ(P (R)) ⊆ P (R). Then O(R) is 2-primal.

Proof. Let P1 ∈ MinSpec(R). Then it is given that σ(P1) = P1, and therefore Theo-
rem 3 implies that O(P1) ∈ MinSpec(O(R)). Similarly for any P ∈ MinSpec(O(R))
such that σ(P∩R) = P∩R Theorem 3 implies that P∩R ∈ MinSpec(R). Therefore,
O(P (R)) = P (O(R)), and now the result is obvious by using Theorem 5.

Corollary 3. Let R be a Noetherian Q-algebra, σ an automorphism of R and δ a
σ-derivation of R such that R is a δ-ring, σ(δ(a)) = δ(σ(a)), for all a ∈ R and
σ(P ) = P for all P ∈ MinSpec(R). Then O(R) is 2-primal.
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Proof. Let P1 ∈ MinSpec(R) with σ(P1) = P1. Then as in the proof of Theorem 3
δ(P1) ⊆ P1, and therefore δ(P (R)) ⊆ P (R). Now the rest is obvious using Theorem
6.

Theorem 7. Let R be a Noetherian ring, which is also an algebra over Q. Let σ be
an automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation of R such
that σ(δ(a)) = δ(σ(a)), for all a ∈ R and R is a δ-ring. Then R[x;σ, δ] is 2-primal
Noetherian.

Proof. We show that σ(U) = U for all U ∈ MinSpec(R). Suppose U = U1 is a
minimal prime ideal of R such that σ(U) 6= U . Let U2, U3, . . . , Un be the other
minimal primes of R. Now σ(U) is also a minimal prime ideal of R. Renumber so
that σ(U) = Un. Let a ∈ ∩n−1

i=1 Ui. Then σ(a) ∈ Un, and so aσ(a) ∈ ∩n
i=1Ui = P (R).

Therefore a ∈ P (R), and thus ∩n−1
i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some

i 6= n, which is impossible. Hence σ(U) = U . Now the rest is obvious.

We now have the following question:

Question 2. If R is a Noetherian Q-algebra (even commutative), σ is an automor-
phism of R and δ is a σ-derivation of R. Is O(R) 2-primal? The main problem is
to get Theorem 5 satisfied.
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