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Ore extensions over 2-primal Noetherian rings

V.K.Bhat *

Abstract. Let R be a ring and o an automorphism of R. We prove that if R is a 2-
primal Noetherian ring, then the skew polynomial ring R[z; o] is 2-primal Noetherian.
Let now ¢ be a o-derivation of R. We say that R is a d-ring if ad(a) € P(R) implies
a € P(R), where P(R) denotes the prime radical of R. We prove that R[z;o,0d] is a
2-primal Noetherian ring if R is a Noetherian Q-algebra, o and § are such that R is
a d-ring, 0(6(a)) = d(o(a)), for all a € R and o(P) = P, P being any minimal prime
ideal of R. We use this to prove that if R is a Noetherian o (*)-ring (i.e. ac(a) € P(R)
implies a € P(R)), § a o-derivation of R such that R is a §-ring and o(d(a)) = d(c(a)),
for all a € R, then R[x;0,d] is a 2-primal Noetherian ring.

Mathematics subject classification: Primary 16XX; secondary 16536, 16N40,
16P40, 16W20, 16W25.

Keywords and phrases: 2-primal, minimal prime, prime radical, nil radical, auto-
morphism, derivation.

1 Introduction

A ring R always means an associative ring. @Q denotes the field of rational
numbers. Spec(R) denotes the set of prime ideals of R. MinSpec(R) denotes the
set of minimal prime ideals of R. P(R) and N(R) denote the prime radical and the
set of nilpotent elements of R, respectively. Let I and J be any two ideals of a ring
R. Then I C J means that [ is strictly contained in J. Let I be an ideal of a ring
R such that o™(I) = I for some integer m > 1, we denote N, 0" (I) by I°.

This article concerns the study of Ore extensions in terms of 2-primal rings.
2-primal rings have been studied in recent years and the 2-primal property is being
studied for various types of rings. In [18], G. Marks discusses the 2-primal property
of R[z; 0, 0], where R is a local ring, o is an automorphism of R and ¢ is a o-derivation
of R.

Recall that a o-derivation of R is an additive map d : R — R such that §(ab) =
0(a)o(b) + ad(b), for all a,b € R. In case o is the identity map, J is called just a
derivation of R. For example for any endomorphism 7 of a ring R and for any a € R,
0: R — R defined as o(r) = ra — ar(r) is a 7-derivation of R.

Let ¢ be an endomorphism of a ring R and 6 : R — R any map. Let
¢ : R — My(R) be a homomorphism defined by
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¢(7~):<5(T) S) forall 7€ R,

Then ¢ is a o-derivation of R.

Also let R = K|[z], K a field. Then the formal derivative d/dz is a derivation
of R.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak
in [15] and Shin in [20]. 2-primal near rings have been discussed by Argac and
Groenewald in [2]. Recall that a ring R is called 2-primal if the set of nilpotent
elements of R coincides with the prime radical of R (G. Marks [18]), or equivalently if
its radical contains every nilpotent element of R, or if P(R) is a completely semiprime
ideal of R. An ideal I of a ring R is called completely semiprime if a® € I implies
a €l fora€eR.

We also note that a reduced ring (i. e. a ring with no nonzero nilpotent elements)
is 2-primal and a commutative ring is also 2-primal. For further details on 2-primal
rings, we refer the reader to [5,11,14,15,20].

Recall that R[z;0, 4] is the skew polynomial ring with coefficients in R in which
multiplication is subject to the relation ax = zo(a) 4 d(a) for all @ € R. We denote
Rlz;0,0] by O(R). In case o is the identity map, we denote the ring of differential
operators R[x;d] by D(R), if § is the zero map, we denote the skew polynomial ring
Rlz;0] by S(R).

Recall that in Krempa [16], a ring R is called o-rigid if there exists an endomor-
phism o of R with the property that ac(a) = 0 implies @ = 0 for a € R. In [17],
Kwak defines a o(*)-ring R to be a ring if ac(a) € P(R) implies a € P(R) for a € R
and establishes a relation between a 2-primal ring and a o(x)-ring. The property is
also extended to the skew-polynomial ring S(R).

Remark 1. If R is a ring and ¢ an automorphism of R such that R is a o(x*)-ring,
then R is 2-primal.

Proof. We will show that P(R) is a completely semiprime ideal of R. Let a € R be
such that a®> € P(R). Then ao(a)o(ac(a)) = ao(a)o(a)o?(a) € o(P(R)) = P(R).
Therefore ac(a) € P(R) and hence a € P(R). O

In Theorem 12 of [17], Kwak has proved that if R is a o(x)-ring such that
o(P(R)) = P(R), then R[x;0] is 2-primal if and only if P(R)[z;0] = P(R[z;0]).

Hong, Kim and Kwak have proved in Corollary 2.8 of [13] that if R is a 2-primal
ring and every simple singular left R-module is p-injective, then every prime ideal
of R is maximal. In particular, every prime factor ring of R is a simple domain.

It is known (Theorem 1.2 of Bhat [5]) that if R is 2-primal Noetherian Q-algebra
and ¢ is a derivation of R, then D(R) is 2-primal. We also note that if R is a
Noetherian ring, then even R[z] need not be 2-primal.

Example 1. Let R = M>(Q), the set of 2 x 2 matrices over Q. Then R]x] is a prime
ring with non-zero nilpotent elements and, so can not be 2-primal.
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Let now R be a 2-primal ring. Is O(R) also a 2-primal ring? For the time being
we are not able to answer this question, but towards this we have the following.

Let R be a ring, o be an automorphism of R and § be a o-derivation of R. We
say that R is a d-ring if ad(a) € P(R) implies a € P(R). We note that a ring with
identity is not a d-ring. We ultimately prove the following:

1. Let R be a 2-primal Noetherian ring. Then S(R) is 2-primal Noetherian. This
is proved in Theorem 2.

2. Let R be a Noetherian Q-algebra. Let o be an automorphism of R and § a
o-derivation of R such that R is a d-ring, o(d(a)) = d(o(a)), for all a € R;
o(P) = P for all P € MinSpec(R) and §(P(R)) C P(R). Then O(R) is
2-primal Noetherian. This is proved in Theorem 6.

3. Let R be a Noetherian ring, which is also an algebra over Q. Let o be an
automorphism of R such that R is a o(*)-ring and § be a o-derivation of R
such that o(d(a)) = d(o(a)), for all @ € R and R is a d-ring. Then R[z;0, 0] is
2-primal Noetherian.

Before proving (2) and (3) above, we find a relation between the minimal prime
ideals of R and those of the Ore extension O(R), where R is a Noetherian Q-algebra,
o an automorphism of R and § a o-derivation of R. This is proved in Theorem 3.

Ore-extensions including skew-polynomial rings and differential operator rings
have been of interest to many authors. See [1,3,4,6-8,12,16,17].

2 Skew polynomial ring S(R)

Recall that an ideal I of a ring R is called o-invariant if o(/) = I. Also I is
called completely prime if ab € I implies a € I or b € [ for a,b € R. We also note
that in a right Noetherian ring R, MinSpec(R) is finite (Theorem 2.4 of Goodearl
and Warfield [10]), and for any P € MinSpec(R), o'(P) € MinSpec(R) for all
integers t > 1. Let MinSpec(R) = {P1,Ps,...,P,}. Let o™i (P;) = P;, for some
positive integers m;, 1 < i < n, and v = my.ma...m,. Then o"(P;) = P; for all
P; € MinSpec(R). We use same u henceforth, and as mentioned in introduction
above, we denote N%_,0¢(P) by P°, P being any minimal prime ideal of R.

Proposition 1. Let R be a right Noetherian ring. Let o be an automorphism of R.
Then o(N(R)) = N(R).

Proof. Denote N(R) by N. We have o(N) C N as R is right Noetherian, therefore,
o(N) is a nilpotent ideal of R by Theorem 5.18 of Goodearl and Warfield [10]. Now
let n € N. Then ¢ being an automorphism of R implies that there exists a € R
such that n = o(a). Now I = 0~ }(N) = {a € R such that o(a) = n € N} is an
ideal of R. Now I is nilpotent, so I C ¢(N), which implies that N C ¢(N). Hence
o(N)=N. O
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Proposition 2. Let R be a Noetherian ring and o an automorphism of R. Then

S(N(R)) = N(S(R)).

Proof. 1t is easy to see that S(N(R)) C N(S(R)). We will show that N(S(R)) C
S(N(R)). Let f=>",z'%; € N(S(R)). Then f(S(R)) € N(S(R)), and f(R) C
N(S(R)). Let (f(R))* =0, k > 0. Then equating leading term to zero, we get
(z™a,, R)F = 0. This implies on simplification that

gkmok=Dm (g R) - o2 (q,, R) - c* =3 (q,,R) ... amR = 0.
Therefore,
o+=bm (g R) - o =27 (q,, R) - o* =)™ (a,,R) ... 0, R =0 C P,

for all P € MinSpec(R). Now there are two cases:

If u > m, then we have
o+=Du (g, R) - 0-=2%(q,, R) - 0+~ (a,, R) ... auR C P.

This implies that J(k_j)“(amR) C P, for some j, 1 < j < k, i.e. anR C
o~k=)v(P) = P. So we have a,,R C P, for all P € MinSpec(R). There-
fore, a,, € P(R) = N(R). Now z™a, € S(N(R)) € N(S(R)) implies that
Zﬁgl r'a; € N(S(R)), and with the same process, in a finite number of steps,
it can be seen that a; € P(R) = N(R), 0 < i < m — 1. Therefore f € S(N(R)).

Hence N(S(R)) € S(N(R)) and the result follows. The other case is similar. O

Theorem 1. (Theorem 2.4, (2) of Bhat [4]) Let R be a Noetherian ring and
o an automorphism of R. Then P € MinSpec(S(R)) if and only if there exists
L € MinSpec(R) such that S(PNR) = P and PN R = L°.

Proof. Let L € MinSpec(R). Then o%(L) = L for some integer u > 1. Then by
Lemma 10.6.12 of McConnell and Robson [19] and by Theorem 7.27 of Goodearl
and Warfield [10], S(L°) € MinSpec(S(R)).

Conversely suppose that P € MinSpec(S(R)). Then PN R = U° for some
U € Spec(R) and U contains a minimal prime ideal U;. Now P O S(R)UY, which
is a prime ideal of S(R). Hence P = S(R)U?. O

We are now in a position to prove the main result of this section in the form of
the following Theorem.

Theorem 2. Let R be a 2-primal Noetherian ring. Then S(R) is 2-primal
Noetherian.
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Proof. R is Noetherian implies S(R) is Noetherian follows from Hilbert Basis Theo-
rem, namely Theorem 1.12 of Goodear] and Warfield [10]. Now R is 2-primal implies
N(R) = P(R) and Proposition 1 implies that o(N(R)) = N(R). Therefore S(N(R))
and S(P(R)) are ideals of S(R) and S(N(R)) = S(P(R)). Now by Proposition 2
S(N(R)) = N(S(R)).

We now show that S(P(R)) = P(S(R)). It is easy to see that S(P(R)) C
P(S(R)). Now let g = Y'_ a'b; € P(S(R)). Then g € P;, for all P, ¢
MinSpec(S(R)). Now Theorem 1 implies that there exists U; € MinSpec(R) such
that P, = S((U;)?). Now it can be seen that P; are distinct implies that U; are
distinct. Therefore g € S((U;)?). This implies that b; € (U;)° C U;. Thus we
have b; € U;, for all U; € MinSpec(R). Therefore b; € P(R), which implies that
g € S(P(R)). Therefore P(S(R)) C S(P(R)), and hence S(P(R)) = P(S(R)).

Thus we have P(S(R)) = S(P(R)) = S(N(R)) = N(S(R)). Hence S(R)
is 2-primal. O

Question 1. Let R be a 2-primal ring. Is S(R) 2-primal? The main difficulty is
that Proposition 2 and Theorem 1 do not hold.

3 Ore extension O(R)

We begin with the following definition:

Definition 1. Let R be aring. Let o be an automorphism of R and é a o-derivation
of R. We say that R is a 0-ring if 6(a) € P(R) implies a € P(R).

Recall that an ideal I of a ring R is called d-invariant if 6(I) C I. If an ideal I
of R is o-invariant and d-invariant, then O(I) is an ideal of O(R) as for any a € I,
o’(a) € I and & (a) € I for all positive integers j.

Gabriel proved in Lemma 3.4 of [9] that if R is a Noetherian Q-algebra and ¢
is a derivation of R, then §(P) C P, for all P € MinSpec(R). We generalize this
for o-derivation ¢ of R and give a structure of minimal prime ideals of O(R) in the
following Theorem.

Theorem 3. Let R be a Noetherian Q-algebra. Let o be an automorphism of R and
0 a o-derivation of R such that o(6(a)) = d(o(a)), for a € R. Then:

1. Py € MinSpec(R) such that o(Py) = Py implies O(P1) € MinSpec(O(R)).
2. P € MinSpec(O(R)) such that o(PNR) = PNR implies PNR € MinSpec(R).
Proof. (1) Let P, € MinSpec(R) with o(Py) = P;. Let T = R|[[t;o]], the skew

power series ring. We note that multiplication in R[[t;o]] is determined by the
computation ax = zo(a) for all @ € R. Now we know that

eté — ZOO tm s

n=0 n!
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and it can be seen that e/’ is an automorphism of T. Now P,T € Spec(T). Suppose
if possible that P\T ¢ MinSpec(T) and P, C PiT be a minimal prime ideal of
T. Then , N R C PAT N R = P;, which is not possible as P; € MinSpec(R).
Therefore P,T € MinSpec(T). We also know that (e!®)*(P,T) € MinSpec(T) for
all integers k > 1. Now T is Noetherian by Exercise (1ZA(c)) of Goodearl and
Warfield [10], and therefore, Theorem 2.4 of Goodearl and Warfield [10] implies that
MinSpec(T) is finite. So there exists an integer n > 1 such that (e!)"(P,T) = P, T,
i.e. (e")(PT)= P,T. But R is a Q-algebra, therefore, e/ (P,T) = P,T. Now for
any a € P, a € P,T also, and so et5(a) e AT, i.e.

a+té(a) + (t2/2)6%(a) + --- € P, T,

which implies that 6(a) € P;. Therefore §(P;) C P;.

Now on the same lines as in Theorem 2.22 of Goodearl and Warfield [10], it can
be easily seen that O(P;) € Spec(O(R)). Suppose that O(P;) ¢ MinSpec(O(R)),
and P, C O(P;) is a minimal prime ideal of O(R). Then we have P, = O(P,NR) C
O(P1) € MinSpec(O(R)). Therefore P, N R C P;, which is a contradiction as
P, N R € Spec(R). Hence O(Py) € MinSpec(O(R)).

(2) Let P € MinSpec(O(R)) with o(PNR) = PNR. Then on the same lines as
in Theorem 2.22 of Goodearl and Warfield [10], it can be seen that PN R € Spec(R)
and O(P N R) € Spec(O(R)). Therefore O(P N R) = P. We now show that
PN R € MinSpec(R). Suppose that U C PN R, and U € MinSpec(R). Then
O(U) c O(PNR) = P. But O(U) € Spec(O(R)) and, O(U) C P, which is not
possible. Thus we have P N R € MinSpec(R). O

Recall that in Proposition 1.11 of Shin [20], it has been proved that a ring R is
2-primal if and only if each minimal prime ideal of R is a completely prime ideal.

Proposition 3. Let R be a 2-primal ring. Let o be an automorphism of R and
a o-deriwation of R such that 6(P(R)) C P(R). If P € MinSpec(R) is such that
o(P) = P, then 6(P) C P.

Proof. Let P € MinSpec(R). Now P is a completely prime ideal, therefore, for any
a € P, there exists b ¢ P such that ab € P(R) by Corollary 1.10 of Shin [20]. Now
d(P(R)) C P(R), and therefore §(ab) € P(R); i.e. d(a)o(b) + ad(b) € P(R) C P.
Now ad(b) € P implies that d(a)o(b) € P. Now o(P) = P implies that o(b) ¢ P
and since P is completely prime in R, we have d(a) € P. Hence §(P) C P. O

Theorem 4. Let R be a ring. Let o be an automorphism of R and § a o-derivation
of R such that R is a §-ring and 6(P(R)) C P(R). Then R is 2-primal.

Proof. Define a map p : R/P(R) — R/P(R) by p(a + P(R)) = 0(a) + P(R) for
a€ Rand 7: R/P(R) — R/P(R) amap by 7(a + P(R)) = o(a) + P(R) for a € R,
then it can be seen that 7 is an automorphism of R/P(R) and p is a 7-derivation
of R/P(R). Now ad(a) € P(R) if and only if (a + P(R))p(a + P(R)) = P(R) in
R/P(R). Thus as in Proposition 5 of Hong, Kim and Kwak [12], R is a reduced ring
and, therefore as mentioned in introduction, R is 2-primal. ]
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Proposition 4. Let R be a ring. Let o be an automorphism of R and § a
o-derivation of R. Then:

1. For any completely prime ideal P of R with o(P) = P and 6(P) C P, O(P)
is a completely prime ideal of O(R).

2. For any completely prime ideal U of O(R), U N R is a completely prime ideal
of R.

Proof. (1) Let P be a completely prime ideal of R. Now let f(z) = > j2%a; €
O(R) and g(x) = > 1, z7b; € O(R) be such that f(x)g(z) € O(P). Suppose
f(x) ¢ O(P). We will show that g(x) € O(P). We use induction on n and m.
For n = m = 1, the verification is easy. We check for n = 2 and m = 1. Let
f(z) = z%a + 2b+ c and g(z) = zu +v. Now f(z)g(z) € O(P) with f(x) ¢ O(P).
The possibilities are a ¢ P or b ¢ P or ¢ ¢ P or any two out of these three do not
belong to P or all of them do not belong to P. We verify case by case.

Let a ¢ P. Since 30 (a)u + 2%(0(a)u + o(b)u + av) + z(5(b)u + o(c)u + bv) +
d(c)u+ cv € O(P), we have o(a)u € P, and so u € P. Now d(a)u + o(b)u+av € P
implies av € P, and so v € P. Therefore g(z) € O(P).

Let b ¢ P. Now o(a)u € P. Suppose u ¢ P, then o(a) € P and therefore a,
0(a) € P. Now 6(a)u+ o(b)u+ av € P implies that o(b)u € P which in turn implies
that b € P, which is not the case. Therefore we have u € P. Now §(b)u+o(c)u+bv €
P implies that bv € P and therefore v € P. Thus we have g(x) € O(P).

Let ¢ ¢ P. Now o(a)u € P. Suppose u ¢ P, then as above a, 6(a) € P. Now
d(a)u + o(b)u + av € P implies that o(b)u € P. Now u ¢ P implies that o(b) € P;
i.e. b,6(b) € P. Also §(b)u + o(c)u + bv € P implies o(c)u € P and therefore
o(c) € P which is not the case. Thus we have u € P. Now d(c)u + cv € P implies
cv € P, and so v € P. Therefore g(z) € O(P).

Now suppose the result is true for k, n = k > 2 and m = 1. We will prove for
n=k+1. Let f(z) = 2" agy + 2Fap + -+ + zay + ag, and g(x) = xby + by be
such that f(z)g(z) € O(P), but f(z) ¢ O(P). We will show that g(x) € O(P). If
axy+1 ¢ P, then equating coefficients of zF 2 we get o(aky+1)by € P, which implies
that by € P. Now equating coefficients of 2**!, we get o(ay)by + arq1bo € P, which
implies that ag41bg € P, and therefore by € P. Hence g(x) € O(P).

If aj ¢ P, 0 < j <k, then using induction hypothesis, we get that g(z) € O(P).
Therefore the statement is true for all n. Now using the same process, it can be
easily seen that the statement is true for all m also.

(2) Let U be a completely prime ideal of O(R). Suppose a,b € R are such that
ab € UNR with @ ¢ U N R. This means that « ¢ U as a € R. Thus we have
abe UNR C U, with a ¢ U. Therefore we have b € U, and thus b € U N R. O

Corollary 1. Let R be a ring and o an automorphism of R. Then:

1. For any completely prime ideal P of R with o(P) = P, S(P) is a completely
prime ideal of S(R).
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2. For any completely prime ideal U of S(R), U N R is a completely prime ideal
of R.

Corollary 2. Let R be a ring, o an automorphism of R and § a o-derivation of R
such that R is moreover a §-ring and §(P(R)) C P(R). Let P € MinSpec(R) be
such that o(P) = P. Then O(P) is a completely prime ideal of O(R).

Proof. R is 2-primal by Theorem 4, and so by Proposition 3 §(P) C P. Further
more as mentioned in Proposition 3 above, P is a completely prime ideal of R. Now
use Proposition 4, and the proof is complete. O

We now prove the following Theorem, which is crucial in proving Theorem 6.

Theorem 5. Let R be a ring, o an automorphism of R and § a o-derivation of R
such that R is a 6-ring and 6(P(R)) C P(R) and o(P) = P for all P € MinSpec(R).
Then O(R) is 2-primal if and only if O(P(R)) = P(O(R)).

Proof. Let O(R) be 2-primal. Now by Corollary 2 P(O(R)) C O(P(R)). Let f(z) =
>0 z/a; € O(P(R)). Now R is a 2-primal subring of O(R) by Theorem 4, which
implies that a; is nilpotent and thus a; € N(O(R)) = P(O(R)), and so we have
zla; € P(O(R)) for each j, 0 < j < n, which implies that f(z) € P(O(R)). Hence
O(P(R)) = P(O(R)).

Conversely suppose O(P(R)) = P(O(R)). We will show that O(R) is 2-primal.
Let g(z) = Y7 o a'b; € O(R), b, # 0, be such that (g(z))? € P(O(R)) = O(P(R)).
We will show that g(x) € P(O(R)). Now leading coefficient ¢>"~!(a,)a, € P(R) C
P, for all P € MinSpec(R). Now o(P) = P and since R is 2-primal by The-
orem 4, therefore, P is completely prime. Therefore we have a, € P, for all
P € MinSpec(R); i.e. a, € P(R) Now since 6(P(R)) C P(R) and o(P) = P for all
P € MinSpec(R), we get (3.7, ' 27b;)2 € P(O(R)) = O(P(R)) and as above we get
an—1 € P(R). With the same process in a finite number of steps we get a; € P(R) for
all 4, 0 <7 <n. Thus we have (g(x)) € O(P(R)), i.e. (g(z)) € P(O(R)). Therefore
P(O(R)) is a completely semiprime ideal of O(R). Hence O(R) is 2-primal. O

Theorem 6. Let R be a Noetherian Q-algebra, o an automorphism of R and § a o-
derivation of R such that R is a 6-ring, 0(6(a)) = d(o(a)), for alla € R; o(P) = P
for all P € MinSpec(R) and 6(P(R)) C P(R). Then O(R) is 2-primal.

Proof. Let P, € MinSpec(R). Then it is given that o(P;) = P;, and therefore Theo-
rem 3 implies that O(P;) € MinSpec(O(R)). Similarly for any P € MinSpec(O(R))
such that (PN R) = PNR Theorem 3 implies that PNR € MinSpec(R). Therefore,
O(P(R)) = P(O(R)), and now the result is obvious by using Theorem 5. O

Corollary 3. Let R be a Noetherian Q-algebra, o an automorphism of R and ¢ a
o-derivation of R such that R is a 0-ring, o(d(a)) = d(o(a)), for all a € R and
o(P) = P for all P € MinSpec(R). Then O(R) is 2-primal.
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Proof. Let P; € MinSpec(R) with o(P;) = P;. Then as in the proof of Theorem 3
d(Py) C Py, and therefore 6(P(R)) C P(R). Now the rest is obvious using Theorem
6. U

Theorem 7. Let R be a Noetherian ring, which is also an algebra over Q. Let o be
an automorphism of R such that R is a o(x)-ring and ¢ be a o-derivation of R such
that o(6(a)) = d(c(a)), for all a € R and R is a §-ring. Then R[x;0,0] is 2-primal
Noetherian.

Proof. We show that o(U) = U for all U € MinSpec(R). Suppose U = U is a
minimal prime ideal of R such that o(U) # U. Let U, Us,...,U, be the other
minimal primes of R. Now o(U) is also a minimal prime ideal of R. Renumber so
that o(U) = U,. Let a € N?~'U;. Then o(a) € Uy, and so ao(a) € N, U; = P(R).
Therefore a € P(R), and thus ﬂ;:llUi C U,, which implies that U; C U, for some
i # n, which is impossible. Hence o(U) = U. Now the rest is obvious. O

We now have the following question:

Question 2. If R is a Noetherian Q-algebra (even commutative), o is an automor-
phism of R and § is a o-derivation of R. Is O(R) 2-primal? The main problem is
to get Theorem 5 satisfied.
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