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Mathematical models in regression credibility theory

Virginia Atanasiu

Abstract. In this paper we give the matrix theory of some regression credibility
models and we try to demonstrate what kind of data is needed to apply linear alge-
bra in the regression credibility models. Just like in the case of classical credibility
model we will obtain a credibility solution in the form of a linear combination of the
individual estimate (based on the data of a particular state) and the collective esti-
mate (based on aggregate USA data). To illustrate the solution with the properties
mentioned above, we shall need the well-known representation formula of the inverse
for a special class of matrices. To be able to use the better linear credibility results
obtained in this study, we will provide useful estimators for the structure parameters,
using the matrix theory, the scalar product of two vectors, the norm and the concept of
perpendicularity with respect to a positive definite matrix given in advance, an exten-
sion of Pythagoras’ theorem, properties of the trace for a square matrix, complicated
mathematical properties of conditional expectations and of conditional covariances.

Mathematics subject classification: 15A03, 15A12, 15A48, 15A52, 15A60,
62P05, 62J12, 62J05.

Keywords and phrases: Linearized regression credibility premium, the structural
parameters, unbiased estimators.

Introduction

In this paper we give the matrix theory of some regression credibility models.

The article contains a description of the Hachemeister regression model allowing
for effects like inflation.

In Section 1 we give Hachemeister’s original model, which involves only one
isolated contract. In this section we will give the assumptions of the Hachemeister
regression model and the optimal linearized regression credibility premium is derived.
Just like in the case of classical credibility model, we will obtain a credibility solution
in the form of a linear combination of the individual estimate (based on the data
of a particular state) and the collective estimate (based on aggregate USA data).
To illustrate the solution with the properties mentioned above, we shall need the
well-known representation formula of the inverse for a special class of matrices. It
turns out that this procedure does not provide us with a statistic computable from
the observations, since the result involves unknown parameters of the structure
function. To obtain estimates for these structure parameters, for Hachemeister’s
classical model we embed the contract in a collective of contracts, all providing
independent information on the structure distribution.
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Section 2 describes the classical Hachemeister model. In the classical Hachemeis-
ter model, a portfolio of contracts is studied. Just as in Section 1, we will derive
the best linearized regression credibility premium for this model and we will provide
some useful estimators for the structure parameters, using a well-known represen-
tation theorem for a special class of matrices, properties of the trace for a square
matrix, the scalar product of two vectors, the norm || · ||2P , the concept of perpen-
dicularity ⊥ and an extension of Pythagoras’ theorem, where P is a positive definite
matrix given in advance. So, to be able to use the result from Section 1, one still
has to estimate the portfolio characteristics. Some unbiased estimators are given in
Section 2. From the practical point of view the attractive property of unbiasedness
for these estimators is stated.

1 The original regression credibility model of Hachemeister

In the original regression credibility model of Hachemeister, we consider one
contract with unknown and fixed risk parameter θ, during a period of t (≥ 2)
years. The yearly claim amounts are denoted by X1, . . . ,Xt. Suppose X1, . . . ,Xt are
random variables with finite variance. The contract is a random vector consisting
of a random structure parameter θ and observations X1, . . . ,Xt. Therefore, the
contract is equal to (θ,X ′), where X ′ = (X1, . . . ,Xt). For this model we want
to estimate the net premium: µ(θ) = E(Xj |θ), j = 1, t for a contract with risk
parameter θ.

Remark 1.1. In the credibility models, the pure net risk premium of the contract
with risk parameter θ is defined as:

µ(θ) = E(Xj |θ), ∀j = 1, t. (1.1)

Instead of assuming time independence in the pure net risk premium (1.1) one
could assume that the conditional expectation of the claims on a contract changes
in time, as follows:

µj(θ) = E(Xj |θ) = Y
∼j

′

b
∼

(θ), ∀j = 1, t, (1.2)

where the design vector Y
∼j

is known (Y
∼j

is a column vector of length q, the non-

random (q × 1) vector Y
∼j

is known) and where the b
∼

(θ) are the unknown regression

constants (b
∼

(θ) is a column vector of length q).

Remark 1.2. Because of inflation we are not willing to assume that E(Xj |θ) is
independent of j. Instead we make the regression assumption E(Xj |θ) =

Y
∼j

′

b
∼

(θ).

When estimating the vector β
∼

from the initial regression hypothesis E(Xj) =

Y
∼j

′

β
∼

formulated by actuary, Hachemeister found great differences. He then assumed
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that to each of the states there was related an unknown random risk parameter θ

containing the risk characteristics of that state, and that θ’s from different states
were independent and identically distributed. Again considering one particular state,
we assume that E(Xj |θ) = Y

∼j

′

b
∼

(θ), with E[b
∼

(θ)] = β
∼

.

Consequence of the hypothesis (1.2):

µ
∼

(t,1)
(θ) = E(X

∼

|θ) = Y
∼

b
∼

(θ), (1.3)

where Y
∼

is a (t× q) matrix given in advance, the so-called design matrix of full rank

q (q ≤ t) [the (t×q) design matrix Y
∼

is known and having full rank q ≤ t] and where

b
∼

(θ) is an unknown regression vector [b
∼

(θ) is a column vector of length q].

Observations. By a suitable choice of the Y
∼

(assumed to be known), time effects on

the risk premium can be introduced.

Examples. 1) If the design matrix is for example chosen as follows:

Y
∼

= Y
∼

(t,3)
=











1 1 1
1 2 22

...
...

...
1 t t2











we obtain a quadratic inflationary trend: µj(θ) =

b1(θ) + jb2(θ) + j2b3(θ), j = 1, t, where b
∼

(θ) = (b1(θ), b2(θ), b3(θ))′. Indeed,

by standard computations we obtain: µ
∼

(t,1)
(θ) = Y

∼

b
∼

(θ) = (1b1(θ) + 1b2(θ) +

12b3(θ), 1b1(θ) + 2b2(θ) + 22b2(θ), . . . , 1b1(θ) + tb2(θ) + t2b3(θ))′ and as µ
∼

(t,1)
(θ) =

(µ1(θ), µ2(θ), . . . , µt(θ))′ results that is established our first assertion.

2) If the design matrix is for example chosen as follows:

Y
∼

= Y
∼

(t,2)
=











1 1
1 2
...

...
1 t











(the last column of 1 is omitted) a linear inflation results:

µj(θ) = b1(θ) + jb2(θ), j = 1, t, where b
∼

(θ) = (b1(θ), b2(θ))′. The proof is similar.

After these motivating introductory remarks, we state the model assumptions in
more detail.

Let X
∼

= (X1, . . . ,Xt)
′ be an observed random (t × 1) vector and θ an unknown

random risk parameter. We assume that:

E(X
∼

|θ) = Y
∼

b
∼

(θ). (H1)

It is assumed that the matrices:

Λ
∼

= Cov[b
∼

(θ)](Λ
∼

= Λ
∼

(q×q)
) (H2)
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Φ
∼

= E[Cov(X
∼

|θ) (Φ
∼

= Φ
∼

(t×t)
) (H3)

are positive definite. We finally introduce: E[b
∼

(θ)] = β
∼

.

Let µ̃j be the credibility estimator of µj(θ) based on X
∼

.

For the development of an expression for µ̃j , we shall need the following lemma.

Lemma 1.1 (Representation formula of the inverse for a special class of
matrices). Let A

∼

be an (r × s) matrix and B
∼

an (s × r) matrix. Then

(I
∼

+ A
∼

B
∼

)−1 = I
∼

− A
∼

(I
∼

+ B
∼

A
∼

)−1
B
∼

, (1.4)

if the displayed inverses exist.

Proof. We have

I
∼

= I
∼

+ A
∼

B
∼

− A
∼

B
∼

= I
∼

+ A
∼

B
∼

− A
∼

(I
∼

+ B
∼

A
∼

)(I
∼

+ B
∼

A
∼

)−1B
∼

=

= (I
∼

+ A
∼

B
∼

) − (I
∼

A
∼

+ A
∼

B
∼

A
∼

)(I
∼

+ B
∼

A
∼

)−1B
∼

=

= (I
∼

+ A
∼

B
∼

) − (I
∼

+ A
∼

B
∼

)A
∼

(I
∼

+ B
∼

A
∼

)−1B
∼

giving I
∼

= (I
∼

+ A
∼

B
∼

)[I
∼

− A
∼

(I
∼

+ B
∼

A
∼

)−1B
∼

] and multiplying this equation from the

left by (I
∼

+ A
∼

B
∼

)−1 gives (1.4).

Observation. I
∼

denotes the (r × r) identity matrix.

The optimal choice of µ̃j is determined in the following theorem:

Theorem 1.1. The credibility estimator µ̃j is given by:

µ̃j = Y
∼

′

j

[Z
∼

ˆ
b
∼

+ (I
∼

− Z
∼

)β
∼

], (1.5)

with:
ˆ
b
∼

= (Y
∼

′

Φ
∼

−1
Y
∼

)−1
Y
∼

′

Φ
∼

−1
X
∼

, (1.6)

Z
∼

= Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1, (1.7)

where I
∼

denotes the q × q identity matrix (ˆb
∼

= ˆ
b
∼

(q×1)
;Z
∼

= Z
∼

(q×q)
), for some

fixed j.

Proof. The credibility estimator µ̃j of µj(θ) based on X
∼

is a linear estimator of the

form

µ̃j = γ0 + γ
∼

′

X
∼

, (1.8)
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which satisfies the normal equations

{

E(µ̃j) = E[µj(θ)]

Cov(µ̃j,Xj) = Cov[µj(θ),Xj ]
where γ0 is a

scalar constant, and γ
∼

is a constant (t × 1) vector.

The coefficients γ0 and γ
∼

are chosen such that the normal equations are satisfied.

We write the normal equations as

E(µ̃j) = Y
∼j

′

β
∼

, (1.9)

Cov(µ̃j ,X
∼

′

) = Cov[µj(θ),X
∼

′

]. (1.10)

After inserting (1.8) in (1.10), one obtains

γ
∼

′

Cov(X
∼

) = Cov[µj(θ),X
∼

′

], (1.11)

where

Cov(X
∼

) = E[Cov(X
∼

(θ)] + Cov[E(X
∼

(θ)] =

= Φ
∼

+ Cov[Y
∼

b
∼

(θ)] = Φ
∼

+ Cov[Y
∼

b
∼

(θ), (Y
∼

b
∼

(θ))′] =

= Φ
∼

+ Y
∼

Cov[b
∼

(θ), (b
∼

(θ))′Y
∼

′

] = Φ
∼

+ Y
∼

Cov[b
∼

(θ), (b
∼

(θ))′]Y
∼

′

=

= Φ
∼

+ Y
∼

Cov[b
∼

(θ)]Y
∼

′

= Φ
∼

+ Y
∼

Λ
∼

Y
∼

′

and

Cov[µj(θ),X
∼

′

] = Cov[µj(θ), E(X
∼

′

(θ)] = Cov[Y
∼j

′

b
∼

(θ), (Y
∼

b
∼

(θ))′] =

= Y
∼j

′

Cov[b
∼

(θ), (b
∼

(θ))′Y
∼

′

] = Y
∼j

′

Cov[b
∼

(θ), (b
∼

(θ))′]Y
∼

′

=

= Y
∼j

′

Cov[b
∼

(θ)]Y
∼

′

= Y
∼j

′

Λ
∼

Y
∼

′

and thus (1.11) becomes γ
∼

′

(Φ
∼

+ Y
∼

Λ
∼

Y
∼

′

) = Y
∼j

′

Λ
∼

Y
∼

′

, from which

γ
∼

′

= Y
∼j

′

Λ
∼

Y
∼

′

(Φ
∼

+ Y
∼

Λ
∼

Y
∼

′

)−1 = Y
∼j

′

Λ
∼

Y
∼

′

[(I
∼

+ Y
∼

Λ
∼

Y
∼

′

Φ
∼

−1
)Φ
∼

]−1 =

= Y
∼j

′

Λ
∼

Y
∼

′

Φ
∼

−1
(I
∼

+ Y
∼

Λ
∼

Y
∼

′

Φ
∼

−1
)−1.

Lemma 1.1. now gives

γ
∼

′

= Y
∼j

′

Λ
∼

Y
∼

Λ
∼

−1
[I
∼

− Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1 · Λ
∼

Y
∼

′

Φ
∼

−1
] =

= Y
∼j

′

[Λ
∼

Y
∼

′

Φ
∼

−1
− Λ

∼

Y
∼

′

Φ
∼

−1
Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1
] =

= Y
∼j

′

[I
∼

− Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

(I
∼

+ I
∼

· Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1 · I
∼

]Λ
∼

Y
∼

′

Φ
∼

−1
=

= Y
∼j

′

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1
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and, once more using Lemma 1.1

γ
∼

′

X
∼

= Y
∼j

′

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1
X
∼

=

= Y
∼j

′

I
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

I
∼

)−1Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

ˆ
b
∼

= Y
∼j

′

[I
∼

− (I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

I
∼

)−1]ˆb
∼

with ˆ
b
∼

given by (1.6). According to Lemma 1.1 we obtain

γ
∼

′

X
∼

= Y
∼j

′

{I
∼

− [I
∼

− Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

(I
∼

+ Λ
∼

Y
∼

′

Φ
∼

−1
Y
∼

)−1]} · ˆ
b
∼

= Y
∼j

′

· Z
∼

· ˆ
b
∼

,

with Z
∼

given by (1.7). Insertion in (1.9) gives

γ0 + Y
∼j

′

Z
∼

E(ˆb
∼

) = Y
∼j

′

β
∼

(1.12)

where

E(ˆb
∼

) = (Y
∼

Φ
∼

−1
Y
∼

)−1Y
∼

Φ
∼

−1
E(X

∼

) = (Y
∼

Φ
∼

−1
Y
∼

)−1Y
∼

Φ
∼

−1
E[E(X

∼

|θ)] =

= (Y
∼

Φ
∼

−1
Y
∼

)−1Y
∼

Φ
∼

−1
Y
∼

E[b
∼

(θ)] = (Y
∼

Φ
∼

−1
Y
∼

)−1(Y
∼

Φ
∼

−1
Y
∼

)β
∼

= β
∼

and thus (1.12) becomes γ0 + Y
∼j

′

Z
∼

β
∼

= Y
∼j

′

β
∼

from which γ0 = Y
∼j

′

(I
∼

− Z
∼

)β
∼

.

This completes the proof of Theorem 1.1.

2 The classical credibility regression model of Hachemeister

In this section we will introduce the classical regression credibility model of
Hachemeister, which consists of a portfolio of k contracts, satisfying the constraints
of the original Hachemeister model.

The contract indexed j is a random vector consisting of a random structure θj

and observations Xj1, . . . ,Xjt. Therefore the contract indexed j is equal to (θj ,X
′

j),

where X ′

j = (Xj1, . . . ,Xjt) and j = 1, k (the variables describing the jth contract are

(θj,X
′

j), j = 1, k). Just as in Section 1, we will derive the best linearized regression
credibility estimators for this model.

Instead of assuming time independence in the net risk premium:

µ(θj) = E(Xjq|θj), j = 1, k, q = 1, t (2.1)

one could assume that the conditional expectation of the claims on a contract
changes in time, as follows:

µq(θj) = E(Xjq|θj) = yjqβ(θj), j = 1, k, q = 1, t, (2.2)

with yjq assumed to be known and β(·) assumed to be unknown.
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Observations: By a suitable choice of the yjq, time effects on the risk premium can
be introduced.

Examples. 1) If for instance the claim figures are subject to a known inflation i,
(2.2) becomes:

µq(θj) = E(Xjq|θj) = (1 + i)q · β(θj), j = 1, k, q = 1, t.

2) If in addition the volume wj changes from contract to contract, one could
introduce the model:

µq(θj) = E(Xjq|θj) = wj(1 + i)q · β(θj), j = 1, k, q = 1, t

where wj and i are given.

Consequence of the hypothesis (2.2):

µ(t,1)(θj) = E(Xj |θj) = x(t,n)β(n,1)(θj), = 1, k, (2.3)

where x(t,n) is a matrix given in advance, the so-called design matrix, and where
the β(θj) are the unknown regression constants. Again one assumes that for each
contract the risk parameters β(θj) are the same functions of different realizations of
the structure parameter.

Observations: By a suitable choice of the x, time effects on the risk premium can
be introduced.

Examples. 1) If the design matrix is for examples chosen as follows:

x(t,3) =











1 1 12

1 2 22

...
...

...
1 t t2











, we obtain a quadratic inflationary trend:

µq(θj) = β1(θj) + qβ2(θj) + q2β3(θj), j = 1, k, q = 1, t, (2.4)

where β(3,1)(θj) = (β1(θj), β2(θj), β3(θj))
′, with j = 1, k.

2) If the design matrix is for example chosen as follows:

x(t,2) =











1 1
1 2
...

...
1 t











(the last column of 1) is omitted) a linear inflation results:

µq(θj) = β1(θj) + qβ2(θj), j = 1, k, q = 1, t, (2.5)

where β(2,1)(θj) = (β1(θj), β2(θj))
′, with j = 1, k.

For some fixed design matrix x(t,n) of full rank n (n < t), and a fixed weight

matrix v
(t,t)
j , the hypotheses of the Hachemeister model are:
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(H1) The contracts (θj,X
′

j) are independent, the variables θ1, . . . , θk are inde-
pendent and identically distributed.

(H2) E(X
(t,1)
j |θj) = x(t,n)β(n,1)(θj), j = 1, k, where β is an unknown regression

vector;

Cov(X
(t,1)
j |θj) = σ2(θj) · v

(t,t)
j , where σ2(θj) = Var(Xjr|θj), ∀r = 1, t and vj =

v
(t,t)
j is a known non-random weight (t × t) matrix, with rgvj = t, j = 1, k.

We introduce the structural parameters, which are natural extensions of those
in the Bühlmann-Straub model. We have:

s2 = E[σ2(θj)] (2.6)

a = a(n,n) = Cov[β(θj)] (2.7)

b = b(n,1) = E[β(θj)], (2.8)

where j = 1, k.
After the credibility result based on these structural parameters is obtained, one

has to construct estimates for these parameters. Write: cj = c
(t,t)
j = Cov(Xj),

uj = u
(n,n)
j = (x′v−1

j x)−1, zj = z
(n,n)
j = a(a + s2uj)

−1 = [the resulting credibility

factor for contract j], j = 1, k.
Before proving the linearized regression credibility premium, we first give the

classical result for the regression vector, namely the GLS-estimator for β(θj).

Theorem 2.1 (Classical regression result). The vector Bj minimizing the
weighted distance to the observations Xj ,

d(Bj) = (Xj − xBj)
′v−1

j (Xj − xBj),

reads
Bj = (x′v−1

j x)−1x′v−1
j Xj = ujx

′v−1
j Xj ,

or
Bj = (x′c−1

j x)−1x′c−1
j Xj in case cj = s2vj + xax′.

Proof. The first equality results immediately from the minimization procedure for
the quadratic form involved, the second one from Lemma 2.1.

Lemma 2.1. (Representation theorem for a special class of matrices). If
C and V are t × t matrices, A an n × n matrix and Y a t × n matrix, and

C = s2V + Y AY ′,

then
(Y ′C−1Y )−1 = s2(Y ′V −1Y )−1 + A

and
(Y ′C−1Y )−1Y ′C−1 = (Y ′V −1Y )−1Y ′V −1.
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We can now derive the regression credibility results for the estimates of the
parameters in the linear model. Multiplying this vector of estimates by the design
matrix provides us with the credibility estimate for µ(θj), see (2.3).

Theorem 2.2 (Linearized regression credibility premium). The best lin-
earized estimate of E[β(n,1)(θj)|Xj ] is given by:

M j = z
(n,n)
j B

(n,1)
j + (I(n,n) − z

(n,n)
j )b(n,1) (2.9)

and the best linearized estimate of E[x(t,n)β(n,1)(θj)|Xj ] is given by :

x(t,n)M j = x(t,n)[z
(n,n)
j B

(n,1)
j + (I(n,n) − z

(n,n)
j )b(n,1)]. (2.10)

Proof. The best linearized estimate M j of E[β(θj)|Xj] is determined by solving the
following problem

Min
ε

d(ε), (2.11)

with
d(ε) = ||β(θj) − (M j + εV )||2p =

= E[(β(θj) − M j − εV )′P (β(θj) − M j − εV )],
(2.12)

where V = V (n,1) is a linear combination of 1 and the components of Xj , P = P (n,n)

is a positive definite matrix given in advance and || · ||2p is a norm defined by: ||X ||2p =

E(X ′PX), with X = X(n,1) an arbitrary vector.
The theorem holds in case d′(0) = 0 for every V . Standard computations lead

to

d(ε) = E[(β(θj))
′Pβ(θj)] − E[(β(θj))

′PM j ]−

− εE[(β(θj))
′PV ] − E[M ′

jPβ(θj)] + E[M ′

jPM j]+

+ εE[M ′

jPV ] − εE[V ′Pβ(θj)] + εE[V ′PM j ] + ε2E[V ′PV ]

(2.13)

The derivative d′(ε) is given by

d′(ε) = −2E[V ′P (β(θj) − M j − εV )] (2.14)

Define reduced variables by

β0(θj) = β(θj) − E[β(θj)] = β(θj) − b (2.15)

B0
j = Bj − E(Bj) = Bj − b, (2.16)

X0
j = Xj − E(Xj) = Xj − xb. (2.17)

Inserting M j from (2.9) in (2.14) for ε = 0, we have to prove that

E[V ′P (β(θj) − ZjBj − bzjb)] = 0, (2.18)
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for every V .
Using (2.15) and (2.16), the relation (2.18) can be written as

E[V ′P (β0(θj) − zjB
0
j)] = 0, (2.19)

for every V .
But since V is an arbitrary vector, with as components linear combinations of 1

and the components of Xj, it may be written as

V = α0 + α
(n,t)
1 X0

j . (2.20)

Therefore one has to prove that

E[(α′

0 + X0′
j α′

1)P (β0(θj) − zjB
0
j)] = 0, (2.21)

for every V .
Standard computations lead to the following expression for the left hand side

(2.22)

α′

0PE[β0(θj)] + E[X0′
j α′

1Pβ0(θj)] − α′

0PzjE(B0
j ) − E[X0′

j α′

1PZjB
0
j ] =

= E[X0′
j α′

1P (β0(θj) − zjB
0
j )] = E{Tr[X0′

j α′

1P (β0(θj) − zjB
0
j )]} =

= E{Tr[α′

1P (β0(θj) − zjB
0
j)X

0′
j ]} = Tr{α′

1PE[(β0(θj) − zjB
0
j )X

0′
j ]},

where we used the fact that E[B0(θj)] = 0, E(β0
j
) = 0 and that a scalar random

variable trivially equals its trace, and also that Tr(AB) = Tr(BA).
Expression (2.22) is equal to zero, as can be seen by

E[(β0(θj) − zjB
0
j)X

0′
j ] = E[β0(θj)X

0′
j ] − zjE(B0

jX
0′
j ) =

= Cov [β0(θj),X
0′
j ] − zjCov(B0

j ,X
0′
j ) =

= Cov[β(θj),Xj ] − zjCov(Bj ,Xj) =

= ax′ − zj(a + s2uj)x
′ = ax′ − a(a + s2uj)

−1(a + s2uj)x
′ =

= ax′ − ax′ = 0.

(2.23)

This proves (2.9), (2.10) follows by replacing P in (2.12) by x′Px. So repeating
the same reasoning as above we arrive at (2.10).

Remark 2.1. Here and in the following we present the main results leaving the
detailed computations to the reader.

Remark 2.2. From (2.9) we see that the credibility estimates for the parameters of
the linear model are given as the matrix version of a convex mixture of the classical
regression result Bj and the collective result b.

Theorem 2.2 concerns a special contract j. By the assumptions, the structural
parameters a, b and s2 do not depend on j. So if there are more contracts, these
parameters can be estimated.
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Every vector Bj gives an unbiased estimator of b. Consequently, so does every

linear combination of the type ΣαjBj, where the vector of matrices (α
(n,n)
j )

j=1,k
, is

such that:
k
∑

j=1

α
(n,n)
j = I(n,n). (2.24)

The optimal choice of α
(n,n)
j is determined in the following theorem:

Theorem 2.3 (Estimation of the parameters b in the regression credibility
model). The optimal solution to the problem

Min
α

d(α), (2.25)

where:

d(α) =

∥

∥

∥

∥

∥

∥

b −
∑

j

αjBj

∥

∥

∥

∥

∥

∥

2

p

def E







b −
∑

j

αjBj





′

P



b −
∑

j

αjBj









(the distance from





∑

j

αjBj



 to the parameters b), P = P (n,n) a given positive

definite matrix (P is a non-negative definite matrix), with the vector of matrices
α = (αj)j=1,k

satisfying (2.24), is:

b̂
(n,1)

= Z−1
k
∑

j=1

zjBj , (2.26)

where Z =
k
∑

j=1

zj and zj is defined as: zj = a(a + s2uj)
−1, j = 1, k.

Proof. Using the norm ||X||2p = E(X ′PX) and the perpendicularity concept ⊥ of

two vectors X(n,1) and Y (n,1) defined by X ⊥ Y iff E(X ′PY ) = 0, we see that it is
sufficient to prove that for all feasible α

(b̂ − b) ⊥





∑

j

αjBj − b̂



 , (2.27)

since then according to an extension of Pythagoras′ theorem

X ⊥ Y ⇔ ||X + Y ||2p = ||X||2p + ||Y ||2p,

we have
||b −

∑

j

αjBj ||
2
p = ||b − b̂ + b̂ −

∑

j

αjBj ||
2
p =

= ||b − b̂||2p + ||b̂ −
∑

j

αjβj
||2p

(2.28)
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so for every choice of α one gets

||b − b̂||2p ≤ ||b −
∑

j

αjBj||
2
p. (2.29)

So let us show now that (2.27) holds. It is clear that

b̂ −
∑

j

αjBj = Z−1
∑

j

zjBj −
∑

αjBj =
∑

j

(Z−1Zj − αj)Bj =
∑

j

γjBj (2.30)

with
∑

j

γj =
∑

j

(Z−1zj − αj) = Z−1
∑

j

zj −
∑

j

αj = Z−1Z − I = I − I = 0, (2.31)

where γj = Z−1zj − αj , j = 1, k. To prove (2.27), we have to show that





∑

j

γjBj



 ⊥ (b̂ − b) (2.32)

so that

E









∑

j

γjBj





′

P (b̂ − b)



 = 0. (2.33)

The left hand side of (2.33) can successively be rewritten as follows

E









∑

j

B′

jγ
′

j



P (b̂ − b)



 =
∑

j

E(B′

jγ
′

jP b̂0) =

=
∑

j

[E(B′

jγ
′

jP b̂0) − b′γ′

jPE(b̂0)] =

=
∑

j

[E(B′

jγ
′

jP b̂0)) − E(b′γ′

jP b̂0)] =
∑

j

E[(B′

j − b′)γ′

jP b̂0] =

=
∑

j

E[(B′

j − E(B′

j))γ
′

jP b̂0] =
∑

j

E(B
′0
j γ′

jP b̂0) =

=
∑

j

E(B
′0
j γ′

jPZ−1 ·
∑

i

ziB
0
i ) =

∑

j,i

E(B
′0
j γ′

jPZ−1ziB
0
i ) =

=
∑

j,i

E[Tr(B
′0
j γ′

jPZ−1ziB
0
i )] =

∑

j,i

E[Tr(γ′

jPZ−1ziB
0
i B

′0
j )] =

=
∑

j,i

Tr[γ′

jPZ−1ziE(B0
i B

′0
j )] =

∑

j,i

Tr[γ′

jPZ−1ziCov (B0
i , B

0
j)] =

=
∑

j,i

Tr[γ′

jPZ−1ziCov (BiBj)] =
∑

j,i

Tr[γ′

jPZ−1ziδij(a + s2uj)] =
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=
∑

j

Tr[γ′

jPZ−1zj(a + s2uj)] =

=
∑

j

Tr[γ′

jPZ−1zja(a + s2uj)
−1(a + s2uj)] =

=
∑

j

Tr(γ′

jPZ−1a) = Tr



(
∑

j

γ′

j)PZ−1a



 =

= Tr(0PZ−1a) = Tr(0) = 0,

(2.34)

where b̂0 = b̂−E(b̂) = b̂− b, B
′0
j = B′

j −E(B′

j) = B′

j − b′ are the reduced variables.

In (2.34) we used the fact that E(b̂0) = 0 and that a scalar random variable trivially
equals its trace, and also that Tr(AB) = Tr(BA). The proof is complete.

Theorem 2.4 (Unbiased estimator for s2 for each contract group). In
case the number of observations tj in the jth contract is larger than the number of
regression constants n, the following is an unbiased estimator of s2:

ŝ2
j =

1

tj − n
(Xj − xjBj)

′(Xj − xjBj). (2.35)

Corollary (Unbiased estimator for s2 in the regression model). Let K

denote the number of contracts j, with tj > n. The E(ŝ2) = s2, if:

ŝ2 =
1

K

∑

j;tj>n

ŝ2
j . (2.36)

For a, we give an unbiased pseudo-estimator, defined in terms of itself, so it can
only be computed iteratively:

Theorem 2.5 (Pseudo-estimator for a). The following random variable has
expected value a:

â =
1

k − 1

∑

j

zj(Bj − b̂)(Bj − b̂)′. (2.37)

Proof. By standard computations we obtain

E(â) =
1

k − 1

∑

j

zj [E(BjB
′

j) − E(Bj b̂
′

) − E(b̂ B′

j) + E(b̂ b̂
′

)]. (2.38)

Since

Cov(Bj) = Cov(Bj, B
′

j) = Cov[ujx
′v−1

j Xj , (ujx
′v−1

j Xj)
′] =

= ujx
′v−1

j Cov(Xj)v
−1
j xu′

j = ujx
′v−1

j (s2vj + xax′)v−1
j xu′

j = a + s2uj,

results that

E(Bj B′

j) = Cov(Bj) + E(Bj)E(B ′

j) = a + s2uj + b b′, (2.39)
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where E(Bj) = E[E(Bj|θj)] = E(β(θj)] = b. Since

Cov(Bj, b̂
′

) = Cov(Bj , Z
−1
∑

i

ziBi) =

(

Cov

(

∑

i

Z−1ziBi, Bj

))

′

=

=
∑

i

Cov(Bj , Bi)z
′

i · (Z
′)−1 =

∑

i

δij(a + s2uj)z
′

i(Z
′)−1 = (a + s2uj)z

′

j(Z
′)−1,

results that

E(Bj b̂
′

) = Cov(Bj , b̂
′

) + E(Bj)E(b̂
′

) = (a + s2uj)z
′

j(Z
′)−1 + b b′, (2.40)

where

E(b̂) = E



Z−1
∑

j

zjBj



 = Z−1





∑

j

zj



E(Bj) = Z−1Zb = b.

Since
Cov(b̂, Bj) = (Cov(Bj, b̂))

′ = [(a + s2uj)z
′

j(Z
′)−1]′ =

= Z−1zj(a + s2uj) = Z−1a(a + s2uj)
−1(a + s2uj) = Z−1a,

results that

E(b̂B′

j) = Cov(b̂, Bj) + E(b̂)E(B′

j) = Z−1a + b b′ (2.41)

Since

Cov(b̂) = Cov(b̂, b̂) = Cov(Z−1
∑

i

ziBi, Z
−1
∑

j

zjBj) =

= Z−1
∑

i

zi





∑

j

Cov (Bj, Bi)z
′

j



 · (Z ′)−1 =

= Z−1
∑

i

zi





∑

j

δij(a + s2uj)z
′

j



 (Z ′)−1 =

= Z−1

(

∑

i

zi(a + s2ui)z
′

i

)

(Z ′)−1 =

= Z−1

(

∑

i

a(a + s2ui)
−1(a + s2ui)z

′

i

)

(Z ′)−1 = Z−1aZ ′(Z ′)−1 = Z−1a

results that

E(b̂ b̂′) = Cov(b̂) + E(b̂)E(b̂′) = Z−1a + b b′ . (2.42)

Now (2.37) follows from (2.38), (2.39), (2.40), (2.41) and (2.42).
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Remark 2.3. Another unbiased estimator for a is the following:

â =
1

(w2. −
∑

w2
j )







1

2

∑

i,j

wiwj(Bi − Bj)(Bi − Bj)
′ − ŝ2

k
∑

j=1

wj(w. − wj)uj







,

(2.43)
where wj is the volume of the risk for the jth contract, j = 1, k and

w. =
∑

j

wj .

Proof. Complicate and tedious computations lead to

(w2. −
∑

j

w2
j )E(â) =

1

2







∑

i,j

wiwjE[(Bi − Bj) · (Bi − Bj)
′]







− E(ŝ2)·

·
∑

j

wj(w. − wj)uj =
1

2
{
∑

i,j

wiwj[E(Bi B′

i) − E(Bi B′

j)−

−E(Bj B′

i) + E(Bj B′

j)]} − s2





∑

j

wjw.uj −
∑

j

w2
j uj



 =

= 1
2{
∑

i,j

wiwj[a + s2ui + b b′ − δij(a + s2uj) − b b′ − δij(a + s2uj)−

−b b′ + a + s2uj + b b′]} − s2
∑

j

wjw.uj + s2
∑

j

w2
j uj =

= 1
2 · 2w.w.a + 1

2s2
∑

i

wiuiw. −
1

2
2
∑

wj ·
∑

i

wiδij(a + s2uj)+

+1
2s2
∑

j

wjujw. − s2
∑

wjujw. + s2
∑

j

w2
juj =

= w2.a −
∑

j

w2
j a = (w2. −

∑

j

w2
j )a

Thus we have proved our assertion.
Observation. This estimator is a statistic; it is not a pseudo-estimator. Still, the
reason to prefer (2.37) is that this estimator can easily be generalized to multi-
level hierarchical models. In any case, the unbiasedness of the credibility premium
disappears even if one takes (2.43) to estimate a.

3 Conclusions

The article contains a credibility solution in the form of a linear combination of
the individual estimate (based on the data of a particular state) and the collective
estimate (based on aggregate USA data). This idea is worked out in regression
credibility theory.
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In case there is an increase (for instance by inflation) of the results on a portfolio,
the risk premium could be considered to be a linear function in time of the type
β0(θ) + tβ1(θ). Then two parameters β0(θ) and β1(θ) must be estimated from the
observed variables. This kind of problem is named regression credibility. This model
arises in cases where the risk premium depends on time, e.g. by inflation. The one
could assume a linear effect on the risk premium as an approximation to the real
growth, as is also the case in time series analysis.

These regression models can be generalized to get credibility models for gen-
eral regression models, where the risk is characterized by outcomes of other related
variables.

This paper contains a description of the Hachemeister regression model allowing
for effects like inflation. If there is an effect of inflation, it is contained in the claim
figures, so one should use estimates based on these figures instead of external data.
This can be done using Hachemeister’s regression model.

In this article the regression credibility result for the estimates of the parameters
in the linear model is derived. After the credibility result based on the structural
parameters is obtained, one has to construct estimates for these parameters.

The matrix theory provided the means to calculate useful estimators for the
structure parameters. The property of unbiasedness of these estimators is very
appealing and very attractive from the practical point of view.

The fact that it is based on complicated mathematics, involving linear algebra,
needs not bother the user more than it does when he applies statistical tools like
discriminant analysis, scoring models, SAS and GLIM.
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[1] Daykin C.D., Pentikäinen T., Pesonen M. Practical Risk Theory for Actuaries. Chapman
& Hall, 1993.

[2] Goovaerts M.J., Kaas R., Van Heerwaarden A.E., Bauwelinckx T. Effective Actuarial

Methods. Elsevier Science Publishers B.V., 3 1990.

[3] Hachemeister C.A. Credibility for regression models with application to trend; in Credibility,

theory and application. Proceedings of the Berkeley Actuarial Research Conference on credibi-
lity; Academic Press, New York, 1975, 129–163.

[4] Sundt B. On choice of statistics in credibility estimation, Scandinavian Actuarial Journal,
1979, 115–123

[5] Sundt B. An Introduction to Non-Life, Insurance Mathematics, volume of the ”Mannheim
Series”, 1984, 22–54.

[6] Sundt B. Two credibility regression approaches for the classification of passenger cars in a

multiplicative tariff, ASTIN Bulletin, 17, 1987b, 41–69

Academy of Economic Studies
Department of Mathematics
Calea Dorobanţilor nr. 15-17
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