Resolvability of some special algebras with topologies

Liubomir Chiriac

Abstract. Let G be an infinite $I_n P$ -n-groupoid. We construct a disjoint family $\{B_{\mu} : \mu \in M\}$ of non-empty subsets of G such that the sets $\{B_{\mu}\}$ are dense in all Choban's totally bounded topologies on G, |M| = |G|, $G = \bigcup \{B_{\mu} : \mu \in M\}$ and $\bigcup_{k=1}^{n} \Delta_{\varphi} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and every finite subsets K of G. In particular, we continue the line of research from [6, 9].

Mathematics subject classification: 22A05, 54H11. Keywords and phrases: Resolvability, I_nP -n-groupoid, bounded topology.

1 Introductory notions

A space X is called resolvable if in X there exist two disjoint dense subsets. In [6] M. Choban and L. Chiriac has proved the following assertion.

Theorem. Let G be an infinite group of cardinality τ . Then there exists a disjoint family $\{B_{\mu} : \mu \in M\}$ of subsets of G such that:

- 1. |M| = |G|.
- 2. $G = \cup \{B_{\mu} : \mu \in M\}.$
- 3. $(G \setminus B\mu) \cdot K \neq G$ for all $\mu \in M$ and every finite subset K of G.
- 4. The sets $\{B_{\mu} : \mu \in M\}$ are dense in all totally bounded topologies on G.

This fact is a generalization of one Protasov's result [9]. In this paper the assertions of Theorem are proved for the special algebras $-I_nP_k$ -n-groupoids. We shall use the notation and terminology from [1–4, 7, 8]. In particular, |X| is the cardinality of a set |X|, N = 0, 1, 2, ..., R is the space of reals. By ω_0 we denote the first infinite cardinal. If τ is an infinite cardinal, then τ^+ is the first cardinal larger than τ . If $\tau \ge 1$ is a cardinal, then the space X is called τ -resolvable if there exists a family of pairwise disjoint dense subsets $\{B_{\alpha} : \alpha \in A\}$ of X such that $|A| = \tau$. Every space is 1-resolvable. If the space X is 2-resolvable, then we say that X is resolvable.

Denote by a_1^m a sequence $a_1, a_2, ..., a_m$. If $a_1 = a_2 = ... = a_m$, then we denote this sequence by a^m . For every space X we put

$$m(X) = \min\{|U| : U \neq \emptyset, U \subseteq X, U \in \tau\}.$$

A space X is maximal resolvable if it is m(X)-resolvable. It is clear that if X is τ -resolvable then $\tau \leq m(X)$. If m(X) = |X| > 1 and X is maximal resolvable, then we say that X is superresolvable.

 $[\]bigodot\,$ Liubomir Chiriac, 2008

For every mapping $f: X \to X$ we put f' = f and $f^{n+1} = f \circ f^n$ for any $n \in N$. We can consider that $f^0: X \to X$ is the identity mapping.

The problem of resolvability of totally bounded topological groups was solved by V.I. Malykhin, W.W. Comfort, S. Van Mill [5], I.V. Protasov [9] and M.M. Choban, L.L. Chiriac [6].

2 Groupoids with invertibility properties

Fix a sequence $\{E_n : n \in N\}$ of pairwise disjoint spaces. The discrete sum $E = \bigcup \{E_n : n \in N\}$ is called a signature or a set of fundamental operations. A universal algebra of signature E, or briefly, an E-algebra is a non-empty set G and a sequence of mappings $e_G = \{e_{nG} : E_n \times G^n \longrightarrow G : n \in N\}$. The set G is called a support of the E-algebra G and the mappings e_G are called the algebraical structure on G. Let G be an E-algebra. If $u \in E_0$, then the element $u_G = e_{0G}(\{u\} \times G^0)$ is called a constant of G and we put $u(x) = u_G$ for all $x \in G$. If $n \ge 1, u \in E_n$ and $x_1, \ldots, x_n \in G$, then we put $u(x_1, \ldots, x_n) = e_{nG}(u, x_1, \ldots, x_n)$. A pair (G, ω) is said to be a n-groupoid if G is a non-empty set and $\omega : G^n \to G$ is a mapping.

Definition 1. Let $k \leq n$. An *n*-groupoid (G, ω) is called:

1. an $I_n P_k$ -*n*-groupoid if there exist the mappings $r_1, ..., r_{k-1}, r_{k+1}, ..., r_n : G \to G$ such that $\omega(r_1(x_1), ..., r_{k-1}(x_{k-1}), \omega(x_1, ..., x_{k-1}, y, x_{k+1}, ..., x_n), r_{k+1}(x_{k+1}), ..., r_n(x_n)) = y$ or $\omega(r_1^{k-1}(x_1^{k-1}), \omega(x_1^{k-1}, y, x_{k+1}^n), r_{k+1}^n(x_{k+1}^n)) = y$ for all $x_1, ..., x_{k-1}, x_{k+1}, ..., x_n, y \in G$. The mapping $r_i(x)$ is called k-involution, $i \in \{1, ..., k-1, k+1, ..., n\}$.

2. an $I_n P$ -n-groupoid in the large sense if it is $I_n P_k$ -n-groupoid for all $k = \overline{1, n}$. In this case the mapping $r_i(x)$ is called involution, $i \in \{1, ..., n\}$.

3. an I_nP -n-groupoid, or I_nP -n-groupoid in strong sense, if there exist the mappings $\{r_i : G \to G: i = \overline{1,n}\}$ such that $\{r_i : i \leq n, i \neq k\}$ is a family of k-involutions for any $k = \overline{1,n}$.

4. an I_0P_k -n-groupoid if there exist the mappings $r_1, ..., r_{k-1}, r_{k+1}, ..., r_n : G \to G$ such that $\omega(r_1(x), ..., r_{k-1}(x), \omega(x^{k-1}, y, x^{n-k}), r_{k-1}(x), ..., r_n(x)) = y$ for all $x, y \in G$.

5. an I_0P -*n*-groupoid if it is I_0P_k -*n*-groupoid for all $k = \overline{1, n}$.

Example 1. Let (G, \cdot) be a topological non commutative group with the identity e. If we put $\omega(x, y, z, u) = y \cdot x \cdot u \cdot z$, then (G, ω) is an I_0P -4-quasigroup. Indeed:

1. (G, ω) is an I_0P_1 -4-quasigroup for $r_2(y) = y^{-1}$, $r_3(z) = z^{-1}$, $r_4(u) = u^{-1}$. We have $\omega(\omega(x, t, t, t), r_2(t), r_3(t), r_4(t)) = r_2(t) \cdot t \cdot x \cdot t \cdot t \cdot r_4(t) \cdot r_3(t) = t^{-1} \cdot t \cdot x \cdot t \cdot t \cdot t^{-1} \cdot t^{-1} = e \cdot x \cdot t \cdot e \cdot t^{-1} = x \cdot t \cdot t^{-1} = x$.

2. (G, ω) is an I_0P_2 -4-quasigroup for $r_1(x) = x^{-1}, r_3(z) = z^{-1}, r_4(u) = u^{-1}$. Really, $\omega(r_1(t), \omega(t, y, t, t), r_3(t), r_4(t)) = y \cdot t \cdot t \cdot t \cdot r_1(t) \cdot r_4(t) \cdot r_3(t) = y$.

3. (G, ω) is an I_0P_3 -4-quasigroup for $r_1(x) = x^{-1}$, $r_2(y) = y^{-1}$, $r_4(u) = u^{-1}$. Really, $\omega(r_1(t), r_2(t), \omega(t, t, z, t), r_4(t)) = r_2(t) \cdot r_1(t) \cdot r_4(t) \cdot t \cdot t \cdot t \cdot z = z$.

4. (G, ω) is an I_0P_4 -4-quasigroup for $r_1(x) = x^{-1}$, $r_2(y) = y^{-1}$, $r_3(z) = z^{-1}$. Really, $\omega(r_1(t), r_2(t), r_3(t), \omega(t, t, t, u)) = r_2(t) \cdot r_1(t) \cdot t \cdot t \cdot u \cdot t \cdot r_3(t) = u$. In this case (G, ω) is an I_0P_i -4-quasigroup for every $i \in \{1, 2, 3, 4\}$. Hence, (G, ω) is an I_0P -4-quasigroup.

Example 2. Let (G, \cdot) be a topological group with the identity e. We put $\omega(x, y, z) = x \cdot y \cdot z$. In this case:

1. (G, ω) is a 3-groupoid;

2. (G, ω) is an I_0P_i -3-groupoid for every $i \in \{1, 2, 3\}$ and for $r_1(x) = r_2(x) = r_3(x) = x^{-1}$;

3. (G, ω) is an I_3P_2 -3-groupoid for $r_1(x) = x^{-1}, r_3(x) = z^{-1}$. Indeed, $\omega(r_1(x), \omega(x, y, z), r_3(z)) = x^{-1} \cdot x \cdot y \cdot z \cdot z^{-1} = e \cdot y \cdot e = y;$

4. If the group G is non commutative, then (G, ω) is not an I_3P_i -3-groupoid for $i = \{1, 3\}$.

Example 3. Let C be the field of the complex numbers, R be the field of the reals numbers. Let $A = C \setminus \{0\}$, $B = R \setminus \{0\}$ and $G = \{r \in R : r > 0\}$. Then (A, \cdot) , (B, \cdot) and (G, \cdot) are commutative multiplicative groups. We put $\omega(x, y, z) = x \cdot y^n \cdot z$, $n \ge 1$.

1. If n = 1, then (A, ω) , (B, ω) and (G, ω) are I_3P -3 quasigroups.

2. If $n \ge 2$, then (A, ω) , is a 3-groupoid with divisions. The equation $\omega(a, y, c) = d$ has n solutions.

3. If n > 1 and n is odd, then (B, ω) and (G, ω) are 3-quasigroups.

4. If $n \ge 2$ and n is even, then (B, ω) is not a 3-groupoid with divisions and (G, ω) is a 3-quasigroup.

5. (A, ω) , (B, ω) , (G, ω) are I_3P_1 -3-groupoids and I_3P_3 -3-groupoids. If $n \ge 2$, then (A, ω) , (B, ω) and (G, ω) are not I_3P_2 -3-groupoids.

Example 4. Let C be the field of the complex numbers and $A = C \setminus \{0\}$. We fix $k \in A$ and put $\omega_n(x_1, x_2, ..., x_n) = k \cdot x_1 \cdot x_2 \cdot ... \cdot x_n$, $(n \ge 2)$. In this case:

1. (A, ω_n) is a commutative quasigroup.

2. (A, ω_n) is an $I_n P$ -*n*-groupoid in strong sense. Denote $r_i(x_i) = {}^{n-1}\sqrt{\frac{1}{k^2}} \cdot x_i^{-1}$. Hence, $\omega_n(r_1(x_1), ..., r_{i-1}(x_{i-1}), \omega_n(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n),$ $r_{i+1}(x_{i+1}), ..., r_n(x_n)) = k \cdot ({}^{n-1}\sqrt{\frac{1}{k^2}})^{i-1} \cdot x_1^{-1} \cdot x_2^{-1} \cdot ... \cdot x_{i-1}^{-1} \cdot k \cdot x_1 \cdot x_2 \cdot ... \cdot x_{i-1} \cdot x_i \cdot x_{i+1} \cdot ... \cdot x_n \cdot ({}^{n-1}\sqrt{\frac{1}{k^2}})^{n-i} \cdot x_{i+1}^{-1} \cdot ... \cdot x_n^{-1} = k^2 ({}^{n-1}\sqrt{\frac{1}{k^2}})^{n-1} \cdot x_i = k^2 \cdot \frac{1}{k^2} \cdot x_i = x_i.$ In strong sense there are n-1 complete involutions.

3. Let $n \ge 2$ and m = 2 + (n-1). There is $k \in A$ such that $k^m = 1$ and $k^i \ne 1$ for i < m. If $r_i(x_i) = k \cdot x_i^{-1}$ then $\{r_1, r_2, ..., r_n\}$ are involutions in strong sense. Hence, $\omega_n(r_1(x_1), ..., r_{i-1}(x_i), \omega_n(x_1, x_2, ..., x_n), r_{i+1}(x_{i+1}), ..., r_n(x_n)) = k^{n-1} \cdot k^2 \cdot x_1^{-1} \cdot ... \cdot x_{i-1}^{-1} \cdot x_1 \cdot ... \cdot x_n \cdot x_{i+1}^{-1} \cdot ... \cdot x_n^{-1} = k^{2+n-1} \cdot x_i = k^m \cdot x_i = x_i.$

4. Let $n = 2, m \ge 3, k^m = 1$ and $k^i \ne 1$ for i < m. We put $\omega(x, y) = k \cdot x \cdot y, r_1(x) = k^{m-2}x^{-1}, r_2(y) = k^{m-2}y^{-1}$. In this case $\{r_1(x), r_2(x)\}$ are unique involutions in strong sense and $r_i^2(x_i) = k^{m-2}(r_i(x_i))^{-1} = k^{m-2}((k^{m-2} \cdot x^{-1})^{-1}) = k^{m-2} \cdot \frac{1}{k^{m-2}} \cdot x_i = x_i$.

Example 5. Let (G, \cdot) be a topological group with the identity. If we put $\omega(x, y) = x \cdot y$, then:

1. (G, ω) is a 2-groupoid or, briefly, groupoid;

2. (G, ω) is an *RIP*-groupoid for $r_2(x) = x^{-1}$. Indeed, $\omega(\omega(y, x), r_2(x)) = (y \cdot x) \cdot x^{-1} = y$;

3. (G, ω) is an *LIP*-groupoid for $r_1(x) = x^{-1}$. Indeed, $\omega(r_1(x_1), \omega(x, y)) = x^{-1}(x \cdot y) = y$;

4. (G, ω) is an *IP*-groupoid if it is both an *RIP*-groupoid and an *LIP*-groupoid. The notions *LIP*, *RIP* in the class of groupoids were introduced by R. H. Bruck [4].

Proposition 1. Let (G, ω) be an $I_n P_1$ -n-groupoid and $r_2, r_3, ..., r_n : G \to G$ be 1-involutions. Then the following assertions are equivalent:

- 1. $\omega(\omega(y, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)) = y;$
- 2. $\omega(\omega(y, r_2(x_2), ..., r_n(x_n)), x_2, ..., x_n) = y \text{ for all } x_2^n \in G.$

Proof. Suppose that

$$\omega(\omega(y, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)) = y$$
(1)

for all $x_2^n, y \in G$. From (1) we have

$$\omega(\omega(\omega(y, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)), r_2^2(x_2), ..., r_n^2(x_n)) = \omega(y, x_2, ..., x_n)$$
(2)

and

$$\omega(\omega(\omega(y, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)), r_2^2(x_2), ..., r_n^2(x_n)) =$$
(3)
= $\omega(y, r_2^2(x_2), ..., r_n^2(x_n)).$

Using (2) and (3) we obtain

$$\omega(y, x_2, ..., x_n) = \omega(y, r_2^2(x_2), ..., r_n^2(x_n)).$$
(4)

Let in (4) $y = \omega(y, r_2(x_2), ..., r_n(x_n))$. Therefore from (4)

$$\omega(\omega(y, r_2(x_2), ..., r_n(x_n)), x_2, ..., x_n)) =$$

= $\omega(\omega(y, r_2(x_2), ..., r_n(x_n)), r_2^2(x_2), ..., r_n^2(x_n)).$

The implication $1 \rightarrow 2$ is proved. Suppose that

$$\omega(\omega(y, r_2(x_2), ..., r_n(x_n)), x_2, ..., x_n) = y.$$
(5)

From (5) it follows that

$$\omega(\omega[y, r_2^2(x_2), ..., r_n^2(x_n)], r_2(x_2), ..., r_n(x_n)) = y.$$
(6)

It is clear that

$$\omega(\omega[\omega[y, r_2^2(x_2), ..., r_n^2(x_n)], r_2(x_2), ..., r_n(x_n)], x_2, ..., x_n) =$$
(7)
= $\omega(y, r_2^2(x_2), ..., r_n^2(x_n)).$

From (6) we obtain

$$\omega(\omega[\omega[y, r_2^2(x_2), ..., r_n^2(x_n)], r_2(x_2), ..., r_n(x_n)], x_2, ..., x_n) = \omega(y, x_2, ..., x_n).$$
(8)

Using (7) and (8) we have

$$\omega(y, r_2^2(x_2), \dots, r_n^2(x_n)) = \omega(y, x_2, \dots, x_n).$$
(9)

Therefore

$$\omega(\omega(y, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)) =$$

= $\omega(\omega[y, r_2^2(x_2), ..., r_n^2(x_n)], r_2(x_2), ..., r_n(x_n)) = y$

The implication $2 \rightarrow 1$ is proved. The proof is complete.

Definition 2. An *n*-groupoid (G, ω) is called:

1. a *k*-cancellative *n*-groupoid if for every $a, b, x_1, ..., x_{k-1}, x_{k+1}, ..., x_n \in G$ we have $\omega(x_1, ..., x_{k-1}, a, x_{k+1}, ..., x_n) = \omega(x_1, ..., x_{k-1}, b, x_{k+1}, ..., x_n)$ if and only if a = b.

2. a cancellative *n*-groupoid if it is *k*-cancellative groupoid for all $k = \overline{1, n}$

3. an *n*-quasigroup if the equation $\omega(a_1^{i-1}, x, a_{i+1}^n) = b$ has unique solution for every a_i^n, b and each $i = \overline{1, n}$.

Definition 3. An element e from (G, ω) is called:

1. a k-identity of n-groupoid (G, ω) if $\omega(e^{k-1}, x, e^{n-k}) = x$ for every $x \in G$.

2. an identity of n-groupoid (G, ω) if $\omega(e^{i-1}, x, e^{n-i}) = x$ for every $x \in G$ and each $i = \overline{1, n}$.

If n-quasigroup (G, ω) contains at least one identity, then (G, ω) is called n-loop.

Proposition 2. Let (G, ω) be an $I_n P_1$ -n-groupoid and $r_2, r_3, ..., r_n : G \to G$ be 1-involutions. Then:

- 1. $\omega(x_1, x_2, ..., x_n) = \omega(x_1, r_2^2(x_2), ..., r_n^2(x_n))$ for all $x_1^n \in G$.
- 2. $\omega(\omega(y, r_2(x_2), ..., r_n(x_n)), x_2, ..., x_n) = y$ for all $x_2^n, y \in G$.
- 3. (G, ω) is 1-cancellative.
- 4. For every $b, a_2^n \in G$, the equation $\omega(y, a_2, ..., a_n) = b$ has a unique solution.

Proof. The proof of the assertion 1 is contained in the proof of Proposition 1. The assertion 2 follows from Proposition 1. Let $a, b, x_2^n \in G$ and $\omega(a, x_2, ..., x_n) = \omega(b, x_2, ..., x_n)$. Then $a = \omega(\omega(a, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)) = \omega(\omega(b, x_2, ..., x_n), r_2(x_2), ..., r_n(x_n)) = b$. The assertion 3 is proved. We consider the equation $\omega(y, a_2, ..., a_n) = b$. Then from Proposition 1 we have $y = \omega(b, r_2(x_2), ..., r_n(x_n))$. Hence the equation $\omega(y, a_2, ..., a_n) = b$ has a unique solution. The proof is complete.

Corollary 1. Let (G, ω) be an $I_n P$ -n-groupoid in the large sense and $r_i : G \to G, i = \overline{1, n}$, are the involutions on G. Then (G, ω) is cancellative.

Proof. The assertion follows from Proposition 2.

97

Academician M.M. Choban observed the following interesting fact.

Proposition 3. Let (G, ω) be an I_nP -n-groupoid in the large sense and $r_i : G \to G, i = \overline{1, n}$, are the involutions on G. Then $x_i = r_i^{2(n-1)}(x_i)$, for every $i = \overline{1, n}$ and $n \ge 2$.

Proof. It is sufficient to prove that $x_1 = r_1^{2(n-1)}(x_1)$ for any $x_1 \in G$. Fix $x_1, x_2, ..., x_n \in G$. From Proposition 2 we have $\omega(x_1, x_2, ..., x_n) = \omega(x_1, r_2^2(x_2), ..., r_n^2(x_n)) = \omega(r_1^2(x_1), r_2^2(x_2), r_3^4(x_3), ..., r_n^4(x_n)) = ... = \omega(r_1^{2i}(x_1), ..., r_{i+1}^{2i}(x_{i+1}), r_{i+2}^{2(i+1)}(x_{i+2}), ..., r_n^{2(i+1)}(x_n)) = ... = \omega(r_1^{2(n-1)}(x_1), r_2^{2(n-1)}(x_2), ..., r_n^{2(n-1)}(x_n)),$ i.e. It is obvious that $\omega(x_1, x_2, ..., x_n) = \omega(x_1, r_2^{2m}(x_2), ..., r_n^{2m}(x_n))$ for any $m \geq 1$. Hence for m = n - 1, we have $\omega(x_1, r_2^{2(n-1)}(x_2), ..., r_n^{2(n-1)}(x_n)) = \omega(r_1^{2(n-1)}(x_1), r_2^{2(n-1)}(x_2), ..., r_n^{2(n-1)}(x_n))$. Therefore $x_1 = r_1^{2(n-1)}(x_1)$ for any $x_1 \in G$ and $x_i = r_i^{2(n-1)}(x_i)$, for every $i = \overline{1, n}$ and $n \geq 2$. The proof is complete. □

Proposition 4. Let (G, ω) be an I_nP -n-groupoid in the large sense and $r_i : G \to G, i = \overline{2, n}$, are the involutions on G. If $e_1, e_2, ..., e_n \in G$, $e_i = r_i^{2m}(e_i)$, for all $i = \overline{2, n}$, then $x_i = r_i^{2m}(x_i)$, for every $x_i \in G$ and $n \geq 2$.

Proof. From Proposition 2 it follows that $\omega(x_1, x_2, ..., x_n) = \omega(x_1, r_2^{2m}(x_2), ..., r_n^{2m}(x_n))$. Fix $i = \overline{2, n}$. Then $\omega(e_1, e_2, ..., e_{i-1}, x_i, e_{i+1}, ..., e_n) = \omega(e_1, e_2, ..., e_{i-1}, x_i, e_{i+1}, ..., e_n) = \omega(e_1, e_2, ..., e_{i-1}, x_i, e_{i+1}, ..., e_n)$. Hence, $x_i = r_i^{2m}(x_i)$, for every $x_i \in G$, $i = \overline{2, n}$ and $n \ge 2$. The proof is complete.

3 Topologies on algebras

We consider arbitrary topologies on universal algebras. There are a lot of types of bounded topology. We fix $n \ge 2$ and $k \le n$. Consider a mapping $\varphi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$. We will use Choban's bounded topology.

Definition 4. Let (G, ω) be an *n*-groupoid and $L_1, L_2, ..., L_n$ be a family of subsets of G. Then:

1. The sets $L_1, L_2, ..., L_n$ are k- α -associated with the mapping φ and denote $(L_1, L_2, ..., L_n)\alpha(k)\varphi$ if $L_i = L_j$ provided $\varphi(i) = \varphi(j)$ and $i \neq k, j \neq k$.

2. If $x_1, x_2, ..., x_n \in G$ and $(\{x_1\}, \{x_2\}, ..., \{x_n\})\alpha(k)\varphi$, then we put $(x_1, x_2, ..., x_n)\alpha(k)\varphi$.

3. We put $\Delta_{\varphi(k)}\omega(L_1, L_2, ..., L_n) = \{\omega(x_1, x_2, ..., x_n) : x_1 \in L_1, x_2 \in L_2, ..., x_n \in L_n \text{ and } (x_1, x_2, ..., x_n)\alpha(k)\varphi\}.$

Remark 1. Let $L_1, L_2, ..., L_n$ be subsets of G, and $L'_k = L_k$ and $L'_i = \bigcap \{L_j : j \le n, \varphi(j) = \varphi(i)\}$ for any $i \ne k$. Then $(L'_1, L'_2, ..., L'_n)\alpha(k)\varphi$ and $\Delta_{\varphi(k)}\omega(L'_1, L'_2, ..., L'_n) = \Delta_{\varphi(k)}\omega(L_1, L_2, ..., L_n)$.

Definition 5. Let $k \leq n$. An *n*-groupoid (G, ω) is called an $I_{\varphi}P_k$ -*n*-groupoid if there exist the mappings $r_i : G \to G$, $i \in \{1, ..., k - 1, k + 1, ..., n\}$ such that $\omega(r_1(x_1), ..., r_{k-1}(x_{k-1}), \omega(x_1, ..., x_{k-1}, y, x_{k+1}, ..., x_n), r_{k+1}(x_{k+1}), ..., r_n(x_n)) =$ y provided $(x_1, ..., x_{k-1}, x_{k+1}, ..., x_n) \alpha(k)\varphi$ for all $x_1, ..., x_{k-1}, x_{k+1}, ..., x_n, y \in G$.

We say that the mapping $r_i : G \to G$, $i \in \{1, ..., k - 1, k + 1, ..., n\}$ is called $k \cdot \varphi$ -involution.

If $\varphi(i) = \varphi(j)$ for all $i, j \leq n$, then $I_{\varphi}P_k$ -n-groupoid is an I_0P_k -n-groupoid.

Definition 6. Let (G, ω) be an *n*-groupoid and λ be an infinite cardinal. A topology \mathcal{T} on G is called:

- a λ -k- φ -bounded topology if for every non-empty open set $U \in \mathcal{T}$ there exists a subset $K \subseteq G$ such that $|K| < \lambda$ and $\Delta_{\varphi(k)}\omega(K^{k-1}, U, K^{n-k}) = G$.

- a λ - φ -bounded topology if it is λ -k- φ -bounded topology for every $k = \overline{1, n}$. An ω_0 -k- φ -bounded topology is called a k- φ -totally bounded topology. The topology is said to be φ -totally bounded if it is a k- φ -totally bounded topology for every $k = \overline{1, n}$.

Remark 2. If in Definition 6 the mapping φ is one-to-one, then a topology \mathcal{T} on G is called respectively: a λ -k-bounded topology, a λ -bounded topology, a ω_0 -k-bounded topology, a k-totally bounded topology and totally bounded topology, for every $k = \overline{1, n}$.

Proposition 5. Let $\varphi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ be a mapping, (G, ω) be an n-groupoid with the properties:

1. The equation $\omega(a^{k-1}, x, a^{n-k}) = b$ is solvable for every $a, b \in G$.

2. For every $a, b \in G$ there exist $a_1, a_2, ..., a_n \in G$ such that $a_k = a$, $(a_1, a_2, ..., a_n)\alpha(k)\varphi$ and $\omega(a_1, a_2, ..., a_n) = b$.

Then the minimal compact T_1 -topology $\mathcal{T} = \{\emptyset\} \cup \{G \setminus F : F \text{ is a finite subset} of G\}$ is a k- φ -totally bounded topology on G.

Proof. Let $U \in \mathcal{T}$ and $U \neq \emptyset$. Then the set $F = G \setminus U$ is finite. Fix $a \in U$. Then $h_a : G \to G$, where $h_a(x) = \omega(a^{k-1}, x, a^{n-k})$ for any $x \in G$ is a mapping of G onto G. Thus $F' = G \setminus h_a(U) \subseteq h_a(F)$ is a finite set. For any $x \in G$ there exist $y_1(x), y_2(x), \dots, y_n(x) \in G$ such that $y_k(x) = a, (y_1(x), y_2(x), \dots, y_n(x))\alpha(k)\varphi$ and $\omega(y_1(x), y_2(x), \dots, y_n(x)) = x$. We put $\Phi = \{a\} \cup \{\{y_1(x), y_2(x), \dots, y_n(x)\} : x \in F'\}$. The set Φ is finite. By construction, $\Delta_{\varphi(k)}\omega(\Phi^{k-1}, U, \Phi^{n-k}) = G$. The proof is complete.

Proposition 6. Let $\varphi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ be a mapping, (G, ω) be an *n*-groupoid with the properties:

1. For every $a, b \in G$ there exist $a_1, a_2, ..., a_n \in G$ such that $a_k = a$, $(a_1, a_2, ..., a_n)\alpha(k)\varphi$ and $\omega(a_1, a_2, ..., a_n) = b$.

2. There exists $e \in G$ such that $G \setminus \omega(e^{k-1}, G, e^{n-k})$ is a finite set (in particular, $\omega(e^{k-1}, x, e^{n-k}) = x$ for every $x \in G$).

Then the minimal compact T_1 -topology $\mathcal{T} = \{\emptyset\} \cup \{G \setminus F : F \text{ is a finite subset} of G\}$ is a k- φ -totally bounded topology on G.

Proof. Let $U \in \mathcal{T}$ and $U \neq \emptyset$. Then the set $F = G \setminus U$ is finite. Fix $a \in U$. Consider the mapping $h_e : G \to G$, where $h_e(x) = \omega(e^{k-1}, x, e^{n-k})$ for any $x \in G$. The set $G \setminus h_e(G)$ is finite. Thus the set $F' = G \setminus h_e(U) \subseteq (G \setminus h_e(G)) \bigcup h_e(F)$ is a finite set. For any $x \in F'$ fix $\{y_1(x), y_2(x), ..., y_n(x)\} \subseteq G$ such that $y_k(x) = a, (y_1(x), y_2(x), ..., y_n(x))\alpha(k)\varphi$ and $\omega(y_1(x), y_2(x), ..., y_n(x)) = x$. Let $\Phi = \{e\} \cup \cup \{\{y_1(x), y_2(x), ..., y_n(x)\} : x \in F'\}$. The set Φ is finite. By construction, $\Delta_{\varphi(k)}\omega(\Phi^{k-1}, U, \Phi^{n-k}) = G$. The proof is complete. \Box

Proposition 7. Let $\varphi : \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ be a mapping, (G, ω) be an infinite $I_n P_k$ -n-groupoid, $B \subseteq G$, m be an infinite cardinal and $\Delta_{\varphi(k)}\omega(K^{k-1}, G \setminus B, K^{n-k}) \neq G$ for every subset K of cardinality |K| < m. Then the set B is dense in every m-k- φ -bounded topology \mathcal{T} on G.

Proof. Suppose that \mathcal{T} is an m-k- φ -bounded topology on G and $U = G \setminus cl_G B \neq \emptyset$. Then $U \in \mathcal{T}$ and $U \subseteq G \setminus B$. By assumption there exists a subset K of G such that $\Delta_{\varphi(k)}\omega(K^{k-1}, U, K^{n-k}) = G$ and |K| < m. Since $U \subseteq G \setminus B$, we have $G \supseteq \Delta_{\varphi(k)}\omega(K^{k-1}, G \setminus B, K^{n-k}) \supseteq \Delta_{\varphi(k)}\omega(K^{k-1}, U, K^{n-k}) = G$, a contradiction. The proof is complete.

4 Decomposition of $I_n P_k$ -n-groupoids

We fix $n \ge 2$ and $k \le n$. Consider a mapping $\varphi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Lemma 1. Let G be an infinite I_nP_k -n-groupoid, $r_1, ..., r_{k-1}, r_{k+1}, ..., r_n : G \to G$ be k-involutions, L and M be subsets of G and $|L \cup M| < |G|$. Then there exists an element $a \in G$ such that $\omega(L^{k-1}, a, L^{n-k}) \cap M = \emptyset$ and $\Delta_{\varphi(k)}\omega(L^{k-1}, a, L^{n-k}) \cap M = \emptyset$.

Proof. Let $H = \{\omega(r_1(y_1), ..., r_{k-1}(y_{k-1}), x, r_{k+1}(y_{k+1}), ..., r_n(y_n)) : x \in M, y_1, ..., y_{k-1}, y_{k+1}, ..., y_n \in L\}$. Thus |H| < |G| and there exists an element $a \in G \setminus H$.

Suppose that $\omega(L^{k-1}, a, L^{n-k}) \cap M \neq \emptyset$. Fix $\omega(L^{k-1}, a, L^{n-k}) \cap M$. Then $x = \omega(y_1, \dots, y_{k-1}, a, y_{k+1}, \dots, y_n)$ for some $y_1, \dots, y_{k-1}, y_{k+1}, \dots, y_n \in L$. Hence

$$\begin{aligned} a &= \omega(r_1(y_1), \dots, r_{k-1}(y_{k-1}), \omega(y_1^{k-1}, a, y_{k+1}^n), r_{k+1}(y_{k+1}), \dots, r_n(y_n)) = \\ &= \omega(r_1(y_1), \dots, r_{k-1}(y_{k-1}), x, r_{k+1}(y_{k+1}), \dots, r_n(y_n)) \in \\ &\in \omega(r_1(y_1), \dots, r_{k-1}(y_{k-1}), M, r_{k+1}(y_{k+1}), \dots, r_n(y_n)) \subseteq H, \end{aligned}$$

a contradiction. By construction, $\Delta_{\varphi(k)}\omega(L^{k-1}, M, L^{n-k}) \subseteq \omega(L^{k-1}, M, L^{n-k})$. Hence, $\Delta_{\varphi(k)}\omega(L^{k-1}, a, L^{n-k}) \cap M = \emptyset$. The proof is complete.

Theorem 1. Let G be an infinite $I_n P_k$ -n-groupoid, \mathcal{L} be a a non-empty family of non-empty subsets of G, $|\mathcal{L}| \leq |G|$ and for every set A and mapping $\Psi : A \to \mathcal{L}$ we have $| \cup \{\Psi(\alpha) : \alpha \in A\} |<|G|$ provided |A| <|G|. Then there exists a family $\{B_{\mu} : \mu \in M\}$ of non-empty subsets of G such that:

1. |M| = |G|. 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\alpha, \beta \in M$ and $\alpha \neq \beta$. 3. $G = \bigcup \{B_{\mu} : \mu \in M\}$. 4. $\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}$. 5. $\Delta_{\varphi(k)}\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}$.

Proof. Consider on G some k-involutions, $r_1, ..., r_{k-1}, r_{k+1}, ..., r_n : G \to G$. Let $\tau = |G|$. Denote by $|\alpha|$ the cardinality of the ordinal number α . We put $\Omega_{\tau} = \{\alpha : \alpha \in \Omega_{\tau} : \alpha \in \Omega_{\tau} \}$ $1 \leq |\alpha| < \tau$. If $K \subseteq G$, then $K_i^{-1} = \{r_i(x_i) : x_i \in K\}, i = 1, ..., k - 1, k + 1, ..., n,$ and $K^{-1} = \bigcup \{K_i^{-1} : i = 1, 2, ..., k - 1, k + 1, ...n\}$. Let $\mathcal{L}_{\infty} = \{K^{-1} : K \in \mathcal{L}\} \cup \mathcal{L}$. It is clear that $|\mathcal{L}_1| \leq \tau$. Moreover, if A is a set, $|A| < \tau$ and $\Psi : A \to \mathcal{L}_1$ is a mapping, then $|\cup \{\Psi(\alpha) : \alpha \in A\}| < \tau$. Fix a set M of the cardinality τ . Since $|\Omega_{\tau}| = |M \times \mathcal{L}_1| = \tau$ then there exists a bijection $h: \Omega_{\tau} \to M \times \mathcal{L}_1$. If $\alpha \in \Omega_{\tau}$, then we consider that $h(\alpha) = (\mu_{\alpha}, K_{\alpha}) \in M \times \mathcal{L}_1$. If $\mu \in M$, then we put $A_{\mu} = h^{-1}(\{\mu\} \times \mathcal{L}_1)$. It is obvious that $A_{\mu} = \{ \alpha \in \Omega_{\tau} : \mu_{\alpha} = \mu \}$ and $\{ K_{\alpha} : \alpha \in A_{\mu} \} = \mathcal{L}_1$. Now we affirm that there exists a transfinite sequence $\{a_{\alpha} : \alpha \in \Omega_{\tau}\} \subseteq G$ such that $\omega(K^{k-1}_{\alpha}, a_{\alpha}, K^{n-k}_{\alpha}) \cap \omega(K^{k-1}_{\beta}, a_{\beta}, K^{n-k}_{\beta}) = \emptyset$ for all $\alpha, \beta \in \Omega_{\tau}$ and $\alpha \neq \beta$. We fix $a_1 \in G$. Let $1 < \beta, \beta \in \Omega_{\tau}$ and the elements $\{a_{\alpha} : \alpha < \beta\}$ are constructed. We put now $H_{\beta} = \bigcup \{ \omega(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}) : \alpha < \beta \}$. Since $|\alpha \in \Omega_{\tau} : \alpha < \beta| \le |\beta| < |G|$, then $|H_{\beta}| < |G|$. From Lemma 1 it follows that there exists $a_{\beta} \in G$ such that $\omega(K_{\beta}^{k-1}, a_{\beta}, K_{\beta}^{n-k}) \cap H_{\beta} = \emptyset$. By the transfinite induction if follows that the set $\{a_{\alpha}: \alpha \in \Omega_{\tau}\}$ is constructed. We put $P_{\mu} = \bigcup \{\omega(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}): \alpha \in A_{\mu}\}$ for every $\mu \in H$. Fix $\mu, \eta \in M$ and $\mu \neq \eta$. Then $A_{\mu} \cap A_{\eta} = \emptyset$. Since $\omega(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}) \cap \omega(K_{\beta}^{k-1}, a_{\beta}, K_{\beta}^{n-k}) = \emptyset$ for all $\alpha \in A_{\alpha}$ and $\beta \in A_{\eta}$, then $P_{\mu} \cap P_{\eta} = \emptyset$. Fix $\mu \in M$ and $K \in \mathcal{L}$. Then $K^{-1} \in \mathcal{L}_1$ and $(\mu, K^{-1}) = (\mu_\alpha, K_\alpha)$ for some $\alpha \in A_\mu$. Suppose that $\omega(K^{k-1}, G \setminus P_{\mu}, K^{n-k}) = G$. Then $a_{\alpha} \in \omega(K^{k-1}, G \setminus P_{\mu}, K^{n-k})$, i.e. $a_{\alpha} = \omega(y_1^{k-1}, x, y_{k+1}^n)$ for some $x \in G \setminus P_{\mu}$ and $y_1, ..., y_{k-1}, y_{k+1}, ..., y_n \in K$. By construction, we have $r_1(y_1), ..., r_{k-1}(y_{k-1}), r_{k+1}(y_{k+1}), ..., r_n(x_n) \in K_{\alpha}$ and

101

 $\omega(r_1(y_1), ..., r_{k-1}(y_{k-1}), a_\alpha, r_{k+1}(y_{k+1}), ..., r_n(x_n)) \in \omega(K_\alpha^{k-1}, a_\alpha, K_\alpha^{n-k}) \subseteq P_\mu$. By assumption, we have that

$$\omega(r_1(y_1), ..., r_{k-1}(y_{k-1}), a_\alpha, r_{k+1}(y_{k+1}), ..., r_n(x_n)) =$$

= $\omega(r_1(y_1), ..., r_{k-1}(y_{k-1}), \omega(y_1^{k-1}, x, y_{k+1}^{n-k}), r_{k+1}(y_{k+1}), ..., r_n(y_n)) = x \in G \setminus P_\mu$

a contradiction. Hence $\omega(K^{k-1}, G \setminus P_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}$. Now we fix $\mu_0 \in M$. We put $B_{\mu} = P_{\mu}$ for all $\mu \in M \setminus \{\mu_0\}$ and $B_{\mu_0} = G \setminus \bigcup \{P_{\mu} : \mu \in M \setminus \{\mu_0\}\}$. By construction, we have $P_{\mu} \subseteq B_{\mu}$ for all $\mu \in M$ and $G = \bigcup \{B_{\mu} : \mu \in H\}$. If $\mu \in M$, then $G \setminus B_{\mu} \subseteq G \setminus P_{\mu}$ and $\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $K \in \mathcal{L}$. The proof is complete.

Theorem 2. Let (G, ω) be an infinite $I_n P_k$ -n-groupoid, $\tau = |G|$, m be an infinite cardinal, $\tau = \sum \{\tau^q : q < m\}$ and either $m < \tau$, or τ be a regular cardinal. If $\mathcal{L}_m = \{K \subseteq G : |K| < m\}$, then there exists a family $\{B_\mu : \mu \in M\}$ of non-empty subsets of G such that:

- 1. $|M| = \tau$.
- 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\mu, \eta \in M$ and $\mu \neq \eta$.
- 3. $G = \bigcup \{ B_{\mu} : \mu \in M \}.$
- 4. $\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}_m$.
- 5. $\Delta_{\varphi(k)}\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}_m$
- 6. The sets B_{μ} are dense in every m-k- φ -bounded topology on G.
- 7. Relative to every m-k- φ -bounded topology G is super-resolvable.
- 8. The sets B_{μ} are dense in every m-k-bounded topology on G.
- 9. Relative to every m-k-bounded topology G is super-resolvable.

Proof. Since $\tau = \sum \{\tau^q : q < m\}$, we have $m \leq \tau$. Let A be a set, $|A| < \tau, \Psi : A \to L_m$ be a mapping and $H = \bigcup \{\Psi(\alpha) : \alpha \in A\}$. If $m < \tau$, then $|H| \leq \omega(m, ...m, |A|, m, ..., m) = \omega(m^{k-1}, |A|, m^{n-k}) < \tau$. If $m = \tau$ and $|H| = \tau$, then $cf(\tau) \leq |A| < \tau$ and the cardinal τ is not regular. Hence $|H| < \tau$. Theorem 1 and Proposition 7 complete the proof.

Corollary 2. Let G be an infinite I_nP_k -n-groupoid. Then there exists a family $\{B_\mu : \mu \in M\}$ of non-empty subsets of G such that:

- 1. |M| = |G|.
- 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\mu, \eta \in M$ and $\mu \neq \eta$.
- 3. $G = \bigcup \{ B_{\mu} : \mu \in M \}.$

4.
$$\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$$
 for all $\mu \in M$ and every finte subset K of G

5. $\Delta_{\varphi(k)}\omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and every finte subset K of G.

- 6. The sets $\{B_{\mu} : \mu \in M\}$ are dense in every k- φ -totally bounded topology on G.
- 7. Relative to every k- φ -totally bounded topology G is super-resolvable.
- 8. The sets $\{B_{\mu} : \mu \in M\}$ are dense in every k-totally bounded topology on G.
- 9. Relative to every k-totally bounded topology G is super-resolvable.

Corollary 3. Let G be an infinite $I_n P_k$ -n-groupoid, $\tau = |G|$, m be an infinite cardinal and $\tau^m = \tau$. Then there exists a family $\{B_\mu : \mu \in M\}$ of non-empty subsets of G such that:

|M| = |G|.
 B_μ ∩ B_η = Ø for all μ, η ∈ M and μ ≠ η.
 G = ∪{B_μ : μ ∈ M}.
 If μ ∈ M, K ⊆ G and |K| < m then ω(K^{k-1}, G \ B_μ, K^{n-k}) ≠ G.
 If μ ∈ M, K ⊆ G and |K| < m then Δ_{φ(k)}ω(K^{k-1}, G \ B_μ, K^{n-k}) ≠ G.
 The sets {B_μ : μ ∈ M} are dense in every m⁺-k-φ-bounded topology on G.
 Relative to every m⁺-k-φ-bounded topology G is super-resolvable.
 The sets {B_μ : μ ∈ M} are dense in every m⁺-k-bounded topology on G.
 Relative to every m⁺-k-bounded topology G is super-resolvable.

5 Decomposition of $I_n P$ -*n*-groupoids

We fix $n \ge 2$ and $k \le n$. Consider a mapping $\varphi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Lemma 2. Let G be an infinite I_nP -gruopoid, $r_1, ..., r_n : G \to G$ be involutions, L and M be subsets of G and $|L \cup M| < |G|$. Then there exists an element $a \in G$ such that:

 $\begin{array}{l} 1. \ \bigcup_{k=1}^n \omega(L^{k-1}, a, L^{n-k}) \cap M = \varnothing, \ where \ \bigcup_{k=1}^n \omega(L^{k-1}, a, L^{n-k}) = \omega(a, L^{n-1}) \cup \\ \omega(L^1, a, L^{n-2}) \cup \ldots \cup \omega(L^{n-1}, a). \end{array}$

 $\begin{array}{ll} \mathcal{2}. & \bigcup_{k=1}^{n} \Delta_{\varphi(k)} \omega(L^{k-1}, a, L^{n-k}) \cap M = \varnothing, \ where \ \bigcup_{k=1}^{n} \Delta_{\varphi(k)} \omega(L^{k-1}, a, L^{n-k}) = \\ \Delta_{\varphi(k)} \omega(a, L^{n-1}) \cup \Delta_{\varphi(k)} \omega(L^{1}, a, L^{n-2}) \cup \ldots \cup \Delta_{\varphi(k)} \omega(L^{n-1}, a). \end{array}$

Proof. Let $H = \{\omega(x, r_2(y_2), ..., r_n(y_n)) : x \in M, y_2, ..., y_n \in L\} \cup \{\omega(r_1(y_1), x, r_3(y_3), ..., r_n(y_n)) : x \in M, y_1, y_3, ..., y_n \in L\} \cup ... \cup \{\omega(r_1(y_1), ..., r_{n-1}(y_{n-1}), x) : x \in M, y_1, ..., y_{n-1} \in L\}.$ Since |H| < |G|, then there exists an element $a \in G \setminus H$. Let $\omega(a, L, ...L) \cap M \neq \emptyset$. Fix $x \in \omega(a, L, ...L) \cap M$. Then $x = \omega(a, y_2, ..., y_n)$ for some $y_2, ..., y_n \in L$. Hence $a = \omega(\omega(a, y_2, ..., y_n), r_2(y_2), ..., r_n(y_n)) = \omega(x, r_2(y_2), ..., r_n(y_n)) \in \omega(M, r_2(y_2), ..., r_n(y_n)) \leq H$, a contradiction. In similar way we prove that $\omega(L^{k-1}, a, L^{n-k}) \cap M$ for all $k = \overline{1, n}$. Hence $\bigcup_{k=1}^n \omega(L^{k-1}, a, L^{n-k})$. Hence, $\bigcup_{k=1}^n \Delta_{\varphi(k)} \omega(L^{k-1}, a, L^{n-k}) \cap M = \emptyset$. The proof is complete. \Box

Theorem 3. Let G be an infinite I_nP -n-groupoid, \mathcal{L} be a non-empty family of nonempty subsets of G, $|\mathcal{L}| \leq |G|$ and for every set A and mapping $\Psi : A \to \mathcal{L}$ we have $| \cup \{\Psi(\alpha) : \alpha \in A\} |<|G|$ provided |A| <|G|. Then there exists a family $\{B_{\mu} : \mu \in M\}$ of non-empty subsets of G such that:

1. |M| = |G|. 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\alpha, \beta \in M$ and $\alpha \neq \beta$. 3. $G = \bigcup \{B_{\mu} : \mu \in M\}$. 4. $\bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}$. 5. $\bigcup_{k=1}^{n} \Delta_{\varphi(k)} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}$.

Proof. Consider on G involutions, $r_1, ..., r_n : G \to G$. Let $\tau = |G|$. Denote by $|\alpha|$ the cardinality of the ordinal number α . We put $\Omega_{\tau} = \{\alpha : 1 \leq |\alpha| < \tau\}$. If $K \subseteq G$, then $K_i^{-1} = \{r_i(x_i) : i = \overline{1, n}, x_i \in K\}$. We put $K^{-1} = \bigcup K_i^{-1}$ and $\mathcal{L}_1 = \{K^{-1} : K \in \mathcal{L}\} \cup \mathcal{L}$. It is clear that $|\mathcal{L}_1| \leq \tau$. Moreover, if A is a set, $|A| < \tau$ and $\Psi: A \to \mathcal{L}_1$ is a mapping, then $|\cup \{\Psi(\alpha) : \alpha \in A\}| < \tau$. Fix a set M of the cardinality τ . Since $|\Omega_{\tau}| = |M \times \mathcal{L}_1| = \tau$, then there exists a bijection $h : \Omega_{\tau} \to M \times \mathcal{L}_1$. Let $A_{\mu} = h^{-1}(\{\mu\} \times \mathcal{L}_1) = \alpha \in \Omega_{\tau} : \mu_{\alpha} = \mu\}$. If $\alpha \in \Omega_{\tau}$, then we consider that $h(\alpha) = (\mu_{\alpha}, K_{\alpha}) \in M \times \mathcal{L}_1$. It is obvious that $A_{\mu} = \{\alpha \in \Omega_{\tau} : \mu_{\alpha} = \mu\}$ and $\{K_{\alpha} : \alpha \in A_{\mu}\} = \mathcal{L}_1$. As in the proof of Theorem 1 from Lemma 2 it follows that there exists a transfinite sequence $\{a_{\alpha} \in G : \alpha \in \Omega_{\tau}\}$ such that $\left(\bigcup_{k=1}^{n}\omega(K_{\alpha}^{k-1},a_{\alpha},K_{\alpha}^{n-k})\right) \cap \left(\bigcup_{k=1}^{n}\omega(K_{\beta}^{k-1},a_{\beta},K_{\beta}^{n-k})\right) = \emptyset \text{ for all } \alpha,\beta \in \Omega_{\tau}$ and $\alpha \neq \beta$. Now we put $P_{\mu} = \bigcup \{\bigcup_{k=1}^{n} \omega(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}) : \alpha \in A_{\mu}\}$ for every $\mu \in M$. If $P_{\mu}^{k} = \bigcup_{k=1}^{n} \omega\{(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}) : \alpha \in A_{\mu}\}$ for all $k = \overline{1, n}$, then $P_{\mu} = \bigcup_{k=1}^{n} P_{\mu}^{k}$ and $\omega(K^{k-1}, G \setminus P_{\mu}^{k}, K^{n-k}) \neq G$ for every $K \in \mathcal{L}$. Suppose that $K \in \mathcal{L}, \ \mu \in M$ and $G = \bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus P^k_{\mu}, K^{n-k})$. For some $\alpha \in A_{\mu}$ we have $K_{\alpha} = \bigcup_{i=1}^{n} K_{i}^{-1} = K^{-1}$. Then $\bigcup_{k=1}^{n} \omega(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}) \subseteq P_{\mu}$ and $a_{\alpha} \in G$. Suppose that $a_{\alpha} \in \omega(K^{k-1}, G \setminus P_{\mu}^{k}, K^{n-k})$. Then $a_{\alpha} = C_{\alpha}$ $\omega(y_1, ..., y_{k-1}, x, y_{k+1}, ..., y_n)$ for some $y_1, ..., y_{k-1}, y_{k+1}, ..., y_n \in K$ and $x \in G \setminus U$ P_{μ} . Therefore $\omega(r_1(y_1), ..., r_{k-1}(y_{k-1}), a_{\alpha}, r_{k+1}(y_{k+1}), ..., r_n(y_n)) = \omega(r_1(y_1), ..., r_n(y_n))$ $r_{k-1}(y_{k-1}), \omega(y_1^{k-1}, x, y_{k+1}^{n-k}), r_{k+1}(y_{k+1}), \dots, r_n(y_n)) = x \in G \setminus P_{\mu}.$ Since $r_i(y_i \in I_{\mu})$ K_{α}), $i = \overline{1, n}$, we have $x = \omega(r_1(y_1), ..., r_{k-1}(y_{k-1}), a_{\alpha}, r_{k+1}(y_{k+1}), ..., r_n(y_n)) \in \mathbb{R}$ $\omega(K_{\alpha}^{k-1}, a_{\alpha}, K_{\alpha}^{n-k}) \subseteq P_{\mu}$, a contradiction. Hence $\bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus P_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and $K \in \mathcal{L}$. Now we fix $\mu_0 \in M$. We put $B_\mu = P_\mu$ for all $\mu \in M \setminus \{\mu_0\}$ and $B_{\mu_0} = G \setminus \bigcup \{ P_\mu : \mu \in M \setminus \{ \mu_0 \} \}$. By construction, we have $P_\mu \subseteq B_\mu$ for all $\mu \in M$ and $G = \bigcup \{B_{\mu} : \mu \in H\}$. If $\mu \in M$, then $G \setminus B_{\mu} \subseteq G \setminus P\mu$ and $\bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $K \in \mathcal{L}$. The proof is complete.

Theorem 4. Let (G) be an infinite $I_n P$ -n-groupoid, $\tau = |G|$, m be an infinite cardinal, $\tau = \sum \{\tau^q : q < m\}$ and either $m < \tau$, or τ be a regular cardinal. If $\mathcal{L}_m = \{K \subseteq G : |K| < m\}, \text{ then there exists a family } \{B_\mu : \mu \in M\} \text{ of non-empty}$ subsets of G such that:

1. $|M| = \tau$.

- 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\mu, \eta \in M$ and $\mu \neq \eta$.
- 3. $G = \bigcup \{ B_{\mu} : \mu \in M \}.$
- 4. $\bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G \text{ for all } \mu \in M \text{ and } K \in \mathcal{L}_m.$ 5. $\bigcup_{k=1}^{n} \Delta_{\varphi(k)} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G \text{ for all } \mu \in M \text{ and } K \in \mathcal{L}_m.$
- 6. The sets B_{μ} are dense in every m- φ -bounded topology on G.

7. Relative to every m- φ -bounded topology T on G the space (G,T) is superresolvable.

8. The sets B_{μ} are dense in every m-bounded topology on G.

9. Relative to every m-bounded topology T on G the space (G,T) is superresolvable.

Proof. Is similar to the proof of Theorem 2.

Corollary 4. Let G be an infinite I_nP -n-groupoid. Then there exists a family $\{B_\mu : \mu \in M\}$ of non-empty subsets of G such that:

- 1. |M| = |G|.
- 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\mu, \eta \in M$ and $\mu \neq \eta$.
- 3. $G = \cup \{B_{\mu} : \mu \in M\}.$

4. $\bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and every finte subset K of G.

5. $\bigcup_{k=1}^{n} \Delta_{\varphi(k)} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$ for all $\mu \in M$ and every finte subset K of G.

- 6. The sets $\{B_{\mu} : \mu \in M\}$ are dense in every φ -totally bounded topology on G.
- 7. Relative to every φ -totally bounded topology G is super-resolvable.
- 8. The sets $\{B_{\mu} : \mu \in M\}$ are dense in every totally bounded topology on G.
- 9. Relative to every totally bounded topology G is super-resolvable.

Corollary 5. Let G be an infinite I_nP -n-groupoid, $\tau = |G|$, m be an infinite cardinal and $\tau^m = \tau$. Then there exists a family $\{B_\mu : \mu \in M\}$ of non-empty subsets of G such that:

- 1. |M| = |G|.
- 2. $B_{\mu} \cap B_{\eta} = \emptyset$ for all $\mu, \eta \in M$ and $\mu \neq \eta$.
- 3. $G = \bigcup \{ B_{\mu} : \mu \in M \}.$
- 4. If $\mu \in M$, $K \subseteq G$ and $|K| \leq m$ then $\bigcup_{k=1}^{n} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$.
- 5. If $\mu \in M$, $K \subseteq G$ and $|K| \leq m$ then $\bigcup_{k=1}^{n} \Delta_{\varphi(k)} \omega(K^{k-1}, G \setminus B_{\mu}, K^{n-k}) \neq G$.
- 6. The sets $\{B_{\mu} : \mu \in M\}$ are dense in every m^+ -k- φ -bounded topology on G.
- 7. Relative to every m^+ -k- φ -bounded topology G is super-resolvable.
- 8. The sets $\{B_{\mu} : \mu \in M\}$ are dense in every m^+ -k-bounded topology on G.
- 9. Relative to every m^+ -k-bounded topology G is super-resolvable.

Acknowledgements. I express my deepest gratitude to Academician M.M. Choban. Conversations with him inspired the author to write the present article.

References

- BELOUSOV V.D. Foundation of the theory of quasigroups and loops. Moscow, Nauka 1967 (in Russian).
- [2] BELYAVSKAIA G.B. The left, right, middle nucleous and center of quasigroup. Chisinau, Stiinta, 1988 (in Russian).
- [3] BIRKHOFF G. Lattice Theory, New York, 1967.
- [4] BRUCK R.H. A survey of binary systems. Springer-Verlag, Berlin, 1958.

- [5] COMFORT W.W., VAN MILL. Groups with only resolvable group topologies. Proc. Amer. Math. Soc., 1994, 120, No. 3, 687–696.
- [6] CHOBAN M., CHIRIAC L. Decomposition of some algebras with topologies and their resolvability. Buletinul AS a Republica Moldova, Matematica, 2001, No. 3(37), 27–37.
- [7] ENGELKING R. General topology. Polish Scientific Publishers, Warszawa, 1977.
- [8] GRATZER G. Universal algebra. Springer-Verlag, Berlin, 1979.
- [9] PROTASOV I.V. Resolvability of τ bounded groups. Matematychni Studii, 1995, 5, 17–20.

Department of Mathematics Tiraspol State University str. Gh.Iablocichin 5, MD-2069 Chisinau Moldova E-mail: *llchiriac@gmail.com* Received April 25, 2008