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Resolvability of some special algebras with topologies

Liubomir Chiriac

Abstract. Let G be an infinite InP -n-groupoid. We construct a disjoint family
{Bµ : µ ∈ M} of non-empty subsets of G such that the sets {Bµ} are dense in all
Choban’s totally bounded topologies on G, |M | = |G|, G = ∪{Bµ : µ ∈ M} and
∪n

k=1∆ϕω(Kk−1, G \ Bµ, Kn−k) 6= G for all µ ∈ M and every finite subsets K of G.
In particular, we continue the line of research from [6, 9].
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1 Introductory notions

A space X is called resolvable if in X there exist two disjoint dense subsets. In
[6] M. Choban and L. Chiriac has proved the following assertion.

Theorem. Let G be an infinite group of cardinality τ . Then there exists a disjoint
family {Bµ : µ ∈ M} of subsets of G such that:

1. |M | = |G|.
2. G = ∪{Bµ : µ ∈ M}.
3. (G \ Bµ) · K 6= G for all µ ∈ M and every finite subset K of G.
4. The sets {Bµ : µ ∈ M} are dense in all totally bounded topologies on G.

This fact is a generalization of one Protasov’s result [9]. In this paper the as-
sertions of Theorem are proved for the special algebras – InPk-n-groupoids. We
shall use the notation and terminology from [1–4, 7, 8]. In particular, |X| is the
cardinality of a set |X|, N = 0, 1, 2, ..., R is the space of reals. By ω0 we denote the
first infinite cardinal. If τ is an infinite cardinal, then τ+ is the first cardinal larger
than τ . If τ ≥ 1 is a cardinal, then the space X is called τ -resolvable if there exists
a family of pairwise disjoint dense subsets {Bα : α ∈ A} of X such that |A| = τ .
Every space is 1-resolvable. If the space X is 2-resolvable, then we say that X is
resolvable.

Denote by am
1 a sequence a1, a2, ..., am . If a1 = a2 = ... = am, then we denote

this sequence by am. For every space X we put

m(X) = min{|U | : U 6= ∅, U ⊆ X,U ∈ τ}.

A space X is maximal resolvable if it is m(X)-resolvable. It is clear that if X is
τ -resolvable then τ ≤ m(X). If m(X) = |X| > 1 and X is maximal resolvable, then
we say that X is superresolvable.

c© Liubomir Chiriac, 2008

92



RESOLVABILITY OF SOME SPECIAL ALGEBRAS WITH TOPOLOGIES 93

For every mapping f : X → X we put f
′

= f and fn+1 = f ◦ fn for any n ∈ N .
We can consider that f0 : X → X is the identity mapping.

The problem of resolvability of totally bounded topological groups was solved by
V.I. Malykhin, W.W. Comfort, S. Van Mill [5], I.V. Protasov [9] and M.M. Choban,
L.L. Chiriac [6].

2 Groupoids with invertibility properties

Fix a sequence {En : n ∈ N} of pairwise disjoint spaces. The discrete sum
E = ∪{En : n ∈ N} is called a signature or a set of fundamental operations. A
universal algebra of signature E, or briefly, an E-algebra is a non-empty set G and
a sequence of mappings eG = {enG : En ×Gn −→ G : n ∈ N}. The set G is called a
support of the E-algebra G and the mappings eG are called the algebraical structure
on G. Let G be an E-algebra. If u ∈ E0, then the element uG = e0G({u} × G0) is
called a constant of G and we put u(x) = uG for all x ∈ G. If n ≥ 1, u ∈ En and
x1, ..., xn ∈ G, then we put u(x1, ..., xn) = enG(u, x1, ..., xn). A pair (G,ω) is said to
be a n-groupoid if G is a non-empty set and ω : Gn → G is a mapping.

Definition 1. Let k ≤ n. An n-groupoid (G,ω) is called:
1. an InPk-n-groupoid if there exist the mappings r1, ..., rk−1, rk+1, ...,

rn : G → G such that ω(r1(x1), ..., rk−1(xk−1), ω(x1, ..., xk−1, y, xk+1, ..., xn),
rk+1(xk+1), ..., rn(xn)) = y or ω(rk−1

1 (xk−1
1 ), ω(xk−1

1 , y, xn
k+1), r

n
k+1(x

n
k+1)) = y for

all x1, ..., xk−1, xk+1, ..., xn, y ∈ G. The mapping ri(x) is called k-involution,
i ∈ {1, ..., k − 1, k + 1, ..., n}.

2. an InP -n-groupoid in the large sense if it is InPk-n-groupoid for all k = 1, n.
In this case the mapping ri(x) is called involution, i ∈ {1, ..., n}.

3. an InP -n-groupoid, or InP -n-groupoid in strong sense, if there exist the
mappings {ri : G → G: i = 1, n} such that {ri : i 0 n, i 6= k} is a family of
k-involutions for any k = 1, n.

4. an I0Pk-n-groupoid if there exist the mappings r1, ..., rk−1, rk+1, ..., rn :
G → G such that ω(r1(x), ..., rk−1(x), ω(xk−1, y, xn−k), rk−1(x), ..., rn(x)) = y for
all x, y ∈ G.

5. an I0P -n-groupoid if it is I0Pk-n-groupoid for all k = 1, n.

Example 1. Let (G, ·) be a topological non commutative group with the identity
e. If we put ω(x, y, z, u) = y · x · u · z, then (G,ω) is an I0P -4-quasigroup. Indeed:

1. (G,ω) is an I0P1-4-quasigroup for r2(y) = y−1, r3(z) = z−1, r4(u) = u−1. We
have ω(ω(x, t, t, t), r2(t), r3(t), r4(t)) = r2(t)·t·x·t·t·r4(t)·r3(t) = t−1·t·x·t·t·t−1·t−1 =
e · x · t · e · t−1 = x · t · t−1 = x.

2. (G,ω) is an I0P2-4-quasigroup for r1(x) = x−1, r3(z) = z−1, r4(u) = u−1.
Really, ω(r1(t), ω(t, y, t, t), r3(t), r4(t)) = y · t · t · t · r1(t) · r4(t) · r3(t) = y.

3. (G,ω) is an I0P3-4-quasigroup for r1(x) = x−1, r2(y) = y−1, r4(u) = u−1.
Really, ω(r1(t), r2(t), ω(t, t, z, t), r4(t)) = r2(t) · r1(t) · r4(t) · t · t · t · z = z.

4. (G,ω) is an I0P4-4-quasigroup for r1(x) = x−1, r2(y) = y−1, r3(z) = z−1.
Really, ω(r1(t), r2(t), r3(t), ω(t, t, t, u)) = r2(t) · r1(t) · t · t · u · t · r3(t) = u.
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In this case (G,ω) is an I0Pi-4-quasigroup for every i ∈ {1, 2, 3, 4}. Hence, (G,ω)
is an I0P -4-quasigroup.

Example 2. Let (G, ·) be a topological group with the identity e. We put
ω(x, y, z) = x · y · z. In this case:

1. (G,ω) is a 3-groupoid;

2. (G,ω) is an I0Pi-3-groupoid for every i ∈ {1, 2, 3} and for r1(x) = r2(x) =
r3(x) = x−1;

3. (G,ω) is an I3P2-3-groupoid for r1(x) = x−1, r3(x) = z−1. Indeed,
ω(r1(x), ω(x, y, z), r3(z)) = x−1 · x · y · z · z−1 = e · y · e = y;

4. If the group G is non commutative, then (G,ω) is not an I3Pi-3-groupoid for
i = {1, 3}.

Example 3. Let C be the field of the complex numbers, R be the field of the reals
numbers. Let A = C \ {0}, B = R \ {0} and G = {r ∈ R : r > 0}. Then (A, ·),
(B, ·) and (G, ·) are commutative multiplicative groups. We put ω(x, y, z) = x ·yn ·z,
n ≥ 1.

1. If n = 1, then (A,ω), (B,ω) and (G,ω) are I3P -3 quasigroups.

2. If n ≥ 2, then (A,ω), is a 3-groupoid with divisions. The equation ω(a, y, c) =
d has n solutions.

3. If n > 1 and n is odd, then (B,ω) and (G,ω) are 3-quasigroups.

4. If n ≥ 2 and n is even, then (B,ω) is not a 3-groupoid with divisions and
(G,ω) is a 3-quasigroup.

5. (A,ω), (B,ω), (G,ω) are I3P1-3-groupoids and I3P3-3-groupoids. If n ≥ 2,
then (A,ω), (B,ω) and (G,ω) are not I3P2-3-groupoids.

Example 4. Let C be the field of the complex numbers and A = C \ {0}. We fix
k ∈ A and put ωn(x1, x2, ..., xn) = k · x1 · x2 · ... · xn, (n ≥ 2). In this case:

1. (A,ωn) is a commutative quasigroup.

2. (A,ωn) is an InP -n-groupoid in strong sense. Denote ri(xi) =
n−1

√

1
k2 · x−1

i . Hence, ωn(r1(x1), ..., ri−1(xi−1), ωn(x1, ..., xi−1, xi, xi+1, ..., xn),

ri+1(xi+1), ..., rn(xn)) = k · ( n−1

√

1
k2 )i−1 · x−1

1 · x−1
2 · ... · x−1

i−1 · k · x1 · x2 · ... · xi−1 · xi ·

xi+1 · ... · xn · ( n−1

√

1
k2 )n−i · x−1

i+1 · ... · x
−1
n = k2( n−1

√

1
k2 )n−1 · xi = k2 · 1

k2 · xi = xi. In

strong sense there are n − 1 complete involutions.

3. Let n ≥ 2 and m = 2+(n−1). There is k ∈ A such that km = 1 and ki 6= 1 for
i < m. If ri(xi) = k · x−1

i then {r1, r2, ..., rn} are involutions in strong sense. Hence,
ωn(r1(x1), ..., ri−1(xi), ωn(x1, x2, ..., xn), ri+1(xi+1), ..., rn(xn)) = kn−1 · k2 · x−1

1 · ... ·
x−1

i−1 · x1 · ...xi−1 · xi · xi+1 · ... · xn · x−1
i+1 · ... · x

−1
n = k2+n−1 · xi = km · xi = xi.

4. Let n = 2, m ≥ 3, km = 1 and ki 6= 1 for i < m. We put ω(x, y) =
k · x · y, r1(x) = km−2x−1, r2(y) = km−2y−1. In this case {r1(x), r2(x)} are unique
involutions in strong sense and r2

i (xi) = km−2(ri(xi))
−1 = km−2((km−2 · x−1)−1) =

km−2 · 1
km−2 · xi = xi.



RESOLVABILITY OF SOME SPECIAL ALGEBRAS WITH TOPOLOGIES 95

Example 5. Let (G, ·) be a topological group with the identity. If we put ω(x, y) =
x · y, then:

1. (G,ω) is a 2-groupoid or, briefly, groupoid;

2. (G,ω) is an RIP -groupoid for r2(x) = x−1. Indeed, ω(ω(y, x), r2(x)) =
(y · x) · x−1 = y;

3. (G,ω) is an LIP -groupoid for r1(x) = x−1. Indeed, ω(r1(x1), ω(x, y)) =
x−1(x · y) = y;

4. (G,ω) is an IP -groupoid if it is both an RIP -groupoid and an LIP -groupoid.
The notions LIP,RIP in the class of groupoids were introduced by R. H. Bruck [4].

Proposition 1. Let (G,ω) be an InP1-n-groupoid and r2, r3, ..., rn : G → G be
1-involutions. Then the following assertions are equivalent:

1. ω(ω(y, x2, ..., xn), r2(x2), ..., rn(xn)) = y;

2. ω(ω(y, r2(x2), ..., rn(xn)), x2, ..., xn) = y for all xn
2 ∈ G.

Proof. Suppose that

ω(ω(y, x2, ..., xn), r2(x2), ..., rn(xn)) = y (1)

for all xn
2 , y ∈ G. From (1) we have

ω(ω(ω(y, x2, ..., xn), r2(x2), ..., rn(xn)), r2
2(x2), ..., r

2
n(xn)) = ω(y, x2, ..., xn) (2)

and

ω(ω(ω(y, x2, ..., xn), r2(x2), ..., rn(xn)), r2
2(x2), ..., r

2
n(xn)) = (3)

= ω(y, r2
2(x2), ..., r

2
n(xn)).

Using (2) and (3) we obtain

ω(y, x2, ..., xn) = ω(y, r2
2(x2), ..., r

2
n(xn)). (4)

Let in (4) y = ω(y, r2(x2), ..., rn(xn)). Therefore from (4)

ω(ω(y, r2(x2), ..., rn(xn)), x2, ..., xn)) =

= ω(ω(y, r2(x2), ..., rn(xn)), r2
2(x2), ..., r

2
n(xn)).

The implication 1 → 2 is proved. Suppose that

ω(ω(y, r2(x2), ..., rn(xn)), x2, ..., xn) = y. (5)

From (5) it follows that

ω(ω[y, r2
2(x2), ..., r

2
n(xn)], r2(x2), ..., rn(xn)) = y. (6)
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It is clear that

ω(ω[ω[y, r2
2(x2), ..., r

2
n(xn)], r2(x2), ..., rn(xn)], x2, ..., xn) = (7)

= ω(y, r2
2(x2), ..., r

2
n(xn)).

From (6) we obtain

ω(ω[ω[y, r2
2(x2), ..., r

2
n(xn)], r2(x2), ..., rn(xn)], x2, ..., xn) = ω(y, x2, ..., xn). (8)

Using (7) and (8) we have

ω(y, r2
2(x2), ..., r

2
n(xn)) = ω(y, x2, ..., xn). (9)

Therefore

ω(ω(y, x2, ..., xn), r2(x2), ..., rn(xn)) =

= ω(ω[y, r2
2(x2), ..., r

2
n(xn)], r2(x2), ..., rn(xn)) = y.

The implication 2 → 1 is proved. The proof is complete.

Definition 2. An n-groupoid (G,ω) is called:

1. a k-cancellative n-groupoid if for every a, b, x1, ..., xk−1, xk+1, ..., xn ∈ G

we have ω(x1, ..., xk−1, a, xk+1, ..., xn) = ω(x1, ..., xk−1, b, xk+1, ..., xn) if and only
if a = b.

2. a cancellative n-groupoid if it is k-cancellative groupoid for all k = 1, n

3. an n-quasigroup if the equation ω(ai−1
1 , x, an

i+1) = b has unique solution for
every an

i , b and each i = 1, n.

Definition 3. An element e from (G,ω) is called:

1. a k-identity of n-groupoid (G,ω) if ω(ek−1, x, en−k) = x for every x ∈ G.

2. an identity of n-groupoid (G,ω) if ω(ei−1, x, en−i) = x for every x ∈ G and
each i = 1, n.

If n-quasigroup (G,ω) contains at least one identity, then (G,ω) is called n-loop.

Proposition 2. Let (G,ω) be an InP1-n-groupoid and r2, r3, ..., rn : G → G be
1-involutions. Then:

1. ω(x1, x2, ..., xn) = ω(x1, r
2
2(x2), ..., r

2
n(xn)) for all xn

1 ∈ G.

2. ω(ω(y, r2(x2), ..., rn(xn)), x2, ..., xn) = y for all xn
2 , y ∈ G.

3. (G,ω) is 1-cancellative .

4. For every b, an
2 ∈ G, the equation ω(y, a2, ..., an) = b has a unique solution.
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Proof. The proof of the assertion 1 is contained in the proof of Proposition 1. The
assertion 2 follows from Proposition 1. Let a, b, xn

2 ∈ G and ω(a, x2, ..., xn) =
ω(b, x2, ..., xn). Then a = ω(ω(a, x2, ..., xn), r2(x2), ..., rn(xn)) = ω(ω(b, x2, ..., xn),
r2(x2), ..., rn(xn)) = b. The assertion 3 is proved. We consider the equation
ω(y, a2, ..., an) = b. Then from Proposition 1 we have y = ω(b, r2(x2), ..., rn(xn)).
Hence the equation ω(y, a2, ..., an) = b has a unique solution. The proof is
complete.

Corollary 1. Let (G,ω) be an InP -n-groupoid in the large sense and ri : G →
G, i = 1, n, are the involutions on G. Then (G,ω) is cancellative.

Proof. The assertion follows from Proposition 2.

Academician M.M. Choban observed the following interesting fact.

Proposition 3. Let (G,ω) be an InP -n-groupoid in the large sense and ri : G →

G, i = 1, n, are the involutions on G. Then xi = r
2(n−1)
i (xi), for every i = 1, n and

n ≥ 2.

Proof. It is sufficient to prove that x1 = r
2(n−1)
1 (x1) for any x1 ∈ G. Fix

x1, x2, ..., xn ∈ G. From Proposition 2 we have ω(x1, x2, ..., xn) = ω(x1, r
2
2(x2), ...,

r2
n(xn)) = ω(r2

1(x1), r
2
2(x2), r

4
3(x3), ..., r

4
n(xn)) = ... = ω(r2i

1 (x1), ..., r
2i
i+1(xi+1),

r
2(i+1)
i+2 (xi+2), ..., r

2(i+1)
n (xn)) = ... = ω(r

2(n−1)
1 (x1), r

2(n−1)
2 (x2), ..., r

2(n−1)
n (xn)),

i.e. It is obvious that ω(x1, x2, ..., xn) = ω(x1, r
2m
2 (x2), ..., r

2m
n (xn)) for any

m ≥ 1. Hence for m = n − 1, we have ω(x1, r
2(n−1
2 (x2), ..., r

2(n−1)
n (xn)) =

ω(r
2(n−1)
1 (x1), r

2(n−1)
2 (x2), ..., r

2(n−1)
n (xn)). Therefore x1 = r

2(n−1)
1 (x1) for any

x1 ∈ G and xi = r
2(n−1)
i (xi), for every i = 1, n and n ≥ 2. The proof is

complete.

Proposition 4. Let (G,ω) be an InP -n-groupoid in the large sense and ri : G →
G, i = 2, n, are the involutions on G. If e1, e2, ..., en ∈ G, ei = r2m

i (ei), for all
i = 2, n, then xi = r2m

i (xi), for every xi ∈ G and n ≥ 2.

Proof. From Proposition 2 it follows that ω(x1, x2, ..., xn) = ω(x1, r
2m
2 (x2), ...,

r2m
n (xn)). Fix i = 2, n. Then ω(e1, e2, ..., ei−1, xi, ei+1, ..., en) = ω(e1, e2, ..., ei−1,

r2m
i (xi), ei+1, ..., en). Hence, xi = r2m

i (xi), for every xi ∈ G, i = 2, n and n ≥ 2. The
proof is complete.

3 Topologies on algebras

We consider arbitrary topologies on universal algebras. There are a lot of types of
bounded topology. We fix n ≥ 2 and k ≤ n. Consider a mapping ϕ : {1, 2, ..., n} →
{1, 2, ..., n}. We will use Choban’s bounded topology.
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Definition 4. Let (G,ω) be an n-groupoid and L1, L2, ..., Ln be a family of subsets
of G. Then:

1. The sets L1, L2, ..., Ln are k-α-associated with the mapping ϕ and denote
(L1, L2, ..., Ln)α(k)ϕ if Li = Lj provided ϕ(i) = ϕ(j) and i 6= k, j 6= k.

2. If x1, x2, ..., xn ∈ G and ({x1}, {x2}, ..., {xn})α(k)ϕ, then we put
(x1, x2, ..., xn)α(k)ϕ.

3. We put ∆ϕ(k)ω(L1, L2, ..., Ln) = {ω(x1, x2, ..., xn) : x1 ∈ L1, x2 ∈ L2, ..., xn ∈
Ln and (x1, x2, ..., xn)α(k)ϕ}.

Remark 1. Let L1, L2, ..., Ln be subsets of G, and L
′

k=Lk and L
′

i=
⋂

{Lj : j ≤
n,ϕ(j) = ϕ(i)} for any i 6= k. Then (L

′

1, L
′

2, ..., L
′

n)α(k)ϕ and
∆ϕ(k)ω(L

′

1, L
′

2, ..., L
′

n)=∆ϕ(k)ω(L1, L2, ..., Ln).

Definition 5. Let k ≤ n. An n-groupoid (G,ω) is called an IϕPk-n-groupoid
if there exist the mappings ri : G → G, i ∈ {1, ..., k − 1, k + 1, ..., n} such
that ω(r1(x1), ..., rk−1(xk−1), ω(x1, ..., xk−1, y, xk+1, ..., xn), rk+1(xk+1), ..., rn(xn)) =
y provided (x1, ..., xk−1, xk+1, ..., xn) α(k)ϕ for all x1, ..., xk−1, xk+1, ..., xn, y ∈ G.

We say that the mapping ri : G → G, i ∈ {1, ..., k − 1, k + 1, ..., n} is called
k-ϕ-involution.

If ϕ(i) = ϕ(j) for all i, j ≤ n, then IϕPk-n-groupoid is an I0Pk-n-groupoid.

Definition 6. Let (G,ω) be an n-groupoid and λ be an infinite cardinal. A topology
T on G is called:

– a λ-k-ϕ-bounded topology if for every non-empty open set U ∈ T there exists
a subset K ⊆ G such that |K| < λ and ∆ϕ(k)ω(Kk−1, U,Kn−k) = G.

– a λ-ϕ-bounded topology if it is λ-k-ϕ-bounded topology for every k = 1, n. An
ω0-k-ϕ-bounded topology is called a k-ϕ-totally bounded topology. The topology
is said to be ϕ-totally bounded if it is a k-ϕ-totally bounded topology for every
k = 1, n.

Remark 2. If in Definition 6 the mapping ϕ is one-to-one, then a topology T on
G is called respectively: a λ-k-bounded topology, a λ-bounded topology, a ω0-k-
bounded topology, a k-totally bounded topology and totally bounded topology, for
every k = 1, n.

Proposition 5. Let ϕ : {1, 2, ..., n} → {1, 2, ..., n} be a mapping, (G,ω) be an n-
groupoid with the properties:

1. The equation ω(ak−1, x, an−k) = b is solvable for every a, b ∈ G.
2. For every a, b ∈ G there exist a1, a2, ..., an ∈ G such that ak = a,

(a1, a2, ..., an)α(k)ϕ and ω(a1, a2, ..., an) = b.
Then the minimal compact T1-topology T = {∅} ∪ {G \ F : F is a finite subset

of G} is a k-ϕ-totally bounded topology on G.

Proof. Let U ∈ T and U 6= ∅. Then the set F = G \ U is finite. Fix a ∈ U .
Then ha : G → G, where ha(x) = ω(ak−1, x, an−k) for any x ∈ G is a mapping of
G onto G. Thus F

′

= G \ ha(U) ⊆ ha(F ) is a finite set. For any x ∈ G there exist
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y1(x), y2(x), ..., yn(x) ∈ G such that yk(x) = a, (y1(x), y2(x), ..., yn(x))α(k)ϕ and
ω(y1(x), y2(x), ..., yn(x)) = x. We put Φ = {a} ∪ {{y1(x), y2(x), ..., yn(x)} : x ∈ F

′

}.
The set Φ is finite. By construction, ∆ϕ(k)ω(Φk−1, U,Φn−k) = G. The proof is
complete.

Proposition 6. Let ϕ : {1, 2, ..., n} → {1, 2, ..., n} be a mapping, (G,ω) be an
n-groupoid with the properties:

1. For every a, b ∈ G there exist a1, a2, ..., an ∈ G such that ak = a,
(a1, a2, ..., an)α(k)ϕ and ω(a1, a2, ..., an) = b.

2. There exists e ∈ G such that G\ω(ek−1, G, en−k) is a finite set (in particular,
ω(ek−1, x, en−k) = x for every x ∈ G).

Then the minimal compact T1-topology T = {∅} ∪ {G \ F : F is a finite subset
of G} is a k-ϕ-totally bounded topology on G.

Proof. Let U ∈ T and U 6= ∅. Then the set F = G \ U is finite. Fix a ∈ U .
Consider the mapping he : G → G, where he(x) = ω(ek−1, x, en−k) for any x ∈ G.
The set G \ he(G) is finite. Thus the set F

′

= G \ he(U) ⊆ (G \ he(G))
⋃

he(F )
is a finite set. For any x ∈ F

′

fix {y1(x), y2(x), ..., yn(x)} ⊆ G such that
yk(x) = a, (y1(x), y2(x), ..., yn(x))α(k)ϕ and ω(y1(x), y2(x), ..., yn(x)) = x. Let
Φ = {e}∪∪{{y1(x), y2(x), ..., yn(x)} : x ∈ F

′

}. The set Φ is finite. By construction,
∆ϕ(k)ω(Φk−1, U,Φn−k) = G. The proof is complete.

Proposition 7. Let ϕ : {1, 2, ..., n} → {1, 2, ..., n} be a mapping, (G,ω) be an
infinite InPk-n-groupoid, B ⊆ G, m be an infinite cardinal and ∆ϕ(k)ω(Kk−1, G \

B,Kn−k) 6= G for every subset K of cardinality |K| < m. Then the set B is dense
in every m-k-ϕ-bounded topology T on G.

Proof. Suppose that T is an m-k-ϕ-bounded topology on G and U = G\ clGB 6= ∅.
Then U ∈ T and U ⊆ G \ B. By assumption there exists a subset K of G

such that ∆ϕ(k)ω(Kk−1, U,Kn−k) = G and |K| < m. Since U ⊆ G \ B, we have

G ⊇ ∆ϕ(k)ω(Kk−1, G \ B,Kn−k) ⊇ ∆ϕ(k)ω(Kk−1, U,Kn−k) = G, a contradiction.
The proof is complete.

4 Decomposition of InPk-n-groupoids

We fix n ≥ 2 and k ≤ n. Consider a mapping ϕ : {1, 2, ..., n} → {1, 2, ...n}.

Lemma 1. Let G be an infinite InPk-n-groupoid, r1, ..., rk−1, rk+1, ..., rn : G → G

be k-involutions, L and M be subsets of G and |L ∪ M | < |G|. Then there exists
an element a ∈ G such that ω(Lk−1, a, Ln−k)∩M = ∅ and ∆ϕ(k)ω(Lk−1, a, Ln−k)∩
M = ∅.

Proof. Let H = {ω(r1(y1), ..., rk−1(yk−1), x, rk+1(yk+1), ..., rn(yn)) : x ∈ M,y1, ...,

yk−1, yk+1, ..., yn ∈ L}. Thus |H| < |G| and there exists an element a ∈ G \ H.
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Suppose that ω(Lk−1, a, Ln−k) ∩ M 6= ∅. Fix ω(Lk−1, a, Ln−k) ∩ M . Then
x = ω(y1, ..., yk−1, a, yk+1, ..., yn) for some y1, ..., yk−1, yk+1, ..., yn ∈ L. Hence

a = ω(r1(y1), ..., rk−1(yk−1), ω(yk−1
1 , a, yn

k+1), rk+1(yk+1), ..., rn(yn)) =

= ω(r1(y1), ..., rk−1(yk−1), x, rk+1(yk+1), ..., rn(yn)) ∈

∈ ω(r1(y1), ..., rk−1(yk−1),M, rk+1(yk+1), ..., rn(yn)) ⊆ H,

a contradiction. By construction, ∆ϕ(k)ω(Lk−1,M,Ln−k) ⊆ ω(Lk−1,M,Ln−k).

Hence, ∆ϕ(k)ω(Lk−1, a, Ln−k) ∩ M = ∅. The proof is complete.

Theorem 1. Let G be an infinite InPk-n-groupoid, L be a a non-empty family of
non-empty subsets of G, |L| ≤ |G| and for every set A and mapping Ψ : A → L we
have | ∪{Ψ(α) : α ∈ A} |<| G | provided | A |<| G |. Then there exists a family
{Bµ : µ ∈ M} of non-empty subsets of G such that:

1. | M |=| G | .

2. Bµ ∩ Bη = ∅ for all α, β ∈ M and α 6= β.

3. G = ∪{Bµ : µ ∈ M}.

4. ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ L.

5. ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ L.

Proof. Consider on G some k-involutions, r1, ..., rk−1, rk+1, ..., rn : G → G. Let
τ = |G|. Denote by |α| the cardinality of the ordinal number α. We put Ωτ = {α :
1 ≤ |α| < τ}. If K ⊆ G, then K−1

i = {ri(xi) : xi ∈ K}, i = 1, ..., k − 1, k + 1, ..., n,
and K−1 = ∪{K−1

i : i = 1, 2, ..., k − 1, k + 1, ...n}. Let L∞ = {K−1 : K ∈ L} ∪ L.
It is clear that |L1| ≤ τ . Moreover, if A is a set, |A| < τ and Ψ : A → L1 is a
mapping, then | ∪ {Ψ(α) : α ∈ A}| < τ . Fix a set M of the cardinality τ . Since
|Ωτ | = |M×L1| = τ then there exists a bijection h : Ωτ → M×L1. If α ∈ Ωτ , then we
consider that h(α) = (µα,Kα) ∈ M×L1. If µ ∈ M , then we put Aµ = h−1({µ}×L1).
It is obvious that Aµ = {α ∈ Ωτ : µα = µ} and {Kα : α ∈ Aµ} = L1. Now
we affirm that there exists a transfinite sequence {aα : α ∈ Ωτ} ⊆ G such that
ω(Kk−1

α , aα,Kn−k
α ) ∩ ω(Kk−1

β , aβ ,Kn−k
β ) = ∅ for all α, β ∈ Ωτ and α 6= β. We fix

a1 ∈ G. Let 1 < β, β ∈ Ωτ and the elements {aα : α < β} are constructed. We
put now Hβ = ∪{ω(Kk−1

α , aα,Kn−k
α ) : α < β}. Since |α ∈ Ωτ : α < β| ≤ |β| < |G|,

then |Hβ| < |G|. From Lemma 1 it follows that there exists aβ ∈ G such that
ω(Kk−1

β , aβ,Kn−k
β ) ∩ Hβ = ∅. By the transfinite induction if follows that the set

{aα : α ∈ Ωτ} is constructed. We put Pµ = ∪{ω(Kk−1
α , aα,Kn−k

α ) : α ∈ Aµ} for eve-
ry µ ∈ H. Fix µ, η ∈ M and µ 6= η. Then Aµ ∩Aη = ∅. Since ω(Kk−1

α , aα,Kn−k
α )∩

ω(Kk−1
β , aβ,Kn−k

β ) = ∅ for all α ∈ Aα and β ∈ Aη, then Pµ ∩ Pη = ∅. Fix

µ ∈ M and K ∈ L. Then K−1 ∈ L1 and (µ,K−1) = (µα,Kα) for some α ∈ Aµ.
Suppose that ω(Kk−1, G \ Pµ,Kn−k) = G. Then aα ∈ ω(Kk−1, G \ Pµ,Kn−k),
i.e. aα = ω(yk−1

1 , x, yn
k+1) for some x ∈ G \ Pµ and y1, ..., yk−1, yk+1, ..., yn ∈ K.

By construction, we have r1(y1), ..., rk−1(yk−1), rk+1(yk+1), ..., rn(xn) ∈ Kα and
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ω(r1(y1), ..., rk−1(yk−1), aα, rk+1(yk+1), ..., rn(xn)) ∈ ω(Kk−1
α , aα,Kn−k

α ) ⊆ Pµ. By
assumption, we have that

ω(r1(y1), ..., rk−1(yk−1), aα, rk+1(yk+1), ..., rn(xn)) =

= ω(r1(y1), ..., rk−1(yk−1), ω(yk−1
1 , x, yn−k

k+1 ), rk+1(yk+1), .., rn(yn)) = x ∈ G \ Pµ,

a contradiction. Hence ω(Kk−1, G \ Pµ,Kn−k) 6= G for all µ ∈ M and K ∈ L. Now
we fix µ0 ∈ M . We put Bµ = Pµ for all µ ∈ M \ {µ0} and Bµ0 = G \ ∪{Pµ : µ ∈
M\{µ0}}. By construction, we have Pµ ⊆ Bµ for all µ ∈ M and G = ∪{Bµ : µ ∈ H}.
If µ ∈ M , then G \ Bµ ⊆ G \ Pµ and ω(Kk−1, G \ Bµ,Kn−k) 6= G for all K ∈ L.
The proof is complete.

Theorem 2. Let (G,ω) be an infinite InPk-n-groupoid, τ = |G|, m be an infinite
cardinal, τ =

∑

{τ q : q < m} and either m < τ , or τ be a regular cardinal. If
Lm = {K ⊆ G : |K| < m}, then there exists a family {Bµ : µ ∈ M} of non-empty
subsets of G such that:

1. |M | = τ.

2. Bµ ∩ Bη = ∅ for all µ, η ∈ M and µ 6= η.

3. G = ∪{Bµ : µ ∈ M}.
4. ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ Lm.

5. ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ Lm

6. The sets Bµ are dense in every m-k-ϕ-bounded topology on G.

7. Relative to every m-k-ϕ-bounded topology G is super-resolvable.

8. The sets Bµ are dense in every m-k-bounded topology on G.

9. Relative to every m-k-bounded topology G is super-resolvable.

Proof. Since τ =
∑

{τ q : q < m}, we have m ≤ τ . Let A be a set, |A| < τ,Ψ :
A → Lm be a mapping and H = ∪{Ψ(α) : α ∈ A}. If m < τ , then |H| ≤
ω(m, ...m, |A|,m, ...,m) = ω(mk−1, |A|,mn−k) < τ . If m = τ and |H| = τ , then
cf(τ) ≤ |A| < τ and the cardinal τ is not regular. Hence |H| < τ . Theorem 1 and
Proposition 7 complete the proof.

Corollary 2. Let G be an infinite InPk-n-groupoid. Then there exists a family
{Bµ : µ ∈ M} of non-empty subsets of G such that:

1. |M | = |G|.
2. Bµ ∩ Bη = ∅ for all µ, η ∈ M and µ 6= η.

3. G = ∪{Bµ : µ ∈ M}.
4. ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and every finte subset K of G.

5. ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and every finte subset
K of G.

6. The sets {Bµ : µ ∈ M} are dense in every k-ϕ-totally bounded topology on G.

7. Relative to every k-ϕ-totally bounded topology G is super-resolvable.

8. The sets {Bµ : µ ∈ M} are dense in every k-totally bounded topology on G.

9. Relative to every k-totally bounded topology G is super-resolvable.
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Corollary 3. Let G be an infinite InPk-n-groupoid, τ = |G|, m be an infinite
cardinal and τm = τ . Then there exists a family {Bµ : µ ∈ M} of non-empty
subsets of G such that:

1. |M | = |G|.
2. Bµ ∩ Bη = ∅ for all µ, η ∈ M and µ 6= η.

3. G = ∪{Bµ : µ ∈ M}.
4. If µ ∈ M , K ⊆ G and |K| < m then ω(Kk−1, G \ Bµ,Kn−k) 6= G.

5. If µ ∈ M , K ⊆ G and |K| < m then ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G.

6. The sets {Bµ : µ ∈ M} are dense in every m+-k-ϕ-bounded topology on G.

7. Relative to every m+-k-ϕ-bounded topology G is super-resolvable.

8. The sets {Bµ : µ ∈ M} are dense in every m+-k-bounded topology on G.

9. Relative to every m+-k-bounded topology G is super-resolvable.

5 Decomposition of InP -n-groupoids

We fix n ≥ 2 and k ≤ n. Consider a mapping ϕ : {1, 2, ..., n} → {1, 2, ...n}.

Lemma 2. Let G be an infinite InP -gruopoid, r1, ..., rn : G → G be involutions, L

and M be subsets of G and |L∪M | < |G|. Then there exists an element a ∈ G such
that:

1.
⋃n

k=1 ω(Lk−1, a, Ln−k)∩M = ∅, where
⋃n

k=1 ω(Lk−1, a, Ln−k) = ω(a,Ln−1)∪
ω(L1, a, Ln−2) ∪ ... ∪ ω(Ln−1, a).

2.
⋃n

k=1 ∆ϕ(k)ω(Lk−1, a, Ln−k) ∩ M = ∅, where
⋃n

k=1 ∆ϕ(k)ω(Lk−1, a, Ln−k) =
∆ϕ(k)ω(a,Ln−1) ∪ ∆ϕ(k)ω(L1, a, Ln−2) ∪ ... ∪ ∆ϕ(k)ω(Ln−1, a).

Proof. Let H = {ω(x, r2(y2), ..., rn(yn)) : x ∈ M,y2, ...yn ∈ L} ∪ {ω(r1(y1), x,

r3(y3), ..., rn(yn)) : x ∈ M,y1, y3, ..., yn ∈ L} ∪ ... ∪ {ω(r1(y1), ..., rn−1(yn−1), x) :
x ∈ M,y1, ...yn−1 ∈ L}. Since |H| < |G|, then there exists an element a ∈ G \ H.
Let ω(a,L, ...L) ∩ M 6= ∅. Fix x ∈ ω(a,L, ...L) ∩ M . Then x = ω(a, y2, ..., yn) for
some y2, ..., yn ∈ L. Hence a = ω(ω(a, y2, ..., yn), r2(y2), ..., rn(yn)) = ω(x, r2(y2), ...,
rn(yn)) ∈ ω(M, r2(y2), ..., rn(yn)) ≤ H, a contradiction. In similar way we
prove that ω(Lk−1, a, Ln−k) ∩ M for all k = 1, n. Hence

⋃n
k=1 ω(Lk−1, a, Ln−k) ∩

M = ∅. By construction, ∆ϕ(k)ω(Lk−1, a, Ln−k) ⊆ ω(Lk−1, a, Ln−k). Hence,
⋃n

k=1 ∆ϕ(k)ω(Lk−1, a, Ln−k) ∩ M = ∅. The proof is complete.

Theorem 3. Let G be an infinite InP -n-groupoid, L be a non-empty family of non-
empty subsets of G, |L| ≤ |G| and for every set A and mapping Ψ : A → L we
have | ∪{Ψ(α) : α ∈ A} |<| G | provided | A |<| G |. Then there exists a family
{Bµ : µ ∈ M} of non-empty subsets of G such that:

1. | M |=| G |.
2. Bµ ∩ Bη = ∅ for all α, β ∈ M and α 6= β.

3. G = ∪{Bµ : µ ∈ M}.
4.

⋃n
k=1 ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ L

5.
⋃n

k=1 ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ L.
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Proof. Consider on G involutions, r1, ..., rn : G → G. Let τ = |G|. Denote by
|α| the cardinality of the ordinal number α. We put Ωτ = {α : 1 ≤ |α| < τ}.
If K ⊆ G, then K−1

i = {ri(xi) : i = 1, n, xi ∈ K}. We put K−1 = ∪K−1
i and

L1 = {K−1 : K ∈ L} ∪ L. It is clear that |L1| ≤ τ . Moreover, if A is a set, |A| < τ

and Ψ : A → L1 is a mapping, then |∪{Ψ(α) : α ∈ A}| < τ . Fix a set M of the cardi-
nality τ . Since |Ωτ | = |M ×L1| = τ , then there exists a bijection h : Ωτ → M ×L1.
Let Aµ = h−1({µ} × L1) = α ∈ Ωτ : µα = µ}. If α ∈ Ωτ , then we consider
that h(α) = (µα,Kα) ∈ M × L1. It is obvious that Aµ = {α ∈ Ωτ : µα = µ}
and {Kα : α ∈ Aµ} = L1. As in the proof of Theorem 1 from Lemma 2 it
follows that there exists a transfinite sequence {aα ∈ G : α ∈ Ωτ} such that
(
⋃n

k=1 ω(Kk−1
α , aα,Kn−k

α )) ∩ (
⋃n

k=1 ω(Kk−1
β , aβ,Kn−k

β )) = ∅ for all α, β ∈ Ωτ

and α 6= β. Now we put Pµ = ∪{
⋃n

k=1 ω(Kk−1
α , aα,Kn−k

α ) : α ∈ Aµ} for ev-
ery µ ∈ M . If P k

µ =
⋃n

k=1 ω{(Kk−1
α , aα,Kn−k

α ) : α ∈ Aµ} for all k = 1, n,

then Pµ =
⋃n

k=1 P k
µ and ω(Kk−1, G \ P k

µ ,Kn−k) 6= G for every K ∈ L. Sup-

pose that K ∈ L, µ ∈ M and G =
⋃n

k=1 ω(Kk−1, G \ P k
µ ,Kn−k). For some

α ∈ Aµ we have Kα =
⋃n

i=1 K−1
i = K−1. Then

⋃n
k=1 ω(Kk−1

α , aα,Kn−k
α ) ⊆

Pµ and aα ∈ G. Suppose that aα ∈ ω(Kk−1, G \ P k
µ ,Kn−k). Then aα =

ω(y1, ..., yk−1, x, yk+1, ..., yn) for some y1, ..., yk−1, yk+1, ..., yn ∈ K and x ∈ G \
Pµ. Therefore ω(r1(y1), ..., rk−1(yk−1), aα, rk+1(yk+1), ..., rn(yn)) = ω(r1(y1), ...,
rk−1(yk−1), ω(yk−1

1 , x, yn−k
k+1 ), rk+1(yk+1), .., rn(yn)) = x ∈ G \ Pµ. Since ri(yi ∈

Kα), i = 1, n, we have x = ω(r1(y1), ..., rk−1(yk−1), aα, rk+1(yk+1), ..., rn(yn)) ∈
ω(Kk−1

α , aα,Kn−k
α ) ⊆ Pµ, a contradiction. Hence

⋃n
k=1 ω(Kk−1, G \ Pµ,Kn−k) 6= G

for all µ ∈ M and K ∈ L. Now we fix µ0 ∈ M . We put Bµ = Pµ for all µ ∈ M \{µ0}
and Bµ0 = G \ ∪{Pµ : µ ∈ M \ {µ0}}. By construction, we have Pµ ⊆ Bµ for
all µ ∈ M and G = ∪{Bµ : µ ∈ H}. If µ ∈ M , then G \ Bµ ⊆ G \ Pµ and
⋃n

k−1 ω(Kk−1, G \ Bµ,Kn−k) 6= G for all K ∈ L. The proof is complete.

Theorem 4. Let (G) be an infinite InP -n-groupoid, τ = |G|, m be an infinite
cardinal, τ =

∑

{τ q : q < m} and either m < τ , or τ be a regular cardinal. If
Lm = {K ⊆ G : |K| < m}, then there exists a family {Bµ : µ ∈ M} of non-empty
subsets of G such that:

1. |M | = τ .

2. Bµ ∩ Bη = ∅ for all µ, η ∈ M and µ 6= η.

3. G = ∪{Bµ : µ ∈ M}.
4.

⋃n
k=1 ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ Lm.

5.
⋃n

k=1 ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and K ∈ Lm.

6. The sets Bµ are dense in every m-ϕ-bounded topology on G.

7. Relative to every m-ϕ-bounded topology T on G the space (G,T ) is super-
resolvable.

8. The sets Bµ are dense in every m-bounded topology on G.

9. Relative to every m-bounded topology T on G the space (G,T ) is super-
resolvable.

Proof. Is similar to the proof of Theorem 2.
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Corollary 4. Let G be an infinite InP -n-groupoid. Then there exists a family
{Bµ : µ ∈ M} of non-empty subsets of G such that:

1. |M | = |G|.

2. Bµ ∩ Bη = ∅ for all µ, η ∈ M and µ 6= η.

3. G = ∪{Bµ : µ ∈ M}.

4.
⋃n

k=1 ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and every finte
subset K of G.

5.
⋃n

k=1 ∆ϕ(k)ω(Kk−1, G \ Bµ,Kn−k) 6= G for all µ ∈ M and every finte subset
K of G.

6. The sets {Bµ : µ ∈ M} are dense in every ϕ-totally bounded topology on G.

7. Relative to every ϕ-totally bounded topology G is super-resolvable.

8. The sets {Bµ : µ ∈ M} are dense in every totally bounded topology on G.

9. Relative to every totally bounded topology G is super-resolvable.

Corollary 5. Let G be an infinite InP -n-groupoid, τ = |G|, m be an infinite cardinal
and τm = τ . Then there exists a family {Bµ : µ ∈ M} of non-empty subsets of G

such that:

1. |M | = |G|.

2. Bµ ∩ Bη = ∅ for all µ, η ∈ M and µ 6= η.

3. G = ∪{Bµ : µ ∈ M}.

4. If µ ∈ M , K ⊆ G and |K| ≤ m then
⋃n

k=1 ω(Kk−1, G \ Bµ,Kn−k) 6= G.

5. If µ ∈ M , K ⊆ G and |K| ≤ m then
⋃n

k=1 ∆ϕ(k)ω(Kk−1, G \Bµ,Kn−k) 6= G.

6. The sets {Bµ : µ ∈ M} are dense in every m+-k-ϕ-bounded topology on G.

7. Relative to every m+-k-ϕ-bounded topology G is super-resolvable.

8. The sets {Bµ : µ ∈ M} are dense in every m+-k-bounded topology on G.

9. Relative to every m+-k-bounded topology G is super-resolvable.

Acknowledgements. I express my deepest gratitude to Academician M.M. Choban.
Conversations with him inspired the author to write the present article.

References

[1] Belousov V.D. Foundation of the theory of quasigroups and loops. Moscow, Nauka 1967 (in
Russian).

[2] Belyavskaia G.B. The left, right, middle nucleous and center of quasigroup. Chisinau, Stiinta,
1988 (in Russian).

[3] Birkhoff G. Lattice Theory, New York, 1967.

[4] Bruck R.H. A survey of binary systems. Springer-Verlag, Berlin, 1958.



RESOLVABILITY OF SOME SPECIAL ALGEBRAS WITH TOPOLOGIES 105

[5] Comfort W.W., Van Mill. Groups with only resolvable group topologies. Proc. Amer. Math.
Soc., 1994, 120, No. 3, 687–696.

[6] Choban M., Chiriac L. Decomposition of some algebras with topologies and their resolvability.
Buletinul AS a Republica Moldova, Matematica, 2001, No. 3(37), 27–37.

[7] Engelking R. General topology. Polish Scientific Publishers, Warszawa, 1977.

[8] Gratzer G. Universal algebra. Springer-Verlag, Berlin, 1979.

[9] Protasov I.V. Resolvability of τ bounded groups. Matematychni Studii, 1995, 5, 17–20.

Department of Mathematics
Tiraspol State University
str. Gh.Iablocichin 5, MD-2069 Chisinau
Moldova

E-mail: llchiriac@gmail.com

Received April 25, 2008


