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Resolvability of some special algebras with topologies

Liubomir Chiriac

Abstract. Let G be an infinite I,, P-n-groupoid. We construct a disjoint family
{Bu : p € M} of non-empty subsets of G such that the sets {B,} are dense in all
Choban’s totally bounded topologies on G, |M| = |G|, G = U{B, : p € M} and
Ur 1 Apw (K1 G\ B, K" %) # G for all u € M and every finite subsets K of G.
In particular, we continue the line of research from [6, 9].
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1 Introductory notions

A space X is called resolvable if in X there exist two disjoint dense subsets. In
[6] M. Choban and L. Chiriac has proved the following assertion.

Theorem. Let G be an infinite group of cardinality 7. Then there exists a disjoint
family {B,, : p € M} of subsets of G such that:

1. |M|=|G|.

2. G=U{B, :pe M}.

3. (G\ Bu) - K # G for all p € M and every finite subset K of G.

4. The sets {B,, : p € M} are dense in all totally bounded topologies on G.

This fact is a generalization of one Protasov’s result [9]. In this paper the as-
sertions of Theorem are proved for the special algebras — I, Py-n-groupoids. We
shall use the notation and terminology from [1-4, 7, 8]. In particular, |X| is the
cardinality of a set | X|, N =0,1,2,..., R is the space of reals. By wy we denote the
first infinite cardinal. If 7 is an infinite cardinal, then 77 is the first cardinal larger
than 7. If 7 > 1 is a cardinal, then the space X is called T-resolvable if there exists
a family of pairwise disjoint dense subsets {B, : @ € A} of X such that |[A] = 7.
Every space is 1-resolvable. If the space X is 2-resolvable, then we say that X is
resolvable.

Denote by a* a sequence ay,as,...,ay, . If a1 = az = ... = a,,, then we denote
this sequence by a". For every space X we put

m(X)=min{|U|: U #0,U C X,U € 7}.

A space X is maximal resolvable if it is m(X)-resolvable. It is clear that if X is
T-resolvable then 7 < m(X). If m(X) = |X| > 1 and X is maximal resolvable, then
we say that X is superresolvable.
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For every mapping f: X — X we put f = f and f**! = fo f™ for any n € N.
We can consider that f: X — X is the identity mapping.

The problem of resolvability of totally bounded topological groups was solved by
V.I. Malykhin, W.W. Comfort, S. Van Mill [5], I.V. Protasov [9] and M.M. Choban,
L.L. Chiriac [6].

2  Groupoids with invertibility properties

Fix a sequence {E, : n € N} of pairwise disjoint spaces. The discrete sum
E = U{E, : n € N} is called a signature or a set of fundamental operations. A
universal algebra of signature F, or briefly, an F-algebra is a non-empty set G and
a sequence of mappings eq = {eng : B, X G — G :n € N}. The set G is called a
support of the F-algebra G and the mappings e are called the algebraical structure
on G. Let G be an E-algebra. If u € Fjy, then the element ug = egg({u} x G) is
called a constant of G and we put u(x) = ug for all z € G. If n > 1,u € E, and
T, ..., Ty € G, then we put u(xy,...,z,) = eng(u, 1, ..., x,). A pair (G,w) is said to
be a n-groupoid if G is a non-empty set and w : G — @ is a mapping.

Definition 1. Let £ < n. An n-groupoid (G,w) is called:

1. an [, Pi-n-groupoid if there exist the mappings 71,...,7k_1, ka1, -
rn : G — G such that w(ri(x1),....76—1(Tp—1),W(T1y ooy Th—1, Yy Thot1y oy Tnr)s
Pt (@)oo () = o w(rk @A) (e y e, ), (@) = g for
all x1,...,25_1,Tks1,-»Tn,y € G. The mapping r;(z) is called k-involution,
ie{l,..k—1k+1,..,n}

2. an I, P-n-groupoid in the large sense if it is I,, Py-n-groupoid for all k£ = 1,n.
In this case the mapping r;(x) is called involution, ¢ € {1,...,n}.

3. an [, P-n-groupoid, or I, P-n-groupoid in strong sense, if there exist the
mappings {r; : G — G: i = 1,n} such that {r; : i € n,i # k} is a family of
k-involutions for any k = 1,n.

4. an IyPg-n-groupoid if there exist the mappings 7, ...,7k_1, ka1, -, Tn :
G — G such that w(r(z),..,rp_1(z),w(@* 1y, 2" %), re_1(2),...,mn(2)) = y for
all z,y € G.

5. an Iy P-n-groupoid if it is Iy Py-n-groupoid for all kK =1, n.

Example 1. Let (G,-) be a topological non commutative group with the identity

e. If we put w(z,y,z,u) =y-x-u-z then (G,w) is an Iy P-4-quasigroup. Indeed:
1. (G,w) is an IoP;-4-quasigroup for ro(y) =y~ 1, r3(z) = 274, ry(u) = u=t. We

have w(w(x,t,t,t),m2(t), r3(t), r4(t)) = ro(t)-t-z-tt-ry(t)r3(t) =t tatt-t= 17! =

e-x-t-e-tl=x-t-t7 1=z
-1

2. (G,w) is an IyPy-4-quasigroup for ri(z) = o7 73(2) = 274 ra(u) = w
Really, w(ry(t),w(t,y,t,t),rs(t),ra(t)) =y -t-t-t-ri(t) ra(t) -r3(t) = y.
(G,w) is an IyPs-4-quasigroup for ri(x) = 271, ra(y) = y= 1, ra(u) = u=t.
Really, w(ry(t), ra(t),w(t, t, z,t),r4(t)) = ra(t) - rl() () t-t-t-z=z
(G,w) is an IyP;-4-quasigroup for ri(x) = ra(y) = y~ L r3(z) = 271
Really, w(ry(t), ra(t), r3(t),w(t, t,t,u)) = rao(t) - ri(t ) cu - t-rs(t) = u.
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In this case (G,w) is an Iy P;-4-quasigroup for every i € {1,2,3,4}. Hence, (G,w)
is an Iy P-4-quasigroup.

Example 2. Let (G,:) be a topological group with the identity e. We put
w(x,y,z) =x-y- 2. In this case:

1. (G,w) is a 3-groupoid;

2. (G,w) is an IyP;-3-groupoid for every i € {1,2,3} and for ri(z) = ro(z) =
r3(z) = 271

3. (G,w) is an I3P-3-groupoid for ri(x) = x~ ' r3(z) = z~!. Indeed,
w(r1 (), 0,9, 2),7a(2) = gz = ey e =y

4. If the group G is non commutative, then (G,w) is not an I3 P;-3-groupoid for

i={1,3}.

Example 3. Let C be the field of the complex numbers, R be the field of the reals
numbers. Let A = C\ {0}, B= R\ {0} and G = {r € R:r > 0}. Then (4,-),
(B,-) and (G, -) are commutative multiplicative groups. We put w(zx,y,z) = z-y" -z,
n > 1.

1. If n =1, then (4,w), (B,w) and (G,w) are I3P-3 quasigroups.

2. If n > 2, then (A4,w), is a 3-groupoid with divisions. The equation w(a,y,c) =
d has n solutions.

3. If n > 1 and n is odd, then (B,w) and (G,w) are 3-quasigroups.

4. If n > 2 and n is even, then (B,w) is not a 3-groupoid with divisions and
(G,w) is a 3-quasigroup.

5. (A,w), (B,w), (G,w) are I3P;-3-groupoids and I3Ps-3-groupoids. If n > 2,
then (A,w), (B,w) and (G,w) are not I3P»-3-groupoids.

Example 4. Let C be the field of the complex numbers and A = C'\ {0}. We fix
k € A and put wy,(z1, 22, ...,2n) =k -x1 -T2 ... Ty, (n > 2). In this case:

1. (A,wy) is a commutative quasigroup.

2. (Ayw,) is an I,P-n-groupoid in strong sense. Denote r;(z;) =

nd Flg . :172-_1. Hence, wp(r1(21), oy 7im1(Tim1), Wn (1 ooy Tim 1, Ty Tig1y ooy Ty,

Tit1 (Tit1)s s Tn(Tn)) = k- ("} k%)l Voot ok ay o mg g
Tig1 e Ty - (" k%)"_l . a:;_ll b =R "ql/k—lz)"_1 cxp = k2 k—lz cx; = x;. In

strong sense there are n — 1 complete involutions.

3. Let n > 2 and m = 2+ (n—1). Thereis k € A such that ™ = 1 and k' # 1 for
i<m. lfri(z)=Fk- xi_l then {ry,rs,...,m,} are involutions in strong sense. Hence,
W (r1(21)s ooy Tim 1 (25), W (21, T2y ooy T ) Tie 1 (Tig 1)y oy () = K7L K2 2 _1
LR S R R S SR IR S x;rll vt =2 g = gy = :EZ

4. Let n =2, m > 3, k™ = 1 and k* # 1 for i < m. We put w(x,y) =
k-z-y, ri(x) = k™ 2271 ro(y) = kK™ 2y~L. In this case {ri(z),r2(z)} are unique
involutions in strong sense and r2(z;) = k™ 2(r;(z;)) "t = k™ 2((k™2 - 27 1)) =

-2 1 —
k™ Cpm—z "L = Ly
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Example 5. Let (G, -) be a topological group with the identity. If we put w(z,y) =

x -y, then:

1. (G,w) is a 2-groupoid or, briefly, groupoid;

2. (G,w) is an RIP-groupoid for rp(z) = a1
(y-x)-z~' =y

3. (G,w) is an LIP-groupoid for r(z) = =
e Nz y) = y;

-1

Indeed, w(w(y,z),r2(z))

Indeed, w(r(z1),w(z,y))

4. (G,w) is an I P-groupoid if it is both an RI P-groupoid and an LI P-groupoid.
The notions LIP, RIP in the class of groupoids were introduced by R. H. Bruck [4].

Proposition 1. Let (G,w) be an I,P;-n-groupoid and ro,r3,....1, : G — G be

1-involutions. Then the following assertions are equivalent:

1. w(w(y,z2,....xn), r2(2)s ooy Tn(Tn)) = Y5
2. w(w(y,r2(z2), ..., rn(xn)), T2, ... xy) =y for all 2 € G.

Proof. Suppose that
w(w(y, o, ..., xy),r2(x2), .o Tn () =y

for all %,y € G. From (1) we have

W(W(W(yy T2y ooy T )y 72(22), ooy T (X0)), 75 (22,5 oy T2 (20)) = w(y, T2, ...

and

W(W(W(ys T2y ey 1), 72(T2), oo T (20)) s 72 (2) s ooy 72 ()

Using (2) and (3) we obtain
W(Y, 2, ey ) = W(y, 73(22), ooy 72 (20)).

Let in (4) y = w(y,r2(x2), ..., mn(xy)). Therefore from (4)
W(W(y, T2($2)7 cey Tn(xn))v T2y -eey l'n)) =
= w(w(y, r2(x2)s oy T (x0)), 75 (22), ooy 72 ().
The implication 1 — 2 is proved. Suppose that

w(w(y, ra(x2), ...y mn(Tn)), T2, ooy ) = Y.

From (5) it follows that

w(Wly, 73 (z2), oy 72 (20)], 72(22),s oy T (20)) = ¥
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It is clear that
w(w[w[y,r%(:ng), ...,r%(mn)],rg(xg), vy T ()], T2y oy Tp) = (7)

= w(y, T’%(:Eg), e r%(mn))

From (6) we obtain

w(w[w[y,r%(:ng), ...,r%(mn)],rg(xg), vy Tn(Tn)], T2, ooy ) = W(Y, 22, oy Tp). ()
Using (7) and (8) we have

W(y, r2(x2), ooy 72 () = w(y, T2, ..., T,). (9)

Therefore
wW(w(y, 2, oy Tp), r2(22), ooy T () =
= w(wly, r2(x2), ..., 72 ()], r2(22), ooy T (2)) = ¥.
The implication 2 — 1 is proved. The proof is complete. O

Definition 2. An n-groupoid (G,w) is called:

1. a k-cancellative n-groupoid if for every a,b,x1,...,T5—1, Zt1, -y Zn € G
we have w(Z1,...,Tp—1,0, Tpt1,-er Tn) = W(T1,.0y Tp—1,b, Tt1, ..., Tn) if and only
if a =0b.

2. a cancellative n-groupoid if it is k-cancellative groupoid for all k = 1,n

3. an m-quasigroup if the equation w(ail_l,a:, ai,1) = b has unique solution for
every a;',b and each i = 1,n.

Definition 3. An element e from (G,w) is called:

1. a k-identity of n-groupoid (G,w) if w(ek~1 =z for every z € G.

2. an identity of n-groupoid (G,w) if w(e™!, x,e"%) = x for every x € G and
each i = 1,n.

If n-quasigroup (G,w) contains at least one identity, then (G, w) is called n-loop.

T, en—k)

Proposition 2. Let (G,w) be an I,P;-n-groupoid and re,r3,....1, : G — G be
1-involutions. Then:

1. w(@1, 29y oy Tp) = w(21,73(22), .oy 72 (3)) for all 27 € G.

2. w(w(y,ra(x2), ..., n(Tn)), 2, ..., xn) =y for all x5,y € G.

3. (G,w) is 1-cancellative .

4. For every b,ay € G, the equation w(y, asz, ...,an) = b has a unique solution.
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Proof. The proof of the assertion 1 is contained in the proof of Proposition 1. The
assertion 2 follows from Proposition 1. Let a,b,zy € G and w(a,z2,....,2,) =
w(b,x9,...;xy). Then a = w(w(a,x2,...,xn),72(x2), ey T (x0)) = w(w(b, z2, ..., zy),

ro(z2), ..., rn(zn)) = b. The assertion 3 is proved. We consider the equation
w(y,asg,...,a,) = b. Then from Proposition 1 we have y = w(b, ra(z2), ..., rn(zy)).
Hence the equation w(y,as,...,a,) = b has a unique solution. The proof is
complete. O

Corollary 1. Let (G,w) be an I,P-n-groupoid in the large sense and r; : G —
G,i=1,n, are the involutions on G. Then (G,w) is cancellative.

Proof. The assertion follows from Proposition 2. O

Academician M.M. Choban observed the following interesting fact.

Proposition 3. Let (G,w) be an I, P-n-groupoid in the large sense and r; : G —

G,i = 1,n, are the involutions on G. Then x; = r?(n_l)(azi), for every i = 1,n and
n > 2.
Proof. 1t is sufficient to prove that z; = rf(n_l)(xl) for any 27 € G. Fix

T1,%9, ...,y € G. From Proposition 2 we have w(z1,%2,...,7,) = w(x1,73(T2), ...,

T%(‘TTL)) = w(r%(ml),rg(xg),rgf(azg),...,ri(mn)) = = W(T%i(x1)7”'7Ti2j-1(xi+1)7
rff;l)(a:,-Jrg),...,rz(iﬂ)(xn)) = .. = w(r%("_l)(azl),rg("_l)(xg),...,Ti(n_l)(xn)),
ie. It is obvious that w(wi,x9,...,z,) = w(w1,73™(22),...,72™(x,)) for any
m > 1. Hence for m = n — 1, we have w(:nl,r;(n_l(:z:g),...,rg(n_l)(xn)) =
w(r%("_l)(azl),Tg(n_l)(xg),...,T?L(n_l)(xn)). Therefore z7 = rf(n_l)(azl) for any
r1 € G and z; = r?(n_l)(azi), for every i = 1,n and n > 2. The proof is
complete. O

Proposition 4. Let (G,w) be an I, P-n-groupoid in the large sense and r; : G —
G,i = 2,n, are the involutions on G. If e1,ez,....,en, € G, e; = r¥™(e;), for all
i =2,n, then x; = r¥™(z;), for every x; € G and n > 2.

Proof. From Proposition 2 it follows that w(x1,%9,...,7,) = w(w1,75™(2), ")
72" (2,)). Fix i = 2,n. Then w(eq,ea, ..., i 1,Ti, €it1s s n) = w(e1,e2, ..., €1,
72™(2;), €41, .., € ). Hence, x; = r?™(z;), for every z; € G, i =2,n and n > 2. The
proof is complete. O

3 Topologies on algebras

We consider arbitrary topologies on universal algebras. There are a lot of types of
bounded topology. We fix n > 2 and k < n. Consider a mapping ¢ : {1,2,...,n} —
{1,2,...,n}. We will use Choban’s bounded topology.
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Definition 4. Let (G,w) be an n-groupoid and Ly, Lo, ..., L, be a family of subsets
of G. Then:

1. The sets Ly, Lo, ..., L, are k-a-associated with the mapping ¢ and denote
(L1, L, ..., Ly)a(k)p if Ly = L; provided ¢(i) = ¢(j) and i # k, j # k.

2. If zy,29,....my, € G and ({x1},{z2},....,{zn})a(k)p, then we put
(X1, T2, ..., xn ) (k) p.

3. We put A yw(L1, Lo, ..., Lp) = {w(x1, 22, ... Tn) 1 1 € L1, 22 € Lo, ...,z €
L, and (z1, 2, ..., zn)a(k)p}.

Remark 1. Let Lq,Lo,...,L, be subsets of G, and L;C:Lk and L;:ﬂ{Lj 17 <
n,o(j) = (i)} for any i # k. Then (L}, L, ..., L, )a(k)e and
A¢(k)w(L1,L2,...,Ln):Aw(k)w(Ll,Lg,...,Ln).

Definition 5. Let & < n. An n-groupoid (G,w) is called an I,P-n-groupoid
if there exist the mappings r; : G — G, i € {l,...k — 1,k + 1,...,n} such
that w(r1(x1), oy Th—1(Tk—1)s W(T1y ooy Th—15 Yy Tt 1y ooy Tn)y Tkt 1 (Tt 1)y ooy T (X)) =
y provided (21, ..., Xp—1, Tkt1, ..., Tn) a(k)p for all z1,...,Tk_1, Tgs1, ., Tn,y € G.

We say that the mapping r; : G — G, i € {1,...,k — 1,k + 1,...,n} is called
k-@-involution.

If (i) = ¢(j) for all 4,5 < n, then I,P,-n-groupoid is an Iy Pj-n-groupoid.

Definition 6. Let (G,w) be an n-groupoid and A be an infinite cardinal. A topology
7T on G is called:

— a A-k-p-bounded topology if for every non-empty open set U € T there exists
a subset K C G such that |[K| < \ and Aw(k)w(Kk_l, UK =@G.

—a A-p-bounded topology if it is A-k-p-bounded topology for every kK = 1,n. An
wo-k-p-bounded topology is called a k-p-totally bounded topology. The topology
is said to be @-totally bounded if it is a k-p-totally bounded topology for every
k=1,n.

Remark 2. If in Definition 6 the mapping ¢ is one-to-one, then a topology 7 on
G is called respectively: a A-k-bounded topology, a A-bounded topology, a wg-k-
bounded topology, a k-totally bounded topology and totally bounded topology, for
every k= 1,n.

Proposition 5. Let ¢ : {1,2,....,n} — {1,2,....,n} be a mapping, (G,w) be an n-
groupoid with the properties:

1. The equation w(a*=', x,a" %) = b is solvable for every a,b € G.

2. For every a,b € G there exist ai,ao,...,a, € G such that ap = a,
(a1,az,...,an)a(k)e and w(ay,az,...,a,) = b.

Then the minimal compact Ty-topology T = {@} U{G \ F : F is a finite subset
of G} is a k-p-totally bounded topology on G.

Proof. Let U € T and U # @. Then the set F = G\ U is finite. Fix a € U.
Then h, : G — G, where hy(z) = w(a*~1, x,a" %) for any 2 € G is a mapping of
G onto G. Thus F' = G\ he(U) C he(F) is a finite set. For any = € G there exist
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y1(z),y2(2), s yn(z) € G such that yi(z) = a, (y1(),y2(2), ..., yn(z))a(k)p and

w1 (@),42(2), -y yn () = . We put @ = {a} U {{y1(2), 42(@), -,y (@)} : @ € F'}.
The set @ is finite. By construction, A yw w(®F~1 U, &%) = G. The proof is

complete. O

Proposition 6. Let ¢ : {1,2,...,n} — {1,2,...,n} be a mapping, (G,w) be an
n-groupoid with the properties:

1. For every a,b € G there exist ai,as,...,a, € G such that ap = a,
(a1,az,...,an)a(k)e and w(ay,az,...,a,) = b.

2. There exists e € G such that G\ w(eF~1, G, e"F) is a finite set (in particular,
w(eF=1 z,e" k) = 2 for every x € G).

Then the minimal compact Ty-topology T = {@} U{G \ F : F is a finite subset
of G} is a k-p-totally bounded topology on G.

Proof. Let U € T and U # @. Then the set F = G\ U is finite. Fix a € U.
Consider the mapping h. : G — G, where ho(x) = w(e*~ 1, z,e" %) for any = € G.
The set G \ he(Q) is finite. Thus the set F' = G\ he(U) C (G \ he(G)) | he(F)
is a finite set. For any = € F' fix {y1(z),y2(2),...,yn(2)} € G such that
yr(x) = a, (51(2),y2(2), . yn(x))a(k)p and wlyi(2), y2(z), .., yn(2)) = @. Let
O = {e} UU{{y1(x),y2(x),...,yn(2)} : @ € F' }. The set @ is finite. By construction,

Aw(k)w(q)k_l, U,®"%) = G. The proof is complete. O

Proposition 7. Let ¢ : {1,2,...n} — {1,2,...,n} be a mapping, (G,w) be an
infinite I, Py-n-groupoid, B C G, m be an infinite cardinal and Aw(k)w(Kk_l,G\
B,K" %) £ G for every subset K of cardinality |K| < m. Then the set B is dense
in every m-k-p-bounded topology T on G.

Proof. Suppose that 7 is an m-k-g-bounded topology on G and U = G\ clgB # &.
Then U € 7 and U C G\ B. By assumption there exists a subset K of G
such that A,w(K* 1, U, K"*) = G and |K| < m. Since U C G\ B, we have
G D Aw(k)w(K’“_l,G \ B,K"*) D Aw(k)w(Kk_l,U, K" k) = @, a contradiction.
The proof is complete. O

4 Decomposition of I,, P,-n-groupoids

We fix n > 2 and k < n. Consider a mapping ¢ : {1,2,...,n} — {1,2,..n}.
Lemma 1. Let G be an infinite I, Py-n-groupoid, 71, ...,7k_1,Tkt1,--,Tn : G =& G
be k-involutions, L and M be subsets of G and |L U M| < |G|. Then there exists
an element a € G such that w(LF~' a, L" *)NM = @ and Aw(k)w(Lk_l,a,L”_k) N
M=go.

PTOOf' Let H = {w(rl(yl)a---ark—l(yk—1)7xark-i-l(yk-i-l))"'arn(yn)) ax € Moy, ..,
Yk—1sYk+1, - Yn € L}. Thus |H| < |G| and there exists an element a € G\ H.
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Suppose that w(L*' a, L") N M # @. Fix w(LF'a,L" %) N M. Then
T = w(yh v Yk—15 05 Yk4-1, 7yn) for some Y1y oo Yk—15 Ykt-15 -y Yn € L. Hence

a = (U('I"l (yl), seey Tk—l(yk‘—l)7 w(y]f_lv a, yl?—i—l)? Tk—i—l(yk-i—l)a ceey Tn(yn)) -

= W(T‘l(yl), EE) rk—l(yk—1)7 x, rk-‘rl(yk-i-l)v ceey rn(yn)) €

€ w(ri(y1), s Th—1Wk=1), M, 711 (Yk+1), -, " (yn)) € H,

a contradiction. By construction, Ap(k)w(Lk_l,M,L”_k) C w(LF 1Y M, L"F),
Hence, Aw(k)w(Lk_l, a,L"*) N M = @. The proof is complete. O

Theorem 1. Let G be an infinite I, Py-n-groupoid, L be a a non-empty family of
non-empty subsets of G, |L| < |G| and for every set A and mapping ¥ : A — L we
have | U{¥(a) : a € A} |<| G | provided | A |<| G |. Then there exists a family
{B, : n € M} of non-empty subsets of G such that:

1. |MI|=|G].

2. ByNB,=a forall o, € M and o # 3.

3. G=U{B,:pec M}

4. w(K*L G\ B, K" %) #G forallp€ M and K € L.

d. Aw(k)w(Kk_l,G \ BH,K"_’“) <G forallpe M and K € L.

Proof. Consider on G some k-involutions, r1,...,7k—1,7k+1,---,"n : G — G. Let
7 = |G|. Denote by |a| the cardinality of the ordinal number a. We put Q, = {a :
1<l|a| <7} If K CG,then K; ' = {rj(z;) 2, € K},i=1,...,k — 1,k +1,..,n,
and K~'=U{K;':i=1,2,..,k—1,k+1,.n}. Let Loo = {K~': K € LYUL.
It is clear that [£1] < 7. Moreover, if A is a set, |[A] < 7and ¥ : A — L; is a
mapping, then | U {¥(a) : « € A}| < 7. Fix a set M of the cardinality 7. Since
|2-| = |[M x L1| = 7 then there exists a bijection h : Q, — M xL;. If & € Q,, then we
consider that h(a) = (pa, Ko) € MxLy. If p € M, then we put A, = h= ({u}x L1).
It is obvious that A, = {a € Q; : po = p} and {K, : a € A,} = L£;. Now
we affirm that there exists a transfinite sequence {a, : @ € Q;} C G such that
w(KE Y aq, KPR N w(K]g_l,ag,Kg_k) =@ for all a,0 € Q, and a # 5. We fix
a; € G. Let 1 < 3,0 € Q, and the elements {a, : @ < [} are constructed. We
put now Hg = U{w(K* 1 an, K27F) : a < B}. Since |a € Q, : a < ] < |8] < |G,
then |Hg| < |G|. From Lemma 1 it follows that there exists ag € G such that
w(Kg_l,aﬁ, Kg_k) N Hg = @. By the transfinite induction if follows that the set
{aq : @ € Q. } is constructed. We put P, = U{w(K*1 a,, K'7%) : a € A,} for eve-
ry p € H. Fix pu,m € M and p # 7. Then A, N A, = @. Since w(KE 1 ag, KRN
w(Kg_l,aﬁ,Kg_k) = @ for all « € A, and B € A, then P, N P, = @. Fix
p€ M and K € L. Then K~' € £y and (u, K™1) = (pta, Ko) for some o € A,,.
Suppose that w(K*1 G\ PM,K"_’“) = G. Then a, € w(KF1 G\ PM,K"_’“),
ie. aq = w(ylf_l,:n,yzﬂ) for some x € G\ P, and y1, ..., Yk—1, Yk+1, -, Yn € K.
By construction, we have 71(y1),...,"k—1(Yk—1)s Tkt1(Yks1)s -y Tn(zn) € K, and
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w(rl(yl)y ceey Tk—l(yk—l)7 [£2:% Tk-i—l(yk-i-l)v ey rn(:En)) € w(Kfl_l) Aoy Kg_k) C P,u,- By
assumption, we have that

W(r1 (Y1), oo Th=1(Yk=1)s Qs Tht1(Yt1), s Tn(T0)) =

1

= W1 (Y1), oo Th1 (Y1), (YN~ wwﬁ;{“),mﬂ(ykﬂ), o Tn(yn)) = € G\ Py,

a contradiction. Hence w(K*~1, G\ P,, K"*) # G for all p € M and K € L. Now
we fix o € M. We put B, = P, for all p € M\ {uo} and B,y = G\ U{P, : p €
M\{po}}. By construction, we have P, C B, forally € M and G = U{B,, : p € H}.
If w € M, then G\ B, C G\ Pu and w(K*1,G\ B,, K" %) # G for all K € L.
The proof is complete. O

Theorem 2. Let (G,w) be an infinite I, Py-n-groupoid, 7 = |G|, m be an infinite
cardinal, 7 = Y {17 : ¢ < m} and either m < T, or T be a regular cardinal. If
Ly ={K C G :|K|<m}, then there exists a family {B,, : p € M} of non-empty
subsets of G such that:
1. |M| =T
B,N B, =@ for all u,n € M and p # n.
G=U{B,:pecM}.
w(KF1 G\ By, K" %) #G for allpp € M and K € L,,.
Asp(k)w(Kk_l,G \ BM,K"_k) #G forallpe M and K € L,
The sets B,, are dense in every m-k-p-bounded topology on G.
Relative to every m-k-p-bounded topology G is super-resolvable.
The sets B,, are dense in every m-k-bounded topology on G.
Relative to every m-k-bounded topology G is super-resolvable.

© % RS> O o

Proof. Since 7 = Y {79 : ¢ < m}, we have m < 7. Let A be a set, |[A] < 7,7 :
A — L, be a mapping and H = U{¥(a) : o € A}. If m < 7, then |H| <

w(m,..m,|Al,m,...,m) = wm* 1 |A|,m" %) < 7. If m = 7 and |H| = 7, then
cf(r) < |A| < 7 and the cardinal 7 is not regular. Hence |H| < 7. Theorem 1 and
Proposition 7 complete the proof. O

Corollary 2. Let G be an infinite I, Pi.-n-groupoid. Then there exists a family
{B, : n € M} of non-empty subsets of G such that:

1. |M|=|G|.

2. B,N B, =@ for all p,mn € M and p # 7.

3. G=U{B,:pec M}

4. w(K*1 G\ B,, K" %) # G for all p € M and every finte subset K of G.

5. Aw(k)w(K'{_l,G \ BM,K”_k) # G for all p € M and every finte subset
K of G.

6. The sets {By, : p € M} are dense in every k-p-totally bounded topology on G.

7. Relative to every k-p-totally bounded topology G is super-resolvable.

8. The sets {By, : p € M} are dense in every k-totally bounded topology on G.

9. Relative to every k-totally bounded topology G is super-resolvable.
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Corollary 3. Let G be an infinite I,Py-n-groupoid, T = |G|, m be an infinite
cardinal and ™™ = 7. Then there exists a family {B, : n € M} of non-empty
subsets of G such that:

1. |M|=|G|.
B, N B, =@ for all u,n € M and p # 7.
G=U{B,:pnecM}.
IfpeM, K CG and |K| <m then w(K*1,G\ B,, K"F) £ G.
Ifpe M, K CG and |K| < m then A¢(k)w(Kk_1,G \ B,, K" %) £G.
The sets {B, : p € M} are dense in every m™ -k-p-bounded topology on G.
Relative to every m™-k-p-bounded topology G is super-resolvable.
The sets {B,, : p € M} are dense in every m™-k-bounded topology on G.
Relative to every m™-k-bounded topology G is super-resolvable.

© % RS> G oo

5 Decomposition of I,, P-n-groupoids
We fix n > 2 and k < n. Consider a mapping ¢ : {1,2,...,n} — {1,2,..n}.

Lemma 2. Let G be an infinite I, P-gruopoid, r1,...,7, : G — G be involutions, L
and M be subsets of G and |[LUM]| < |G|. Then there exists an element a € G such
that:

1. Uiy w(F Y a, LM = @, where | J}_, w(L* Y, a, L") = w(a, L" 1)U
w(LYa, L") U...Uw(L" 1 a).

2. Uiy Aw(k)w(Lk_l, a, L") N M = @, where U1 Aw(k)w(Lk_l,a,Ln_k) =
A¢(k)w(a, Ln_l) U A¢(k)w(L1, a, Ln_2) U...u Aw(k)w(L"_l, a).

PTOOf' Let H = {w(x7r2(y2)7“'arn(yn)) HERS M7y27"-yn € L} U {w(rl(y1)7$7
73(Y3)s ooy Tn(Yn)) = € M,y1,y3, ...,y € L} U ..U {w(ri(y1), .., Tn—1(Yn—1),2) :
x € M,yy,..yn—1 € L}. Since |H| < |G|, then there exists an element a € G\ H.
Let w(a,L,..L)N M # @. Fix z € w(a,L,...L) N M. Then z = w(a,ys, ..., y,) for
some ya, ..., yn € L. Hence a = w(w(a,y2, .., Yn), 72(¥2)s ooy Tn(yn)) = w(x,m2(y2), .-\
n(Yn)) € w(M,r2(y2),...,rn(yn)) < H, a contradiction. In similar way we
prove that w(LF~' a,L" %) N M for all k = I,n. Hence Ur—1 w(L*1 a, L7 %) N
M = @. By construction, Aw(k)w(Lk_l,a,L”_k) C w(LF' a,L"*). Hence,
Ur—1 Aw(k)w(Lk_l, a,L"*) N M = @. The proof is complete. O

Theorem 3. Let G be an infinite I, P-n-groupoid, L be a non-empty family of non-
empty subsets of G, |L| < |G| and for every set A and mapping ¥ : A — L we
have | U{¥ () : o € A} |<| G | provided | A |<| G |. Then there exists a family
{B, : p€ M} of non-empty subsets of G such that:

M= G

. B,NB,, =@ forall o, € M and o # 3.

. G=U{B,:pe M}

CUpl w(K*Y G\ B, K" %) £ G forallpe M and K € L

- Uiy Aw(k)w(Kk_l,G \ B, K" %) G for allp€ M and K € L.

Or B Lo ~
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Proof. Consider on G involutions, ri,...,7, : G — G. Let 7 = |G|. Denote by
|a| the cardinality of the ordinal number a. We put @, = {a : 1 < |a] < 7}.
If K C G, then K; ' = {ri(z;) : i = ,n,z; € K}. We put K~} = UK; ! and
L1 ={K!':KeL}yUL. Itis clear that |£1| < 7. Moreover, if A is a set, |A] < T
and ¥ : A — L1 is a mapping, then |U{¥(a) : @« € A}| < 7. Fix a set M of the cardi-
nality 7. Since |Q2;| = |M x L£1]| = 7, then there exists a bijection h : Q, — M x L;.
Let A, = h*({p} x £1) = a € Q; : po = p}t. If a € Q,, then we consider
that h(a) = (fta, Ko) € M x Ly. It is obvious that A, = {a € Q; : uo = p}
and {K, : o« € A,} = L£1. As in the proof of Theorem 1 from Lemma 2 it
follows that there exists a transfinite sequence {a, € G : a € .} such that
(Upo w(KE Y aq, KP7F) N (Uzzlw(Kg_l,ag,Kg_k)) = @ for all o, € Q;
and a # 3. Now we put P, = U{Uj_, w(K5 Y a0, K27F) : o € A} for ev-
ery p € M. 1If P[f = Ui w{(KE Y an, K278 o € Ay} for all k = T)n,
then P, = Uy, P} and w(K* 1, G\ P, K"%) # G for every K € L. Sup-
pose that K € £, p € M and G = Jp_,w(K*1,G\ Pf,K”_k). For some
a € A, we have K, = U, K; ' = K~'. Then J}_, w(KE: ™ a,, KP7F) C
P, and a, € G. Suppose that a, € w(KkF1 G\ Pf,K”_k). Then a, =
WYLy ooy Yk—15 Ty Ykt 1y - Yn) fOr sOme y1,...,Yk—1,Yk+1,--Yn € K and z € G\
P,. Therefore w(ri(y1), - Th—1(Uk-1)s Ga> Tk+1(Uk+1)s - Tn(Un)) = w(ri(y1), ...,
rk_l(yk_l),w(ylf_l,x,yglf),rkﬂ(ykﬂ),..,rn(yn)) =z € G\ P,. Since ri(y; €
K,), i = 1,n, we have 2 = w(r1(y1), o, "k—1(Uk—1), Grs Tkt 1 (Y1) s T (Yn)) €
w(KE1 an, K7%) C P,, a contradiction. Hence |J}_; w(K*1,G\ P,, K" %) #G
for all p € M and K € L. Now we fix ug € M. We put B, = P, for all u € M\ {uo}
and B,y = G\U{P, : p € M\ {po}}. By construction, we have P, C B, for
all p € M and G = U{B, : p € H}. If p € M, then G\ B, C G\ Pu and
Ui w(K* 1, G\ B, K" %) # G for all K € L. The proof is complete. O

Theorem 4. Let (G) be an infinite I, P-n-groupoid, T = |G|, m be an infinite
cardinal, 7 = Y {17 : ¢ < m} and either m < T, or T be a regular cardinal. If
Ly ={K CG:|K|<m}, then there exists a family {B,, : p € M} of non-empty
subsets of G such that:

1. |[M|=r.

2. B,N B, =@ for all p,m € M and p # 7.

3. G=U{B,:pec M}.

4. Upoqw(K*Y G\ B, K" %) £ G for all p € M and K € L.

5. Up—y Aw(k)w(K'{_l,G \ B, K"%) £ G for all p € M and K € Ly,.

6. The sets B, are dense in every m-p-bounded topology on G.

7. Relative to every m-p-bounded topology T on G the space (G,T) is super-
resolvable.

8. The sets B, are dense in every m-bounded topology on G.

9. Relative to every m-bounded topology T on G the space (G,T) is super-
resolvable.

Proof. Is similar to the proof of Theorem 2. O
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Corollary 4. Let G be an infinite I,P-n-groupoid. Then there exists a family
{B, : n € M} of non-empty subsets of G such that:

1. |M|=|G|.

2. B,N B, =@ for all p,m € M and p # 7.

3. G=U{B,:pec M}.

4. Uzzlw(Kk_l,G \ BH,K"_’“) % G for all pw € M and every finte
subset K of G.

5. Uiy Aw(k)w(Kk_l,G \ BH,K"_’“) % G for all p € M and every finte subset
K of G.

6. The sets {B,, : p € M} are dense in every p-totally bounded topology on G.
7. Relative to every @-totally bounded topology G is super-resolvable.

8. The sets {By : p € M} are dense in every totally bounded topology on G.
9. Relative to every totally bounded topology G is super-resolvable.

Corollary 5. Let G be an infinite I, P-n-groupoid, T = |G|, m be an infinite cardinal
and 7™ = 7. Then there exists a family {B, : p € M} of non-empty subsets of G
such that:

1. |M| =|G|.

B, N B, =@ for all p,n € M and pn # 7.

G=U{B,:pec M}

IfpeM, K CG and |K| <m then Jj_, w(KF¥1,G\ B,, K"*) #G.
IfpeM, KCG and |K| <m then j_; Apyw(KF1, G\ By, K"F) #£ G.

v Lo

The sets {By, : p € M} are dense in every m™-k-p-bounded topology on G.
Relative to every m™-k-p-bounded topology G is super-resolvable.

The sets {B,, : p € M} are dense in every m™-k-bounded topology on G.

L > NS

Relative to every m™-k-bounded topology G is super-resolvable.
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