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A virtual analog of Pollaczek-Khintchin transform
equation ∗
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Abstract. The virtual queue length distribution for the queueing system M |G|1 is
obtained. It is shown that these results can be viewed as generalization of Pollaczek-
Khintchin transform equation.
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1 Introduction

The queueing system M |G|1 plays an important role in Queueing Analysis. This
system is studied and described in most standard textbooks and monographs on
Queueing Theory (see, for example, Allen 1978 [1], Kleinrok 1975 [2], Cooper 1981
[3], Takagi 1991 [4], Gnedenko and Kovalenko 2005 [5]). Various methods and tech-
niques necessary for the evaluation of its characteristics have been developed. Many
characteristics were obtained by pioneers and founders of Queueing Theory. Among
such characteristics one can mention the stationary distribution of the number of
messages in the system, or, in other words, the queue length distribution, first ob-
tained by Pollaczek in 1961 [6] and independently by Khintchin in 1963 [7]. It is
necessary to mention that many outstanding researchers repeated this classical re-
sult using new elaborated methods and approaches and referred to it in their papers
and books. Although the M |G|1 system is well studied the impetuous development
of contemporary technologies puts forward new problems requesting new approaches
and results. Thus, it turned out that some results for queueing system M |G|1 can be
used for the analysis of polling systems: mathematical models used as a theoretical
approach for broad band WLAN (Wireless Local Area Networks). In this paper
the queue length distribution for an arbitrary time t (t ∈ (0,∞)) is obtained for
mentioned M |G|1 system. In other words, the nonstationary or virtual distribution
of the number of the messages in the system is obtained. We show below that this
virtual distribution contains as a particular case, namely in the steady state, the
mentioned Pollaczek-Khintchin transform equation. In this context we can consider
the distribution obtained below as an analog of a well-known Pollaczek-Khintchin
equation. Results were obtained using the method of ”catastrophes” (Gnedenco et
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all 1973 [8], Klimov and Mishkoy 1979 [9]) and the approach based on regenerative
processes with embedded periods.

2 Preliminary results. Pollaczek-Khintchin transform equation

Let’s consider the queueing system M |G|1 with exhaustive service (messages are
served continuously until there is a nonmessage in the system). Denote by λ the
parameter of input Poisson flow, by B the length of service and by B(x) = P{B < x}

the distribution function of service. Let’s also denote by β(s) =
∞
∫

0

e−sxdB(x) the

Laplace-Stieltjes transform of function B(x), by β1 =
∞
∫

0

xdB(x) its first moment.

Let’s consider the random variable X – the number of messages in the queue.
Obviously, X is a discrete random variable. Denote by Pk distribution of this variable

Pk = {X = k}

and let P (z) be the generating function of probabilities Pk,

P (z) =
∑

k

zkPk

where 0 ≤ z ≤ 1.

The traffic intensity ρ is defined as follows

ρ =
E(B)

E(zk)

where

E(B) = β1 =

∞
∫

0

xdB(x), B(x) = P{B < x},

E(zk) =

∞
∫

0

xdA(x), A(x) = P{zk < x} = 1 − e−λx.

Here zk is the interarrival interval between tk−1 and tk time moments. Using the
traffic intensity definition for M |G|1 system we get ρ = λβ1.

The following result is known as Pollaczek-Khintchin transform equation [6,7].

Theorem 1. If ρ < 1, then the steady state generating function of the queue length
distribution is given by expresion

P (z) =
β(λ − λz)(z − 1)(1 − λβ1)

z − β(λ − λz)
. (1)
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The proof of the formula (1) can be obtained employing the method of the
embedded Markov chain and notion of irreductibility, aperidiocity and ergodicity of
the Markov chains (Asumussen 1987 [10], Cohen 1982 [11], Takagi 1991 [4]).

Remark 1. From expression (1) we easily get the mean value formula

N =
∑

k

kPk = P
′

(1) = λβ1 +
λ2β1

2(1 − λβ1)
. (2)

Consider the busy period. By the busy period we shall understand the time
interval beginning with the arrival message in the free M |G|1 system and finishing
with the next moment when the system becomes free. Obviously, the busy period
is a random variable. Let’s denote by Π(x) the distribution function of the busy

period, by π(s) =
∞
∫

0

e−sxdΠ(x) – the Laplace-Stieltjes transform of Π(x) and by

π1 =
∞
∫

0

xdΠ(x) – the first moment.

The distribution function of the busy period is given (in terms of Laplace-Stieltjes
transform) by the following theorem.

Theorem 2. The Laplace-Stieltjes transform π(s) of the busy period is determined
in the unique way from functional equation

π(s) = β(s + λ − λπ(s)). (3)

If ρ < 1, then

π1 =
β1

1 − λβ1
. (4)

The functional equation (3) is known as Kendall-Takacs functional equation
(Kendall [12], Takacs [13]). The multidimensional analog of the mentioned equa-
tion is presented in (Mishkoy 2006 [14] and Mishkoy 2007 [15,16]).

3 Nonstationary (virtual) analog of transform equation

According to the M |G|1 system we assume that there is an infinite buffer to store
waiting messages and exhaustive service, those messages are served continuously
until there is no message in the system. By the service discipline we assume LIFO
(last in, first out; or reverse order of arrival) or FIFO (first in, first out, or order
of arrival). For these disciplines, the order of service is not affected by the service
time of waiting messages. The first objective of our analysis in this section is to find
the nonsteady state distribution of the queue size, that is the number of messages
present in the system at the moment of time t.

Denote by Pm(t) probability that at the instant t there are m messages in the
system, by P (z, t) the generating function of probabilities Pm(t),

P (z, t) =
∑

m≥o

Pm(t)zm, 0 ≤ z ≤ 1
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and by

p(z, s) =

∞
∫

0

e−stP (z, t)dt (5)

its Laplace transform.
We shall assume that independently of the evolution of the system some events,

called ”catastrophes”, which form a Poisson flow with parameter s > 0 happen. We
also assume that an arbitrary message will be coloured either in red with probability
z or in blue with probability 1−z, independently of the colour of the other messages.
We shall multiply the both parts of the expression (5) by s. Then

sp(z, s) = s

∞
∫

0

e−stP (z, t)dt

is the probability that the first ”catastrophe” happens at the moment of time t

when in the queueing system there are at least red messages. The profit from this
probability means that we shall obtain the formulas to determine the function p(z, s).
We shall denote in addition by
sπ(z, s) – the probability that the first ”catastrophe” happened during the busy
period when in the queueing system there are at least red messages;
sβ(z, s) – the probability that the first ”catastrophe” happened during a messages
service time B when in the queueing system there are at least red messages.

Let’s suppose that at any moment t there are n messages in the queue. The
interval of time which starts with the service of one of the mentioned n messages
and finishes as soon as the system becomes free, will be called Πn–period. We shall
denote the distribution function of this period by Πn(t) and its Laplace-Stieltjes
transform by πn(s).

Obviously, πn(s) = [π(s)]n, where π(s) is determined from the functional equa-
tion (3).

Let’s consider a separate Πn–period. Let’s denote by Pm(t) the probability that
at instant t in the queueing therre are m messages. Denote

Πn(z, t) =
∑

m≥0

Pm(t)zm, 0 ≤ z ≤ 1,

and let

πn(z, s) =

∞
∫

0

e−stΠn(z, t)dt

be the Laplace transform of generating function Πn(z, t).
Similarly as we did above we conclude

sπn(z, s) – is the probability that the first ”catastrophe” happens during a Πn–period
when in the queueing system there are at least red messages.

Then the following auxiliary result holds.
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Lemma 1. Laplace transform of the generating function of the queue length distri-
bution on Πn–period is given by

πn(z, s) = π(z, s)
zn − [π(s)]n

z − π(s)

where π(z, s) is Laplace transform of the generating function of the queue length dis-
tribution on the busy period which will be obtained below; function π(s) is determined
from (3).

Proof. First let’s prove that

sπn(z, s) = sπ(z, s)zn−1 + π(s)sπ(z, s)zn−2+ (6)

+ · · · + [π(s)]n−1sπ(z, s)

Really, assume that the first ”catastrophe” happens during a Πn–period when in
the queueing system there are at least red messages (the probability of this event is
sπn(z, s)). For this it is necessary and sufficient that either the first ”catastrophe”
happen during the associated busy period with the first n messages available in the
system when in the queueing system there are at least red messages (the probability
of this event is sπn(z, s)), the remaining n − 1 messages are red (the probability of
this event is zn−1);

or the first ”catastrophe” happen during the associated busy period with the
second n messages available in the system when in the queueing system there are at
least red messages (the probability of this event is sπn(z, s)), during the associated
busy period with the first message ”catastrophe” does not happen (the probability
of this event is π(s)), the remaining n − 2 messages are red (the probability of this
event is zn−2), etc. . . ,

or the first ”catastrophe” happen during the associated busy period with the
last n messages available in the system when in the queueing system there are at
least red messages (the probability of this event is sπn(z, s)), and the ”catastrophe”
does not happen during the associated busy period with n− 1 initial messages (the
probability of this event is [π(s)]n−1).

We shall rewrite the expression (6) in the following way

sπn(z, s) = sπ(z, s){zn−1 + π(s)zn−2 + · · · + [π(s)]n−1}

or

sπn(z, s) = sπ(z, s)
zn − [π(s)]n

z − π(s)

and after reducing s we obtain the proof of Lemma 1.

The following Lemma 2 gives the distribution of the queue size on the separate
busy period.
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Lemma 2. The Laplace transform of the generating function of the queue size dis-
tribution on the busy period π(z, s) is given by

π(z, s) = β(z, s)
z − π(s)

z − β(s + λ − λz)
(7)

where π(s) is determined from the functional equation (3), β(s + λ − λz) is the
Laplace-Stieltjes transform of function B(t) at point s = s + λ − λz, β(z, s) will be
given below.

Proof. First we prove

sπ(z, s) = sβ(z, s) +
∑

n≥1

sπn(z, s)

∞
∫

0

e−st
(λt)n

(n!)
e−λtdB(t). (8)

Really, let’s suppose that the first ”catastrophe” happens on the separate busy
period when in the system there are at least red messages. As we have mentioned
the probability of this event is sπ(z, s).

For this it is necessary and sufficient that either the first ”catastrophe” happen
during the service of the message that opens the busy period, when in the system
there are at least red messages (this probability is sβ(z, s)); or ”catastrophe” does
not happen during the service time of this message (the probability is e−st), messages

arrive n ≥ 1 (the probability of this event is (λt)n

(n!) e−λt) and the first ”catastrophe”

happens in the Πn-period, when in the system there are at least red messages (the
probability of this event is sπn(z, s)).

Let’s us denote by
∑

the second term in (8) and using Lemma 1 we have

∑

=
∑

n≥1

πn(z, s)

∞
∫

0

e−st
(λt)n

(n!)
e−λtdB(t) =

=
π(z, s)

z − π(s)

∑

n≥1

∞
∫

0

[
(λzt)n

n!
−

(λπ(s)t)n

n!
]e−(−s+λ)tdB(t).

Observe that for n = 0 the sum is equal to 0, hense letting n ≥ 1 we obtain

∑

=
π(z, s)

z − π(s)

∞
∫

0

[eλzt − eλπ(s)t]e−(−s+λ)tdB(t) =

=
π(z, s)

z − π(s)
[β(s + λ − λz) − β(s + λ − λπ(s))].

According to Theorem 3 since π(s) = β(s + λ − λπ(s)) we receive

∑

=
π(z, s)

z − π(s)
[β(s + λ − λz) − π(s)].
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Substituting the obtained formula in (8) and reducing s we have

π(z, s) = β(z, s) +
π(z, s)

z − π(s)
[β(s + λ − λz) − π(s)]

hence

π(z, s){1 −
β(s + λ − λz) − π(s)

z − π(s)
} = β(z, s)

or

π(z, s) =
z − β(s + λ − λz)

z − π(s)
β(z, s).

This completes the proof of Lemma 2.

Lemma 3. The Laplace transform of generating function of the queue size distri-
bution on service time B is given by

β(z, s) = z
1 − β(s + λ − λz)

s + λ − λz
. (9)

Proof. First we give the proof of equality

sβ(z, s) = z

∞
∫

0

[1 − B(x)]se−ste−λ(1−z)tdt. (10)

Really, let’s suppose that the first ”catastrophe” happened during service time
B. Probability of this event is sβ(z, s). For this it is necessary and sufficient that the
first ”catastrophe” happen at the moment t (the probability of this event is se−st),
when the service is not finished yet (the probability of this event is 1 − B(t)) until
the happened ”catastrophe” does not arrive no red messages into the system (the
probability of this event is e−λ(1−z)t), the given messages are red (the probability of
this event is z).

In this way from (10) after reducing s we have

β(z, s) = z
1 − β(s + λ − λz)

s + λ − λz
.

Thus, Lemma 3 is proved.

Now we shall obtain the main result – the nonsteady state distribution of the
queue length. The results are obtained in terms of Laplace transform, however we
can easily get the moments of the size distribution and the stationary distribution.
Besides, the results are well applicable for computer utilization.

Theorem 3. The Laplace transform of the queue length distribution at an arbitrary
time is given by

p(z, s) =
1 + λπ(z, s)

s + λ − λπ(s)
(11)

where π(z, s) is determined from Lemma 2, π(s) – from functional equation (3).
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Proof. We shall find the probability of the following event: ”from two events: a) the
”catastrophe” happened and b) the arrival of message, arrival of message occurs”.
The probability of the mentioned event, obviously, is

λ

λ + s
.

Similarly, the probability of the event: ”from two events: a) the ”catastrophe”
happened and b) the arrival or message – first ”catastrophe” occurs”, obviously, is

s

λ + s
.

Now we show that the equality

sp(z, s) =
s

λ + s
+

λ

λ + s
sp(z, s) +

λ

λ + s
π(s)sp(z, s) (12)

is fulfilled.
So, let’s suppose that the first ”catastrophe” happened at the moment when in

the system there are at least red messages. The probability of this event is sp(z, s).
On the other hand, for this it is necessary and sufficient that
either the first ”catastrophe” happen in the moment when the system is free (the
probability of this event is s

λ+s
);

or the first ”catastrophe” happen during the busy period associated with the first
message when in the system there are at least red messages (the probability of this
event is sπ(z, s));
or during the busy period associated with the first message ”catastrophe” do not
happen, the first ”catastrophe” happens after the completion of the busy period
at the moment of time when in the system there are at least red messages (the
probability of this event is λ

λ+s
π(s)sp(z, s)).

Now from formula (12) we have

p(z, s)

[

1 −
λπ(s)

λ + s

]

=
1 + λπ(s)

λ + s

and Theorem 3 is proved.

Note that the result of Theorem 3 allows us to receive the mean value of the
queue size. Indeed, let’s denote by N(t) the mean value of the queue size at the
moment t and by

n(s) =

∞
∫

0

e−stN(t)dt (13)

the Laplace transform of function N(t). Then from Theorem 3 we get

n(s) =
λ

s

[

1

s
−

β(s)(1 − π(s))

(1 − β(s))(s + λ − λπ(s))

]

. (14)
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Formula (14) is obtained from (11) using the following algorithm

n(s) =
∂p(z, s)

∂z
|z=1 .

Remark 2. In the next section it will be shown that if ρ < 1, then Theorem 1 follows
from Theorem 3, so the expression (11) given by Theorem 3 can be considered as
virtual analog of formula (1). Also, the formula (14) can be considered to be a
virtual analog of steady state mean value (2). Note that to get N(t) it is necessary
to invert n(s), solving the integral equation (13).

4 Reduction of the virtual analog to Pollaczek-Khintchin equation

Using the method of embedded Markov chain we can prove that if the steady
state condition ρ = λβ1 < 1 is satisfied, then limits

lim
t→∞

Pm(t) = Pm, lim
t→∞

P (z, t) = P (z)

exist.

Since p(z, s) is the Laplace transform of generating function P (z, t), applying
the Tauber theorem we have

lim
t→∞

P (z, t) = lim
s↓0

sp(z, s)

or

P (z) = lim
s↓0

sp(z, s).

Thus, for λβ1 < 1 substituing p(z, s) given by Theorem 3 we obtain

P (z) = lim
s↓0

sp(z, s) = lim
s↓0

s(1 + λπ(z, s))

s + λ − λπ(s)
.

Since

π(0) =

∞
∫

0

dΠ(x) = 1, (15)

applying the L’Hospital’s rule we obtain

P (z) = lim
s↓0

[1 + λπ(z, s)] + sλπ′(z, s)

1 − λπ′(s)
,

or substituting −π′(0) by

π1 =

∞
∫

0

xdΠ(x) = −π′(0)
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we obtain

P (z) =
1 + λπ(z, 0)

1 − λπ1
. (16)

We get function π(z, 0) from Lemma 2 setting s = 0. We have

π(z, 0) = β(z, 0)
z − π(0)

z − β(λ − λz)
. (17)

We get function β(z, 0) from Lemma 3 setting s = 0. We have

β(z, 0) =
z[1 − β(λ − λz)]

λ − λz
.

Find π(z, 0). According (17) and taking into consideration (15) we get

π(z, 0) =
z[1 − β(λ − λz)]

λ(1 − z)

z − 1

z − β(λ − λz)

or

π(z, 0) =
z[1 − β(λ − λz)]

λ(β(λ − λz)) − z
.

Substituting the obtained result in (16) and in accordance with Theorem 2

π1 =
β1

1 − λβ1

we finally obtain

P (z) =
β(λ − λz)(z − 1)(1 − λβ1)

z − β(λ − λz)

that exactly coincides with Pollaczek-Khintchin transform equation (Theorem 1).

Remark 3. From the above–presented we can conclude that Theorem 3 gives us the
distribution of queue size for an arbitrary t, what can be considered as a virtual
analog of the well–known Pollaczek-Khintchin equation.

Remark 4. Moreover, Lemmas 1-3 allows to get the steady state distribution of the
queue size on a separate Πn–period, a separate busy period Π, and a separate service
time B. Indeed, let P1(z), P2(z), P3(z) be the generating functions of the mentioned
intervals. If λβ1 < 1, then the mentioned generating function can be obtained using
the above procedure, namely

P1(z) = lim
s↓0

sπn(z, s),

P2(z) = lim
s↓0

sπ(z, s),

P3(z) = lim
s↓0

sβ(z, s).
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