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Moments of the Markovian random evolutions

in two and four dimensions
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Abstract. Closed-form expressions for the mixed moments of the Markovian random
evolutions in the spaces R

2 and R
4, are obtained. The moments of the Euclidean

distance from the origin at any time t > 0 are also presented.
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1 Introduction

The symmetrical Markovian random evolution X(t) in the Euclidean spaces R
m

of the lower dimensions m = 2, m = 3 and m = 4 have thoroughly been studied
in [3–8]. In these works the distributions of X(t), t ≥ 0, were explicitly obtained
by different methods. The most difficult case m = 3 was examined in [8]. The
distribution obtained has a very complicated integral form which seemingly cannot
be expressed in terms of elementary functions.

In contrast to the three-dimensional case, the distributions of both the two- and
four-dimensional random evolutions have fairly simple analytical forms (see [3, 5–7]
for the planar random evolution, and [4] for the four-dimensional case). The reason of
such a considerable difference in the forms of the distributions in different dimensions
is not clear at all. A general method of studying the multidimensional random
evolutions has recently been suggested in [2], however the closed-form expressions for
the transition density of the motion cannot, apparently, been obtained in arbitrary
higher dimension.

However, despite the fact that the distributions of random evolutions in the
spaces R

2 and R
4 were obtained in the explicit forms, such an interesting and useful

characteristic of the processes as their moments was not studied so far.

In this paper we obtain the closed-form expressions for the moments of the
symmetrical Markovian random evolution X(t) in the dimensions m = 2 and m = 4.
The moments of the Euclidean distance from the origin ‖X(t)‖ are also presented.
We note that these moments are expressed in terms of special functions, namely, the
Bessel and Struve functions in the planar case and the degenerated hypergeometric
function and incomplete gamma-function for the four-dimensional random evolution.
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2 Moments of the Planar Random Evolution

Consider the symmetrical planar random evolution performed by a particle that
starts from the origin 0 = (0, 0) of the plane R

2 at time t = 0 and moves with
constant finite speed c. The initial direction is a two-dimensional random vector
with uniform distribution on the unit circumference

S2
1 =

{

x = (x1, x2) ∈ R
2 : x2

1 + x2
2 = 1

}

.

The particle changes its direction at random instants which form a homogeneous
Poisson process of rate λ > 0. At these moments it instantaneously takes on the
new direction with uniform distribution on S2

1 , independently of its previous motion.

Let X(t) = (X1(t),X2(t)) denote the particle’s position at an arbitrary time
t ≥ 0. At any time t > 0 the particle, with probability 1, is located in the planar
disc of radius ct

B2
ct =

{

x = (x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ c2t2

}

.

Consider the distribution Pr {X(t) ∈ dx} , x ∈ B2
ct, t ≥ 0, where dx is the

infinitesimal area in the plane R
2. This distribution consists of two components.

The singular component corresponds to the case when no Poisson event occurs in
the interval (0, t) and is concentrated on the circumference

S2
ct = ∂B2

ct =
{

x = (x1, x2) ∈ R
2 : x2

1 + x2
2 = c2t2

}

.

In this case the particle is located on S2
ct and the probability of this event is

Pr
{

X(t) ∈ S2
ct

}

= e−λt.

If at least one Poisson event occurs, the particle is located strictly inside the disc
B2

ct, and the probability of this event is

Pr
{

X(t) ∈ int B2
ct

}

= 1 − e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior

int B2
ct =

{

x = (x1, x2) ∈ R
2 : x2

1 + x2
2 < c2t2

}

,

and forms its absolutely continuous component. Therefore there exists the density
of the absolutely continuous component of the distribution Pr {X(t) ∈ dx}.

The principal known result states that the complete density f(x, t) of X(t) has
the following form (see [5], formula (21)):

f(x, t) =
e−λt

2πct
δ(c2t2 − ‖x‖2) +

λ

2πc

exp
(

−λt + λ
c

√

c2t2 − ‖x‖2
)

√

c2t2 − ‖x‖2
Θ(ct − ‖x‖), (1)
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x = (x1, x2) ∈ B2
ct, ‖x‖2 = x2

1 + x2
2, t ≥ 0,

where δ(x) is the Dirac delta-function and Θ(x) is the Heaviside function. The first
term in (1) represents the singular part, whereas the second term gives the absolutely
continuous part of the density.

Let q = (q1, q2) be the two-multi-index. In this section we are interested in the
mixed moments of the process X(t):

EXq(t) = EX
q1
1 (t)Xq2

2 (t), q1 ≥ 1, q2 ≥ 1.

The mixed moments of X(t) are given by the following theorem.

Theorem 1. For any q1, q2 ≥ 1 the following formula holds

EXq(t) =



























































e−λt

π
(ct)q1+q2 B

(

q1 + 1

2
,
q2 + 1

2

)

+

+
e−λt

√
π

(

2

λt

)(q1+q2−1)/2

(ct)q1+q2 Γ

(

q1 + 1

2

)

Γ

(

q2 + 1

2

)

×

×
[

I(q1+q2+1)/2(λt) + L(q1+q2+1)/2(λt)
]

,

if q1 and q2 are even,

0, otherwise,

(2)

where

Iν(z) =
∞
∑

k=0

1

k! Γ(ν + k + 1)

(z

2

)2k+ν
(3)

is the Bessel function of order ν with imaginary argument,

Lν(z) =
∞
∑

k=0

1

Γ
(

k + 3
2

)

Γ
(

ν + k + 3
2

)

(z

2

)2k+ν+1
(4)

is the Struve function of order ν and B(x, y) is the beta-function.
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Proof. According to (1) we have

EXq(t) =
e−λt

2πct

∫∫

x2
1+x2

2=c2t2

x
q1
1 x

q2
2 dx1 dx2+

+
λe−λt

2πc

∫∫

x2
1+x2

2≤c2t2

x
q1
1 x

q2
2

exp
(

λ
c

√

c2t2 − (x2
1 + x2

2)
)

√

c2t2 − (x2
1 + x2

2)
dx1 dx2 =

=
e−λt

2π
(ct)q1+q2

∫ 2π

0
(cos θ)q1 (sin θ)q2 dθ+

+
λe−λt

2πc

∫ ct

0

∫ 2π

0
(r cos θ)q1 (r sin θ)q2

exp
(

λ
c

√
c2t2 − r2

)

√
c2t2 − r2

r dr dθ =

=
e−λt

2π
(ct)q1+q2

∫ 2π

0
(cos θ)q1 (sin θ)q2 dθ+

+
λe−λt

2πc

∫ ct

0
rq1+q2+1

exp
(

λ
c

√
c2t2 − r2

)

√
c2t2 − r2

dr

∫ 2π

0
(cos θ)q1 (sin θ)q2 dθ.

Taking into account that

∫ 2π

0
(cos θ)q1 (sin θ)q2 dθ =











2B

(

q1 + 1

2
,
q2 + 1

2

)

, if q1 and q2 are even,

0, otherwise,

we obtain for even q1 and q2:

EXq(t) =
e−λt

π
(ct)q1+q2 B

(

q1 + 1

2
,
q2 + 1

2

)

+

+
λe−λt

πc
B

(

q1 + 1

2
,
q2 + 1

2

)
∫ ct

0
rq1+q2+1

exp
(

λ
c

√
c2t2 − r2

)

√
c2t2 − r2

dr =

=
e−λt

π
(ct)q1+q2 B

(

q1 + 1

2
,
q2 + 1

2

)

+

+
λe−λt

πc
B

(

q1 + 1

2
,
q2 + 1

2

)

(ct)q1+q2+1

∫ 1

0
ξq1+q2+1 eλt

√
1−ξ2

√

1 − ξ2
dξ.

The substitution z =
√

1 − ξ2 in the last integral reduces this expression to

EXq(t) =
e−λt

π
(ct)q1+q2 B

(

q1 + 1

2
,
q2 + 1

2

)

+

+
λe−λt

πc
B

(

q1 + 1

2
,
q2 + 1

2

)

(ct)q1+q2+1

∫ 1

0
(1 − z2)(q1+q2)/2 eλtz dz.
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Applying now [1], Formula 3.387(5), to the integral on the right-hand side of this
equality we obtain

EXq(t) =
e−λt

π
(ct)q1+q2 B

(

q1 + 1

2
,
q2 + 1

2

)

+

+
λe−λt

πc
B

(

q1 + 1

2
,
q2 + 1

2

)

(ct)q1+q2+1

√
π

2

(

2

λt

)(q1+q2+1)/2

×

× Γ

(

q1 + q2

2
+ 1

)

[

I(q1+q2+1)/2(λt) + L(q1+q2+1)/2(λt)
]

=

=
e−λt

π
(ct)q1+q2 B

(

q1 + 1

2
,
q2 + 1

2

)

+

+
e−λt

√
π

(

2

λt

)(q1+q2−1)/2

(ct)q1+q2 Γ

(

q1 + 1

2

)

Γ

(

q2 + 1

2

)

×

×
[

I(q1+q2+1)/2(λt) + L(q1+q2+1)/2(λt)
]

The theorem is proved.

Consider now the one-dimensional stochastic process

R(t) = ‖X(t)‖ =
√

X2
1 (t) + X2

2 (t),

representing the Euclidean distance of the moving particle from the origin 0. Clearly,
0 ≤ R(t) ≤ ct and, according to [5], Remark 2, the absolutely continuous part of the
distribution of R(t) has the form:

Pr {R(t) < r} = Pr
{

X(t) ∈ B2
r

}

= 1 − exp

(

−λt +
λ

c

√

c2t2 − r2

)

, 0 ≤ r < ct.

Therefore, the complete density of R(t) in the interval 0 ≤ r ≤ ct is given by

f(r, t) =
re−λt

ct
δ(ct− r)+

λ

c

r√
c2t2 − r2

exp

(

−λt +
λ

c

√

c2t2 − r2

)

Θ(ct− r). (5)

In the following theorem we present an explicit formula for the moments of the
process R(t).

Theorem 2. For any q ≥ 1 the following formula holds

ERq(t) = (ct)qe−λt+

+ e−λt√π

(

2

λt

)(q−1)/2

(ct)q Γ
(q

2
+ 1

)

[

I(q+1)/2(λt) + L(q+1)/2(λt)
]

,
(6)

where Iν(x) and Lν(x) are given by (3) and (4), respectively.
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Proof. According to (5) we have

ERq(t) = (ct)qe−λt +
λe−λt

c

∫ ct

0

rq+1

√
c2t2 − r2

e
λ

c

√
c2t2−r2

dr =

= (ct)qe−λt +
λe−λt

c
(ct)q+1

∫ 1

0
ξq+1 (1 − ξ2)−1/2 eλt

√
1−ξ2

dξ.

Making the substitution z =
√

1 − ξ2 in the last integral, we obtain

ERq(t) = (ct)qe−λt +
λe−λt

c
(ct)q+1

∫ 1

0
(1 − z2)q/2 eλtz dz =

= (ct)qe−λt+

+
λe−λt√π

2c

(

2

λt

)(q+1)/2

(ct)q+1Γ
(q

2
+ 1

)

[

I(q+1)/2(λt) + L(q+1)/2(λt)
]

=

= (ct)qe−λt+

+ e−λt√π

(

2

λt

)(q−1)/2

(ct)q Γ
(q

2
+ 1

)

[

I(q+1)/2(λt) + L(q+1)/2(λt)
]

.

where we have used again [1], Formula 3.387(5). The theorem is proved.

Remark 1. From (6) we can extract the formulae concerning two the most important
moments, namely, the expectation and variance of the process R(t):

ER(t) = ct e−λt
{

1 +
π

2
[I1(λt) + L1(λt)]

}

,

ER2(t) = (ct)2 e−λt

{

1 +

√

2π

λt

[

I3/2(λt) + L3/2(λt)
]

}

.

3 Moments of the Four-Dimensional Random Evolution

We consider now the similar symmetrical random evolution of a particle moving
at constant finite speed c in the space R

4 and subject to the control of a homogeneous
Poisson process of rate λ > 0 in the manner described above.

Both the initial and every new direction are taken on according to the uniform
law on the unit sphere

S4
1 =

{

x = (x1, x2, x3, x4) ∈ R
4 : x2

1 + x2
2 + x2

3 + x2
4 = 1

}

.

Let X(t) = (X1(t),X2(t),X3(t),X4(t)), t > 0, be the position process. At any
time t > 0 the particle, with probability 1, is located in the four-dimensional ball of
radius ct

B4
ct =

{

x = (x1, x2, x3, x4) ∈ R
2 : x2

1 + x2
2 + x2

3 + x2
4 ≤ c2t2

}

.
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Similarly to the planar case, we consider the distribution Pr {X(t) ∈ dx},
x ∈ B4

ct, t ≥ 0, where dx is the infinitesimal volume in the space R
4. This

distribution consists of two components. The singular component corresponds to
the case when no Poisson event occurs in the interval (0, t) and is concentrated on
the sphere

S4
ct = ∂B4

ct =
{

x = (x1, x2, x3, x4) ∈ R
4 : x2

1 + x2
2 + x2

3 + x2
4 = c2t2

}

.

In this case the particle is located on S4
ct and the probability of this event is

Pr
{

X(t) ∈ S4
ct

}

= e−λt.

If at least one Poisson event occurs, the particle is located strictly inside the ball
B4

ct, and the probability of this event is

Pr
{

X(t) ∈ int B4
ct

}

= 1 − e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior of the ball

int B4
ct =

{

x = (x1, x2, x3, x4) ∈ R
4 : x2

1 + x2
2 + x2

3 + x2
4 < c2t2

}

,

and forms the absolutely continuous component of this distribution.

It is known that the density of X(t) has the form (see [4], formula (19) therein):

f(x, t) =
e−λt

2π2(ct)3
δ(c2t2 − ‖x‖2)+

+
λt

π2(ct)4

[

2 + λt

(

1 − ‖x‖2

c2t2

)]

exp

(

− λ

c2t
‖x‖2

)

Θ(ct − ‖x‖),
(7)

x = (x1, x2, x3, x4) ∈ B4
ct, ‖x‖2 = x2

1 + x2
2 + x2

3 + x2
4, t ≥ 0.

Let q = (q1, q2, q3, q4) be the four-multi-index. We are interested in the mixed
moments of the process X(t):

EXq(t) = EX
q1
1 (t)Xq2

2 (t)Xq3
3 (t)Xq4

4 (t), q1 ≥ 1, q2 ≥ 1, q3 ≥ 1, q4 ≥ 1.

The mixed moments of X(t) are given by the following theorem.
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Theorem 3. For any q1, q2, q3, q4 ≥ 1 the following formula holds

EXq(t) =















































































































































e−λt

π2
(ct)q1+q2+q3+q4 B

(

q1 + 1

2
,
q2 + q3 + q4 + 1

2

)

×

× B

(

q2 + 1

2
,
q3 + q4 + 1

2

)

B

(

q3 + 1

2
,
q4 + 1

2

)

+

+
2λt

π2
(ct)q1+q2+q3+q4

Γ
(

q1+1
2

)

Γ
(

q2+1
2

)

Γ
(

q3+1
2

)

Γ
(

q4+1
2

)

Γ
(

q1+q2+q3+q4+4
2

) ×

×
[

(λt)−(q1+q2+q3+q4+4)/2 γ

(

q1 + q2 + q3 + q4 + 4

2
, λt

)

+

+
λt

2

Γ
(

q1+q2+q3+q4+4
2

)

Γ
(

q1+q2+q3+q4+8
2

)×

× 1F1

(

q1 + q2 + q3 + q4 + 4

2
;
q1 + q2 + q3 + q4 + 8

2
;−λt

)]

,

if all q1, q2, q3, q4 are even,

0, otherwise,

(8)

where

γ(α, x) =

∞
∑

k=0

(−1)k

k!(α + k)
xα+k (9)

is the incomplete gamma-function, and

1F1(ξ; η; z) = Φ(ξ, η; z) =

∞
∑

k=0

(ξ)k
(η)k

zk

k!
(10)

is the degenerated hypergeometric function.

Proof. We consider separately the singular and the absolutely continuous parts of
the density (7). According to (7), for the singular part of the distribution of the
process we have:

EXq

s (t) =
e−λt

2π2(ct)3

∫∫∫∫

x2
1+x2

2+x2
3+x2

4=c2t2

x
q1
1 x

q2
2 x

q3
3 x

q4
4 dx1 dx2 dx3 dx4 =

=
e−λt

2π2
(ct)q1+q2+q3+q4

∫ π

0
(cos θ1)

q1 (sin θ1)
q2+q3+q4 dθ1×

×
∫ π

0
(cos θ2)

q2 (sin θ2)
q3+q4 dθ2 ×

∫ 2π

0
(cos θ3)

q3 (sin θ3)
q4 dθ3.

(11)
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Computing these integrals we have

∫ 2π

0
(cos θ3)

q3 (sin θ3)
q4 dθ3 =











2B

(

q3 + 1

2
,
q4 + 1

2

)

, if q3 and q4 are even,

0, otherwise,

∫ π

0
(cos θ2)

q2 (sin θ2)
q3+q4 dθ2 =











B

(

q2 + 1

2
,
q3 + q4 + 1

2

)

, if q2 is even,

0, otherwise,

(12)

∫ π

0
(cos θ1)

q1 (sin θ1)
q2+q3+q4 dθ1 =











B

(

q1 + 1

2
,
q2 + q3 + q4 + 1

2

)

, if q1 is even,

0, otherwise.

Substituting these values (12) into (11) we obtain for even q1, q2, q3, q4:

EXq

s (t) =
e−λt

π2
(ct)q1+q2+q3+q4 B

(

q1 + 1

2
,
q2 + q3 + q4 + 1

2

)

×

× B

(

q2 + 1

2
,
q3 + q4 + 1

2

)

B

(

q3 + 1

2
,
q4 + 1

2

)

.

(13)

Let us evaluate now the moments of the absolutely continuous part of the distri-
bution of the process. By passing to four-dimensional polar coordinates, we have:

EXq

c (t) =

=
λt

π2(ct)4

∫∫∫∫

x2
1+x2

2+x2
3+x2

4≤c2t2

4
∏

i=1

x
qi

i

[

2 + λt

(

1 − ‖x‖2

c2t2

)]

exp

(

− λ

c2t
‖x‖2

) 4
∏

i=1

dxi =

=
λt

π2(ct)4

∫ ct

0
dr

∫ π

0
dθ1

∫ π

0
dθ2

∫ 2π

0
dθ3×

×
{

(r cos θ1)
q1 (r sin θ1 cos θ2)

q2 (r sin θ1 sin θ2 cos θ3)
q3 (r sin θ1 sin θ2 sin θ3)

q4 ×

×
[

2 + λt

(

1 − r2

c2t2

)]

exp

(

− λ

c2t
r2

)

r3 (sin θ1)
2 sin θ2

}

=

=
λt

π2(ct)4

∫ ct

0
rq1+q2+q3+q4+3

[

2 + λt

(

1 − r2

c2t2

)]

exp

(

− λ

c2t
r2

)

dr×

×
∫ π

0
(cos θ1)

q1 (sin θ1)
q2+q3+q4+2dθ1

∫ π

0
(cos θ2)

q2 (sin θ2)
q3+q4+1dθ2×

×
∫ 2π

0
(cos θ3)

q3 (sin θ3)
q4 dθ3.
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Taking into account (12), we can rewrite this equality for even q1, q2, q3, q4 as follows:

EXq

c (t) =

=
λt

π2(ct)4

∫ ct

0
rq1+q2+q3+q4+3

[

2 + λt

(

1 − r2

c2t2

)]

exp

(

− λ

c2t
r2

)

dr×

× 2B

(

q1 + 1

2
,
q2 + q3 + q4 + 3

2

)

B

(

q2 + 1

2
,
q3 + q4 + 2

2

)

B

(

q3 + 1

2
,
q4 + 1

2

)

=

=
λt

π2(ct)4

Γ
(

q1+1
2

)

Γ
(

q2+1
2

)

Γ
(

q3+1
2

)

Γ
(

q4+1
2

)

Γ
(

q1+q2+q3+q4+4
2

) ×

×
∫ ct

0
(r2)(q1+q2+q3+q4+2)/2

[

2 + λt

(

1 − r2

c2t2

)]

exp

(

− λ

c2t
r2

)

d(r2) =

=
λt

π2
(ct)q1+q2+q3+q4

Γ
(

q1+1
2

)

Γ
(

q2+1
2

)

Γ
(

q3+1
2

)

Γ
(

q4+1
2

)

Γ
(

q1+q2+q3+q4+4
2

) ×

×
∫ 1

0
z(q1+q2+q3+q4+2)/2 (2 + λt(1 − z)) e−λtz dz =

=
λt

π2
(ct)q1+q2+q3+q4

Γ
(

q1+1
2

)

Γ
(

q2+1
2

)

Γ
(

q3+1
2

)

Γ
(

q4+1
2

)

Γ
(

q1+q2+q3+q4+4
2

) ×

×
[

2

∫ 1

0
z(q1+q2+q3+q4+2)/2 e−λtz dz + λt

∫ 1

0
z(q1+q2+q3+q4+2)/2 (1 − z) e−λtz dz

]

.

Applying now [1], Formula 3.381(1) and Formula 3.383(1) to the first and the
second integrals of this equality, respectively, we obtain

EXq

c (t) =

=
2λt

π2
(ct)q1+q2+q3+q4

Γ
(

q1+1
2

)

Γ
(

q2+1
2

)

Γ
(

q3+1
2

)

Γ
(

q4+1
2

)

Γ
(

q1+q2+q3+q4+4
2

) ×

×
[

(λt)−(q1+q2+q3+q4+4)/2 γ

(

q1 + q2 + q3 + q4 + 4

2
, λt

)

+

+
λt

2

Γ
(

q1+q2+q3+q4+4
2

)

Γ
(

q1+q2+q3+q4+8
2

) 1F1

(

q1 + q2 + q3 + q4 + 4

2
;
q1 + q2 + q3 + q4 + 8

2
;−λt

)



 .

Now, by adding to this expression the moments of the singular part of the dis-
tribution given by (13), we finally obtain (8). The theorem is thus completely
proved.

Consider now the following one-dimensional stochastic process

R(t) = ‖X(t)‖ =
√

X2
1 (t) + X2

2 (t) + X2
3 (t) + X2

4 (t),
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representing the Euclidean distance of the moving particle from the origin 0 of the
space R

4. Clearly, 0 ≤ R(t) ≤ ct and, according to [4], formula (18), the absolutely
continuous part of the distribution of R(t) has the form:

Pr {R(t) < r} = Pr
{

X(t) ∈ B4
r

}

=

= 1 −
(

1 +
λ

c2t
r2 − λ

c4t3
r4

)

exp

(

− λ

c2t
r2

)

. 0 ≤ r < ct,

Therefore, the complete density of R(t) in the interval 0 ≤ r ≤ ct is given by

f(r, t) =
r3e−λt

(ct)3
δ(ct − r)+

+

[(

4λ

c4t3
+

2λ2

c4t2

)

r3 − 2λ2

c6t4
r5

]

exp

(

− λ

c2t
r2

)

Θ(ct − r).

(14)

In the following theorem we present an explicit formula for the moments of R(t).

Theorem 4. For any q ≥ 1 the following formula holds

ERq(t) = (ct)q
{

e−λt + (λt)−(q+2)/2
[

(2 + λt) γ
(q

2
+ 2, λt

)

− γ
(q

2
+ 3, λt

)]}

,

(15)
where γ(α, x) is the incomplete gamma-function given by (9).

Proof. According to (14) we have

ERq(t) = (ct)qe−λt +

(

4λ

c4t3
+

2λ2

c4t2

)
∫ ct

0
rq+3 exp

(

− λ

c2t
r2

)

dr−

− 2λ2

c6t4

∫ ct

0
rq+5 exp

(

− λ

c2t
r2

)

dr.

Making the substitution ξ = r2 in both integrals, we obtain

ERq(t) = (ct)qe−λt +

(

2λ

c4t3
+

λ2

c4t2

)
∫ c2t2

0
ξ(q+2)/2 exp

(

− λ

c2t
r2

)

dξ−

− λ2

c6t4

∫ c2t2

0
ξ(q+4)/2 exp

(

− λ

c2t
r2

)

dξ =
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= (ct)qe−λt +

(

2λ

c4t3
+

λ2

c4t2

) (

λ

c2t

)−(q+4)/2

γ
(q

2
+ 2, λt

)

−

− λ2

c6t4

(

λ

c2t

)−(q+6)/2

γ
(q

2
+ 3, λt

)

=

= (ct)qe−λt +
2 + λt

c2t2

(

λ

c2t

)−(q+2)/2

γ
(q

2
+ 2, λt

)

−

− 1

c2t2

(

λ

c2t

)−(q+2)/2

γ
(q

2
+ 3, λt

)

=

= (ct)qe−λt +

(

λ

c2t

)−(q+2)/2 [

2 + λt

c2t2
γ

(q

2
+ 2, λt

)

− 1

c2t2
γ

(q

2
+ 3, λt

)

]

=

= (ct)q
{

e−λt + (λt)−(q+2)/2
[

(2 + λt) γ
(q

2
+ 2, λt

)

− γ
(q

2
+ 3, λt

)]}

,

where in the second step we have used [1], Formula 3.381(1). The theorem is proved.

Remark 2. From (15) we can extract the formulae for the mean value and variance
of the process R(t):

ER(t) = ct

{

e−λt + (λt)−3/2

[

(2 + λt) γ

(

5

2
, λt

)

− γ

(

7

2
, λt

)]}

,

ER2(t) =
2c2

λ2

(

e−λt + λt − 1
)

.

(16)

The first formula in (16) immediately follows from (15) for q = 1. Let us now
prove the second formula in (16). For q = 2 formula (16) yields:

ER2(t) = (ct)2
{

e−λt + (λt)−2 [(2 + λt) γ (3, λt) − γ (4, λt)]
}

=

([1], Formula 8.356(1))

= (ct)2
{

e−λt + (λt)−2
[

(2 + λt) γ (3, λt) − 3γ (3, λt) + (λt)3e−λt
]}

=

= (ct)2
{

e−λt + (λt)−2
[

(λt − 1) γ (3, λt) + (λt)3e−λt
]}

=

([1], Formula 8.352(1))

= (ct)2
{

e−λt + (λt)−2

[

2(λt − 1)

(

1 − e−λt

(

1 + λt +
(λt)2

2!

))

+ (λt)3e−λt

]}

=

= (ct)2
{

e−λt + (λt)−2
[

2λt − 2 − e−λt
(

(λt)2 − 2
)

]}

=

= (ct)2
{

e−λt +
2

λt
− 2

(λt)2
−

(

1 − 2

(λt)2

)

e−λt

}

=

= (ct)2
{

2

λt
− 2

(λt)2
(1 − e−λt)

}

=
2c2

λ2

(

e−λt + λt − 1
)

,

and the second formula in (16) is proved.
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