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Discrete Optimal Control Problem

with Varying Time of States Transactions

of Dynamical System and Algorithm for its solving

Dmitrii Lozovanu, Alexandru Lazari

Abstract. We consider time-discrete systems with finite set of states. The starting
and the final states of dynamical system are given. The discrete optimal control
problem with integral-time cost criterion by a trajectory is studied. An algorithm for
solving the problem with varying time of states transactions is proposed. The running
time of the proposed algorithm is estimated.
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1 Introduction and Problem Formulation

In this paper we study the discrete optimal control problem with varying time of
states transaction of the dynamical system. This problem generalizes the classical
optimal control problem with unit time of states transactions [1, 2].

The statement of the problem is the following.

Let L be a time discrete system with a finite set of states X ⊆ Rn, where at every
discrete moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X. The starting
state x0 = x(0) and the final state xf are fixed. Assume that the dynamical system
should reach the final state xf at the time moment T (xf ) such that

T1 ≤ T (xf ) ≤ T2

where T1 and T2 are given. The control of the time-discrete system L at each time-
moment t = 0, 1, 2, . . . for an arbitrary state x(t) is made by using the vector of
control parameter u(t) for which a feasible set Ut(x(t)) is given, i.e. u(t) ∈ Ut(x(t)).
In addition we assume that for arbitrary t and x(t) on Ut(x(t)) is defined an integer
function

τ : Ut(x(t)) → N

which gives to each control u(t) ∈ Ut(x(t)) an integer value τ(u(t)). This value
represents the time of system’s passage from the state x(t) to the state x(t+τ(u(t)))
if the control u(t) ∈ Ut(x(t)) has been applied at the moment t for given state x(t).
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Assume that the dynamics of the system is described by the following system of
difference equations















tj+1 = tj + τ(u(tj)),
x(tj+1) = gtj (x(tj), u(tj)),

u(tj) ∈ Utj (x(tj)),
j = 0, 1, 2, . . . ,

(1)

where

t0 = 0, x(t0) = 0 (2)

is a starting representation of the dynamical system L.

We suppose that the functions gt and τ in (1) are known and tj+1 and x(tj+1)
are determined uniquely by x(tj) and u(tj) at every step j = 0, 1, 2, . . . .

Let u(tj), j = 0, 1, 2, . . . , be a control, which generates the trajectory

x(0), x(t1), x(t2), . . . x(tk), . . . .

Then either this trajectory passes trough the final state xf and T (xf ) = tk represents
the time-moment when the final state xf is reached or this trajectory does not pass
trough xf .

For an arbitrary control we define the quantity

Fx0, xf
(u(t)) =

k−1
∑

j=0

ctj (x(tj), gtj (x(tj), u(tj))) (3)

if the trajectory

x(0), x(t1), x(t2), . . . x(tk), . . .

passes through the final state xf i.e. T (xf ) = tk; otherwise we put

Fx0, xf
(u(t)) = ∞.

Here ctj (x(tj), gtj (x(tj), u(tj))) = ctj (x(tj), x(tj+1)) represents the cost of
system’s passage from the state x(tj) to the state x(tj+1) at the stage [j, j + 1].

We consider the following control problem:

Problem 1. To find time-moments t0 = 0, t1, t2, . . . , tk and vectors of con-
trol parameters u(t0), u(t1), u(t2), . . . , u(tk−1) which satisfy conditions (1), (2)
and minimize functional (3).

In the following we develop a mathematical tool for solving this problem. We
show that a simple modification of time expanded network method from [3–5] allows
to elaborate efficient algorithm for solving the considered problem.
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2 Algorithm for solving the problem based on Dynamic Program-

ming and Time-Expanded Network method

Here we develop the dynamic programming algorithm for solving Problem 1 in
the case when T is fixed, i.e. T1 = T2 = T. The proposed algorithm can be argued
in the same way as the algorithm from Section 1.

We denote by F ∗

x0,x(tk) the minimal integral-time cost of system’s passage from

the starting state x0 = x(0) to the state x = x(tk) ∈ X by using exactly tk units of
time. So,

F ∗

x0,x(tk) =
k−1
∑

j=0

ctj (x
∗(tj), gtj (x

∗(tj), u∗(tj)))

where

x(0) = x∗(0), x∗(t1), x∗(t2), . . . , x∗(tk−1), x∗(tk)

is the optimal trajectory from x0 = x∗(0) to x∗(tk), generated by optimal control

u∗(0), u∗(t1), u∗(t2), . . . , u∗(tk−1)

where

t0 = 0;

tj+1 = tj + τ(u∗(tj)), j = 0, 1, 2, . . . , k − 1.

If for given x ∈ X there is no trajectory from x0 to x = x(tk) such that x may be
reached by using tk units of time then we put F ∗

x0, x(tk) = ∞.

For F ∗

x0, x(tk) the following recursive formula can be gained:

F ∗

x0x(tj)
=







min
x(tj−1)∈X−(x(tj ))

{

F ∗

x0x(tj−1) + ctj−1(x(tj−1), x(tj))
}

if X−(x(tj)) 6= ∅,

∞ if X−(x(tj)) = ∅,

j = 1, 2, . . . ,

where

t0 = 0,

F ∗

x0x(0) =

{

0 if x(0) = x0,

∞ if x(0) 6= x0

and

X−(x(tj)) = {x(tj−1) ∈ X | x(tj) = gtj−1(x(tj−1), u(tj−1)),

tj = tj−1 + τ(u(tj−1)), u(tj−1) ∈ Utj−1(x(tj))}.

If F ∗

x0x(t), t = 0, 1, 2, . . . , T, are known then the optimal control

u∗(0), u∗(t1), u∗(t2), . . . , u∗(tk−1)
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and the optimal trajectory

x(0) = x∗(0), x∗(t1), x∗(t2), . . . , x∗(tk−1), x(tk) = x(T )

from x0 to xf can be found in the following way.
Find tk−1, u∗(tk−1) and x∗(tk−1) ∈ X−(x(tk)) such that

F ∗

x0x∗(tk) = F ∗

x0x∗(tk−1) + ctk−1
(x∗(tk−1), gtk−1

(x∗(tk−1), u∗(tk−1))),

where tk = tk−1 + τ(u∗(tk−1)).
After that find tk−2, u∗(tk−2) and x∗(tk−2) ∈ X−(xtk−1

) such that

F ∗

x0x∗(tk−1) = F ∗

x0x∗(tk−2) + ctk−2
(x∗(tk−2), gtk−2

(x∗(tk−2), u∗(tk−2))),

where tk−1 = tk−2 + τ(u∗(tk−2)).
Using k−1 steps we find the optimal control u∗(0), u∗(t1), u∗(t2), . . . , u∗(tk−1)

and the trajectory x(0), x∗(t1), x∗(t2), . . . , x∗(tk−1), x(tk) = x(T ).

In order to argue the algorithm we shall use time-expanded network with a simple
modification. First we ground the algorithm when T2 = T1 = T and then we show
that the general case of the problem with T2 > T1 can be reduced to the case with
fixed T.

Assume that T2 = T1 = T and construct a time-expanded network with the
structure of acyclic directed graph G = (Y, E) where Y consists of T + 1 copies of
the set of states X corresponding to the time moments t = 0, 1, 2, . . . , T. So,

Y = Y 0 ∪ Y 1 ∪ Y 2 ∪ . . . ∪ Y T (Y t ∩ Y l = ∅, t 6= l),

where Y t = (X, t) corresponds to the set of states of dynamical system at the
time moment t = 0, 1, 2, . . . , T. This means that Y t = {(x, t) | x ∈ X}, t =
0, 1, 2, . . . , T the graph G is represented in Fig. 1, where at each moment of time
t = 0, 1, 2, . . . , T we can see all copies of vertex set X.

We define the set of edges E of the graph G in the following way.
If at given moment of time tj ∈ [0, T ] for given state x = x(tj) of dynamical

system there exists a vector of control parameters u(tj) ∈ Utj (x(tj)) such that

z = x(tj+1) = gtj (x(tj), u(tj)),

where
tj+1 = tj + τ(u(tj)),

then ((x, tj), (z, tj+1)) ∈ E, i.e. in G we connect the vertex yj = (x, tj) ∈ Y tj

with the vertex yj+1 = (z, tj+1) (see Fig. 1). To this edge e = ((x, tj), (z, tj+1))
we associate in G a cost ce = ctj (x(tj), x(tj+1)).
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Figure 1.

The following lemma holds

Lemma 1. Let u(t0), u(t1), u(t2), . . . , u(tk−1) be a control of the dynamical system

in Problem 1, which generates a trajectory

x0 = x(t0), x(t1), x(t2), . . . , x(tk) = xf

from x0 to xf , where

t0 = 0, tj+1 = tj + τ(u(tj)), j = 0, 1, 2, . . . , k − 1;

u(tj) ∈ Ut(x(tj)), j = 0, 1, 2, . . . , k − 1;

tk = T.

Then in G there exists a directed path

PG(y0, yf ) = {y0 = (x0, 0), (x1, t1), (x2, t2), . . . , (xk, T ) = yf}

from y0 to yf , where

xj = x(tj), j = 0, 1, 2, . . . , k;

and x(tk) = xf , i.e. t(xf ) = tk = T. So, between the set of states of the trajectory

x0 = x(t0), x(t1), x(t2), . . . , x(tk) = xf and the set of vertices of directed path

PG(y0, yf ) there exists a bijective mapping

(xj , tj) ⇔ x(tj), j = 0, 1, 2, . . . , k,

such that xj = x(tj), j = 0, 1, 2, . . . , k, and

k−1
∑

j=0

ctj (x(tj), x(tj+1)) =
k−1
∑

j=0

c(xj , tj), (xj+1, tj+1)(tj),

where t0 = 0, x0 = x(t0), and xf = x(tk), tk = T.
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Proof. In Problem 1 an arbitrary control u(tj) for given state x(tj) ∈ Utj (x(tj))
at given moment of time tj uniquely determines the next state x(tj+1). So, u(tj)
can be identified with a unique passage (x(tj), x(tj+1)) from the state x(tj) to the
state x(tj+1). In G = (Y, E) this passage corresponds to a unique directed edge
((xj , tj), (xj+1, tj+1)) which connects vertices (xj , tj) and (xj+1, tj+1); the cost
of this edge is c((xj , tj), (xj+1, tj+1))(tj) = ctj (x(tj), x(tj+1)). This one-to-one
correspondence between the control u(tj) at given moment of time and the directed
edge e = ((xj , tj), (xj+1, tj+1)) ∈ E implies the existence of bijective mapping
between the set of trajectories from the starting state x0 to the final state xf in
Problem 1 and the set of directed paths from y0 to yf in G, which preserves the
integral-time costs.

Corollary. If u∗(tj), j = 0, 1, 2, . . . , k−1 is the optimal control of the dynamical

system in Problem 1, which generates a trajectory

x0 = x∗(0), x∗(t1), x∗(t2), . . . , x∗(tk) = xf

from x0 to xf , then in G the corresponding directed path

P ∗

G
(y0, yf ) = {y0 = (x0, 0), (x∗

1, t1), (x∗

2, t2), . . . , (x∗

k, tk) = yT}

is the minimal integral cost directed path from y0 to yf and vice-versa.

On the basis of the results mentioned above we can propose the following algo-
rithm for solving Problem 1.

Algorithm. Determining the optimal solution to Problem 1 based on

the time-expanded network method

1. We construct the auxiliary time-expanded network consisting of directed
acyclic graph G = (Y, E), cost function c : E → R1 and given starting and final
vertices y0 and yf .

2. Find in G the directed path P ∗

G
(y0, yf ) from starting vertex y0 to final vertex

yf with minimal sum of edge’s costs.

3. We determine the control u∗(tj), j = 0, 1, 2, . . . , k − 1, which corresponds
to directed path P ∗

G
(y0, yf ) from y0 to yf . Then u∗(tj), j = 0, 1, 2, . . . , k − 1, is

a solution to Problem 1.

This algorithm finds the solution to the control problem with fixed time
T (xf ) = T of system’s passage from starting state to final one. In the case
T1 ≤ T (xf ) ≤ T2 (T2 > T1) Problem 1 can be solved by its reducing to T2 − T1 + 1
problems with T = T1, T1 + 1, . . . , T2 and finding the best solution to these prob-
lems.

In general, if we construct the auxiliary acyclic directed graph G = (Y, E) with
T = T2 then in G the tree of optimal path from starting vertex y0 = (x0, 0) to an
arbitrary vertex y = (x, t) ∈ Y can be found. This tree allows us to find the solution
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to the control problem with given starting state and an arbitrary state x = x(t) with
t = 0, 1, 2, . . . , T2; in particular the solution to Problem 1 with T1 ≤ T (xf ) ≤ T2

can be obtained.
Denote by GT ∗

y0
= (Y ∗, E∗

y0
) the tree of optimal directed paths with root vertex

y0 = (x0, 0), which gives all optimal directed paths from y0 to an arbitrary attainable
directed vertex y = (x, t) ∈ Y. As we have noted this tree allows us to find in the
control problem all optimal trajectory from starting state x0 = x(0) to an arbitrary
reachable state x = x(t) at given moment of time t ∈ [0, T ].

In G we can also find the tree of optimal directed paths GT 0
yf

= (Y 0, E0
y0

) with
sink vertex yf = (xf , T ), which gives all possible optimal directed paths from an
arbitrary y = (x, t) ∈ Y to sink vertex yf = (xf , T ). This mean that in the control
problem we can find all possible optimal trajectories with starting state x = x(t) at
given moment of time t ∈ [0, T ] to the final state xf = x(T ).

If the trees GT ∗

y0
= (Y ∗, E∗

y0
) and GT 0

yf
= (Y 0, E0

yf
) are known then we can

solve the following control problem:
To find an optimal trajectory from starting state x0 = x(0) to final state xf =

x(T ) such that the trajectory passes at the given moment of time t ∈ [0, T ] trough
the state x = x(t).

Finally we note that Algorithm can be simplified if we delete from G all vertices
y ∈ Y which are not attainable from y0 and vertices y ∈ Y for which does not exist
a directed path from y to yf . So, we should solve the auxiliary problem on a new

graph G
0

= (Y
0
, E

0
) which is a subgraph of G = (Y, E).

3 The Discrete Control Problem with Cost Function of System’s

Passages that Depend on Transit-Time of States Transactions

In the control model from Section 1 the cost function

ct(x(t), gt(x(t), u(t))) = ct(x(t), x(t + 1))

of system’s passage from the state x = x(t) depends on the vector of control parame-
ters u(t). In general we may consider that the cost function of system’s passage from
the state x(t) to state x(t + 1) depends also on transit-time τ(t), i.e. the cost func-
tion ct(x(t), gt(x(t), u(t)), τ(t)) = cτ (x(t), x(t + 1), τ(t)) depends on t, x(t), u(t)
and τ(t).

It is easy to observe that the problem in such a general form can be solved
in analogous way as the problem from Section 1 by using Algorithm with a simple
modification. In the auxiliary time-expanded network the cost functions ce on edges
e should be defined as follows:

ce = ctj (x(tj), x(tj+1), τ(u(tj)))

So, the problem with cost functions of system’s passage that depend on transit-time
of states transactions can be solved by using Algorithm with the cost functions on
time-expanded network defined above.
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4 The Control Problem on Network with Transit-Time Functions

on Edges

We extend the control problem on network from Section 4.1 by introducing the
transit-time functions of states transaction on edges.

4.1 Problem Formulation

Let be given the dynamical system L with finite set of states X and given starting
point x0 = x(0). Assume that system L should be transferred into the state xf at
the time moment T such that T1 ≤ T (xf ) ≤ T2, where T1 and T2 are given. We
consider the control problem for which the dynamics of the system is described by
directed graph G = (X, E), where the vertices x ∈ X correspond to the states and
an arbitrary edge e = (x, y) ∈ E means the possibility of the system to pass from
the state x to the state y at every moment of time t. To each edge e = (x, y) ∈ E

is associated a transit function τe(t) of system’s passage from the state x = x(t) to
the state y. This means that if at the time-moment t the system L starts to pass
from the state x = x(t) trough an edge e = (x, y) then the state y is reached at the
time-moment t + τe(t), i.e. y = x(t + τe(t)). In addition to each edge e(x, y) ∈ E is
associated a cost function ce(t) that depends on time and which expresses the cost
system’s passage from the state x = x(t) to the state y = x(t + τe(t)).

The control on G with given transit-time functions τe on edges e ∈ E is made in
the following way.

For given starting state x0 we fix t0 = 0. Then select an directed edge e0 =
(x0, x1) through which we transfer the system L from the state x0 = x(t0) to the
state x1 = x(t1) at the moment of time t1, where t1 = t0 + τe0(0). If x1 = xf then
stop; otherwise we select an edge e1 = (x1, x2) and transfer the system L from the
state x1 = x(t1) at the moment of time t1 to the state x2 = x(t2) at the time moment
t2 = t1 + τe1(t1). If x2 = xf then stop; otherwise select an edge e2 = (x2, x3) and
so on. In general, at the time moment tk−1 we select an edge ek−1 = (xk−1, xk)
and transfer the system L from the state xk−1 = x(tk−1) to the state xk = x(tk) at
the time-moment tk = tk−1 + τek

. If xk = xf then the integral-time cost of system
passage from x0 to xf is

Fx0xk
(tk) =

k−1
∑

j=0

c(x(tj ), x(tj+1))(tj).

So, at the time moment tk the system L is transferred in the state xk = xf with the
integral-time cost Fx0xf

(tk). If T ≤ tk ≤ T2, we obtain an admissible control with
tk = T (xf ) and integral-time cost Fx0xf

(T (xf )).

We consider the following problem:

Problem 2. To find a sequence of system’s transactions

(xj , xj+1) = (x(tj), x(tj+1)), tj+1 = tj + τ(xj , xj+1)(tj), j = 0, 1, 2, . . . , k − 1,
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which transfer the system L from starting vertex (state) x0 = x(t0), t0 = 0, to final
vertex (state) xf = xk = x(tk) such that

T ≤ tk ≤ T2

and the integral-time cost

Fx0xf
(tk) =

k−1
∑

j=0

c(xj , xj+1)(tj)

of system’s transactions by a trajectory

x0 = x(t0), x(t1), x(t2), . . . , x(tk) = xf

is minimal.

4.2 Algorithm for Solving the Problem on Network with Transit-

Time Functions on Edges

The algorithm from Section 2 can be specified for solving the control problem
on the network with transit-time functions on the edges. Assume that T2 = T1 = T

and describe the details of the algorithm for the control problem on G.

We denote by F ∗

x0x(tk) the minimal integral-time cost of system transactions
from the starting state x0 to the final state x = x∗(tk) by using tk units of time, i.e.

F ∗

x0x(tk) =
k−1
∑

j=0

c(x(tj ), x(tj+1))(tj),

where
x0 = x∗(0), x∗(t1), x∗(t2), . . . , x∗(tk) = xf

is an optimal trajectory from x0 to xf , where

tj+1 = tj + τ(x(tj), x(tj+1))(tj), j = 0, 1, 2, . . . , k − 1.

It is easy to observe that the following recursive formula for F ∗

x0x(tk) holds:

F ∗

x0x(tj )(tj) = min
x(tj−1)∈X−

G
(x(tj))

{F ∗

x0x(tj−1)(tj−1) + c(x(tj−1), x(tj))(tj−1)},

where

X−

G (x(tj)) = {x = x(tj−1) | (x(tj−1), x(tj)) ∈ E, tj = tj−1 + τ(x(tj−1), x(tj))(tj−1)}.

This means that if we start with F ∗

x0x(0)(0) = 0, F ∗

x0x(t)(t) = ∞, t = 1, 2, . . . , tk,

then on the basis of the recursive formula given above we can find F ∗

x0x(t)(t) for

t = 0, 1, 2, . . . , tk for an arbitrary vertex x = x(t). After that the optimal trajectory
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x0 = x∗(0), x∗(t1), x∗(t2), . . . , x∗(tk) = xf from x0 to xf can be found in the
following way.

Fix the vertex x∗

k−1 = x∗(tk−1) for which

F ∗

x0x∗(tk−1)(tk−1) + c(x(tk−1), x∗(tk))(tk−1) =

= min
x(tk−1)∈X−

G
(x∗(tk))

{F ∗

x0x(tk−1)(tk−1) + c(x(tk−1), x∗(tk))(tk−1)}.

Then we find the vertex x∗(tk−2) for which

F ∗

x0x∗(tk−2)(tk−2) + c(x(tk−2), x∗(tk−1))(tk−2) =

= min
x(tk−2)∈X−

G
(x∗(tk−1))

{F ∗

x0x(tk−2)(tk−2) + c(x(tk−2), x∗(tk−1))(tk−2)}.

After that we fix the vertex x∗(tk−3) for which

F ∗

x0x∗(tk−3)(tk−3) + c(x(tk−3), x∗(tk−2))(tk−3) =

= min
x(tk−3)∈X−

G
(x∗(tk−2))

{F ∗

x0x(tk−3)(tk−3) + c(x(tk−3), x∗(tk−2))(tk−3)}

and so on.

Finally we find the optimal trajectory

x0 = x∗(0), x∗(t1), x∗(t2), . . . , x∗(tk) = xf .

This algorithm also can be grounded on the basis of the time-expanded network
method.

We give the construction which allows to reduce our problem to auxiliary one on
time-expanded network. The structure of this time-expanded network corresponds
to an directed graph G = (Y, E) without directed cycles. The set of vertices Y of G

consists of T +1 copies of the set of vertices (states) X of the graph G corresponding
to time-moments t = 0, 1, 2, . . . , T, i.e.

Y = Y 0 ∪ Y 1 ∪ Y 2 ∪ . . . ∪ Y T (Y t ∩ Y l = ∅, t 6= l),

where Y t = (X, t). So, Y t = {(x, t) | x ∈ X}, t = 0, 1, 2, . . . , T.

We define the set of edges E of the graph G as follows: e = ((x, tj), (z, tj+1)) ∈ E

if only if in G there exists a directed edge e = (x, y) ∈ E, where x = x(tj), z = x(tj+1),
tj+1 = tj + τe(tj). So, in G we connect vertices (x, tj) and (z, tj+1) with directed
edge (x(tj), (z, tj+1)) ∈ G; to edge e we associate the cost ce = c(x,z)S(tj), i.e.
c((x, tj), (z, tj+1)) = c(x, z)(tj).

On G we consider the problem of finding the directed path from y0 = (x0, 0) to
yf = (xf , T ) with minimum sum of edges cost. Basing on results from Section 2 we
obtain the following result.
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Lemma 2. Let

(xj , xj+1) = (x(tj), x(tj+1)), tj+1 = tj + τ(xj , xj+1)(tj), j = 0, 1, 2, . . . , k − 1

be a sequence of system’s transactions from the state x0 = x(t0), t0 = 0, to the state

xf = xk = x(tk), tk = T. Then in G = (Y, E) there exists the directed path

PG(y0, yf ) = {y0 = (x0, 0), (x1, t1), (x2, t2), . . . , (xk, T ) = yf},

from y0 to yf , where

xj = x(tj), j = 0, 1, 2, . . . , k (tk = T ).

So, between the set of vertices {x0 = x(t0), x(t1), x(t2), . . . , x(tk) = xf} and the

set of vertices of directed path PG(y0, yf ) there exists a bijective mapping

(xj , tj) ⇔ x(tj) = xj , j = 0, 1, 2, . . . , k,

such that xj = x(tj), j = 0, 1, 2, . . . , k, and

k−1
∑

j=0

c(xj , xj+1)(tj) =
k−1
∑

j=0

c((xj , tj), (xj+1, tj+1)),

where t0 = 0, tj+1 = tj + τ(xj , xj+1)(tj), j = 0, 1, 2, . . . , k − 1.

This lemma follows as a corollary from Lemma 1.
The algorithm for solving the control problem on G is similar to Algorithm from

Section 2. So, the control problem on G can be solved in the following way.

Algorithm

1. We construct the network consisting of an auxiliary graph G = (Y, E), cost
function c : E → R and given starting and final states y0 = (x0, 0), yf = (xf , t).

2. Find in G the directed path P ∗

G
(y0, yf ) from y0 to yf with minimal sum of

edges cost.
3. Determine the vertices xj = x(tj), j = 0, 1, 2, . . . , k, which corre-

spond to vertices (xj , tj) of a directed path P ∗

G(y0, yf) from y0 to yf . Then
x0 = x(0), x1 = x(t1), x2 = x(t2), . . . , xk = x(tk) = xf represent the optimal
trajectory from x0 to xf in the control problem G.

Remark 1. Algorithm can be modified for solving the optimal control prob-
lem on a network when the cost function on edges e ∈ E depends not only on
time t but also depends on transit-time τe(t) of system’s passage trough the edge
e = (x(t), x(t + τe(t))). So, Algorithm can be used for solving the control problem
when to each edge e = (x, z) ∈ E is given a cost function c(x, z)(t, τ(x, z)(t)) that
depends on time t and on transit-time τ(x, z)(t). The modification of the algorithm
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for solving the control problem on network in such general form can be made in the
same way as the modification of Algorithm 1 for the problem from Section 3 This
means that the cost functions ce on the edges e = ((x, tj), (z, tj+1)) of the graph
G should be defined as follows:

c((x, tj), (z, tj+1)) = c(x, z)(tj , τ(x, z)(tj)).

Remark 2. Algorithm can be simplified if we delete from G all vertices y ∈ Y which
are not attainable from y0 and all vertices for which there is no directed path from

y to xf . So, the problem may be solved on a simplified graph G
0

= (Y
0
, E

0
).

The proposed approach for studying and solving discrete optimal control prob-
lems can be developed also for the multi-objective control problems from [3–6].
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