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Non-fundamental 2-isohedral tilings of the sphere ∗

Elizaveta Zamorzaeva

Abstract. The investigation of 2-isohedral tilings of the 2-dimensional sphere is
continued. In previous works all the fundamental 2-isohedral tilings of the sphere have
been enumerated. Here non-fundamental 2-isohedral tilings of the sphere are obtained
from the fundamental ones using the method of gluing disks. For all the 7 countable
series of isometry groups of the sphere the classification of normal non-fundamental
tilings is given in a table of pictures. For non-normal tilings only numerical results
are given. For the 7 separate isometry groups of the sphere numerical results are also
shown.

Mathematics subject classification: 52C20.
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1 Introduction

There are a lot of works where tilings of the two-dimensional sphere with transi-
tivity properties are investigated. For survey of earlier results and the classification
of isohedral, isogonal and isotoxal tilings of the sphere see [1]. In [2] 2-isotoxal tilings
of the sphere have been researched. General methods of finding k-isohedral (k ≥ 2)
tilings of a two-dimensional constant curvature space (i. e. the Euclidean plane,
the sphere and the hyperbolic plane) that use the known isohedral tilings have been
developed by the author in [3]. Applying these methods the author has obtained the
complete classification of 2-isohedral tilings of the sphere in some tables of pictures.
A part of these results (and namely, normal fundamental 2-isohedral tilings of the
sphere) can be found in [4, 5]. Note that the same methods using Delaney–Dress
symbols have been implemented [6] in algorithms and computer programmes, the
numerical results of [6] concerning 2-isohedral tilings of the sphere coincide with the
ours. In the present paper we show the classification of normal non-fundamental
tilings of the sphere for all 7 infinite series of isometry groups of the 2-dimensional
sphere.

Consider a tiling W of the 2-dimensional sphere by topological disks and a dis-
crete isometry group G of the sphere. The tiling W is called k-isohedral with respect
to the group G if G maps W onto itself and all the tiles of G form exactly k transi-
tivity classes under the group G. Two pairs (W,G) and (W ′, G′) are said to be of the
same Delone class (or equivariant type [6]) if there exists a homeomorphism ϕ of the
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sphere with ϕ(W ) = W ′ and G′ = ϕGϕ−1. The above and some below concepts and
definitions hold for all three 2-dimensional spaces of constant curvature (see [3, 7]).

In a tiling of the sphere by disks a vertex (an edge) is defined as a connected
component of the intersection of two or more different disks which is (is not) a single
point. A Delone class (W,G) is called (h1, h2, . . . , hk)-transitive if the group G acts
hi times transitively on the i-th class of tiles of the tiling W , i = 1, 2, . . . , k. If
h1 = h2 = · · · = hk = 1, the Delone class (W,G) is called fundamental, otherwise
non-fundamental.

For the description of discrete isometry groups of the 2-dimensional sphere we
use here the Conway’s orbifold symbol, which is equivalent to the Macbeath’s group
signature. Remind the explanation of the orbifold symbol as it is given in [8]. Let X
be one of the three 2-dimensional spaces of constant curvature and G be an isometry
group of X with a compact fundamental domain. Consider the quotient M = X/G,
which is a compact 2-dimensional manifold, maybe with boundary. Any point x ∈ X
with the non-trivial stabilizer group Gx = {g ∈ G|g(x) = x} gives rise to a cone
point (x̄, v) of degree v if Gx is a rotation group of order v, or to a corner point of
degree v if Gx is a dihedral group generated by a v-fold rotation and a reflection.
Here x̄ denotes the equivalence class of points containing x. The orbifold symbol
can be obtained by specifying the following four items:

(O1) The number of handles h if M is orientable, or the number of cross-caps
k otherwise.

(O2) The system of branching numbers for all cone points.

(O3) The number of boundary components q.

(O4) For each boundary component B one must list the branching numbers of all
corner points lying on B in a cyclic order. If M is orientable one must list the corner
points of each boundary component in the order induced by a fixed orientation of
the underlying manifold.

The rules for writing down the orbifold symbol are the following: First, if M is
orientable with h handles one writes h small circles: ◦ ◦ ◦ · · · . Second, the branching
numbers for all cone points are listed. Next, each boundary component is indicated
by a star: ∗, followed by the list of branching numbers encounted while going around
the boundary component. Finally, if M is non-orientable with k cross-caps one writes
k crosses: ××× · · · .

There are 7 countable series of isometry groups of the sphere given by the fol-
lowing orbifold symbols: nn, n×, n∗, ∗nn, 22n, 2 ∗ n, ∗22n where n = 1, 2, . . . .
Also there are 7 separate isometry groups of the sphere with the following orbifold
symbols: 322, 3 ∗ 2, ∗332, 432, ∗432, 532, ∗532.

A tiling of the sphere is called normal if it satisfies the following conditions [1]:

SN1. Each tile is a topological disk.

SN2. The intersection of any sets of tiles is a connected (possibly empty) set.

SN3. Each edge of the tiling has two endpoints which are vertices of the tiling.

In a normal tiling every tile contains at least three edges on its boundary and
the valence of each vertex is at least three. The works [4, 5] contain the complete
enumeration of fundamental 2-isohedral tilings on the sphere, where the normal
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tilings are shown in figures, for the rest of tilings (both without digons and containing
digons) the numerical results are given.

Now all the fundamental Delone classes of 2-isohedral tilings on the sphere by
disks are known. The method of finding non-fundamental Delone classes is the
same as the method proposed in [9] for finding non-fundamental Delone classes of
isohedral tilings on the Euclidean plane.

Let W be a tiling of the sphere by disks which is 2-isohedral with respect to a
fundamental isometry group G. Let O be a vertex or the midpoint of an edge of the
tiling W . If the order h of the stabilizer group G0 ⊂ G coincides with the number
of tiles from W that contain O, we say the point O is good for gluing. Then glue
(unite) all these tiles yielding a new disk. Do such a gluing at each point from the
orbit {OG}. As a result we obtain a new 2-isohedral tiling W ′ of the sphere by disks,
the group G acts h times transitively on the set of new (glued) disks, so the Delone
class of the pair (W ′, G) is non-fundamental.

Applying the gluing method to all the fundamental Delone classes of 2-isohedral
tilings on the sphere by disks the author has obtained all the possible non-
fundamental Delone classes of 2-isohedral tilings on the sphere by disks. Because
of a large number of the resulted Delone classes, here we give pictures for normal
tilings and numerical data for non-normal tilings. Besides, in the present paper we
show pictures only for 7 infinite series of isometry groups, one representative tiling
from each series of Delone classes is drawn (for either n = 4 or n = 8). As to the 7
separate isometry groups of the sphere, here we give numerical results and plan to
publish the pictures in a further paper.

For the series of groups ∗nn there is 1 series of (1,2)-transitive Delone classes of
normal 2-isohedral tilings of the sphere (Fig. 1) and 5 series of (1,2)-transitive tilings
containing digonal disks, 1 series of (1,2n)-transitive Delone classes of normal tilings
(Fig. 2), 2 series of 2-transitive normal tilings (Fig. 3, 4) and 3 series of 2-transitive
tilings containing digons, 1 series of (2,2n)-transitive normal tilings (Fig. 5), 1 series
of 2n-transitive tilings, each consisting of two disks; altogether there are 14 series of
tilings (including 5 series of normal ones).

For the series of groups nn there is 1 series of (1,n)-transitive Delone classes of
normal tilings (Fig. 6) and 1 series of n-transitive tilings, each consisting of two
disks; altogether there are 2 series of tilings.

For the series of groups ∗22n there are 10 series of (1,2)-transitive Delone classes
of normal 2-isohedral tilings (Fig. 7–16), 4 series of (1,2)-transitive non-normal
tilings without digonal disks and 19 series of (1,2)-transitive tilings containing digons;
3 series of (1,4)-transitive normal tilings (Fig. 17–19), 2 series of (1,4)-transitive non-
normal tilings without digonal disks and 4 series of (1,4)-transitive tilings containing
digons; 1 series of (1,2n)-transitive normal tilings (Fig. 20), 2 series of (1,2n)-
transitive non-normal tilings without digonal disks and 3 series of (1,2n)-transitive
tilings containing digons; 8 series of 2-transitive normal tilings (Fig. 21–28), 4 series
of 2-transitive non-normal tilings without digonal disks and 16 series of 2-transitive
tilings containing digons; 4 series of (2,4)-transitive normal tilings (Fig. 29–32),
2 series of (2,4)-transitive non-normal tilings without digonal disks and 9 series of
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(2,4)-transitive tilings containing digons; 2 series of (2,2n)-transitive normal tilings
(Fig. 33, 34), 2 series of (2, 2n)-transitive non-normal tilings without digonal disks
and 5 series of (2,2n)-transitive tilings containing digons; 2 series of 4-transitive
tilings containing digonal disks; 1 series of (4,2n)-transitive normal tilings (Fig. 35)
and 2 series of (4,2n)-transitive tilings containing digons; altogether there are 105
series of tilings (including 29 series of normal ones).

For the series of groups 22n there are 4 series of (1,2)-transitive Delone classes of
normal 2-isohedral tilings (Fig. 36–39), 2 series of (1,2)-transitive non-normal tilings
without digonal disks and 11 series of (1,2)-transitive tilings containing digons; 4
series of (1,n)-transitive normal tilings (Fig. 40–43), 2 series of (1,n)-transitive non-
normal tilings without digonal disks and 5 series of (1,n)-transitive tilings containing
digons; 2 series of 2-transitive tilings containing digonal disks; 1 series of (2,n)-
transitive normal tilings (Fig. 44) and 2 series of (2,n)-transitive tilings containing
digons; altogether there are 33 series of tilings (including 9 series of normal ones).

For the series of groups n∗ there are 4 series of (1,2)-transitive Delone classes
of normal 2-isohedral tilings (Fig. 45–48), 2 series of (1,2)-transitive non-normal
tilings without digonal disks and 7 series of (1,2)-transitive tilings containing digons;
1 series of (1,n)-transitive normal tilings (Fig. 49) and 2 series of (1,n)-transitive
tilings containing digonal disks; 2 series of 2-transitive tilings containing digons;
1 series of (2,n)-transitive normal tilings (Fig. 50) and 2 series of (2,n)-transitive
tilings containing digonal disks; altogether there are 21 series of tilings (including 6
series of normal ones).

For the series of groups 2∗n there are 15 series of (1,2)-transitive Delone classes of
normal 2-isohedral tilings (Fig. 51–65), 4 series of (1,2)-transitive non-normal tilings
without digonal disks and 28 series of (1,2)-transitive tilings containing digons; 3 se-
ries of (1,2n)-transitive normal tilings (Fig. 66–68), 4 series of (1,2n)-transitive
non-normal tilings without digonal disks and 6 series of (1,2n)-transitive tilings con-
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taining digons; 10 series of 2-transitive normal tilings (Fig. 69–78) and 10 series
of 2-transitive tilings containing digonal disks; 4 series of (2,2n)-transitive normal
tilings (Fig. 79–82) and 4 series of (2,2n)-transitive tilings containing digons; alto-
gether there are 88 series of tilings (including 32 series of normal ones).

For the series of groups n× there are 3 series of (1,n)-transitive Delone classes
of normal 2-isohedral tilings (Fig. 83–85) and 2 series of (1,n)-transitive tilings
containing digonal disks; altogether there are 5 series of tilings (including 3 series of
normal ones).

For the group ∗332 there are 12 (1,2)-transitive Delone classes of normal 2-
isohedral tilings, 2 (1,2)-transitive non-normal tilings without digonal disks and
19 (1,2)-transitive tilings containing digons; 3 (1,4)-transitive normal tilings and
3 (1,4)-transitive tilings containing digonal disks; 3 (1,6)-transitive normal tilings,
2 (1,6)-transitive non-normal tilings without digonal disks and 4 (1,6)-transitive
tilings containing digons; 12 2-transitive normal tilings, 2 2-transitive non-normal
tilings without digonal disks and 14 2-transitive tilings containing digons; 4 (2,4)-
transitive normal tilings and 5 (2,4)-transitive tilings containing digonal disks; 7
(2,6)-transitive normal tilings, 2 (2,6)-transitive non-normal tilings without digonal
disks and 6 (2,6)-transitive tilings containing digons; 1 (4,6)-transitive normal tiling
and 2 (4,6)-transitive tilings containing digonal disks; 2 6-transitive normal tilings;
altogether there are 105 tilings (including 44 normal ones).

For the group 332 there are 4 (1,2)-transitive Delone classes of normal 2-isohedral
tilings and 7 (1,2)-transitive tilings containing digonal disks; 9 (1,3)-transitive nor-
mal tilings, 2 (1,3)-transitive non-normal tilings without digonal disks and 6 (1,3)-
transitive tilings containing digons; 1 (2.3)-transitive normal tilings and 2 (2,3)-
transitive tilings containing digonal disks; 2 3-transitive normal tilings; altogether
there are 33 tilings (including 16 normal ones).

For the group ∗432 there are 23 (1,2)-transitive Delone classes of normal 2-
isohedral tilings, 4 (1,2)-transitive non-normal tilings without digonal disks and
36 (1,2)-transitive tilings containing digons; 5 (1,4)-transitive normal tilings and
4 (1,4)-transitive tilings containing digonal disks; 3 (1,6)-transitive normal tilings,
2 (1,6)-transitive non-normal tilings without digonal disks and 4 (1,6)-transitive
tilings containing digons; 3 (1,8)-transitive normal tilings, 2 (1,8)-transitive non-
normal tilings without digonal disks and 4 (1,8)-transitive tilings containing digons;
22 2-transitive normal tilings, 4 2-transitive non-normal tilings without digonal disks
and 28 2-transitive tilings containing digons; 7 (2,4)-transitive normal tilings and
8 (2,4)-transitive tilings containing digonal disks; 7 (2,6)-transitive normal tilings,
2 (2,6)-transitive non-normal tilings without digonal disks and 6 (2,6)-transitive
tilings containing digons; 7 (2,8)-transitive normal tilings, 2 (2,8)-transitive non-
normal tilings without digonal disks and 6 (2,8)-transitive tilings containing digons;
1 (4,6)-transitive normal tiling and 2 (4,6)-transitive tilings containing digonal disks;
1 (4,8)-transitive normal tiling and 2 (4,8)-transitive tilings containing digons; 3
(6,8)-transitive normal tilings; altogether there are 198 tilings (including 82 normal
ones).

For the group 432 there are 7 (1,2)-transitive Delone classes of normal 2-isohedral
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tilings and 10 (1,2)-transitive tilings containing digonal disks; 9 (1,3)-transitive
normal tilings, 2 (1,3)-transitive non-normal tilings without digonal disks and 6
(1,3)-transitive tilings containing digons; 9 (1,4)-transitive normal tilings, 2 (1,4)-
transitive non-normal tilings without digonal disks and 6 (1,4)-transitive tilings con-
taining digons; 1 (2,3)-transitive normal tiling and 2 (2,3)-transitive tilings contain-
ing digonal disks; 1 (2,4)-transitive normal tiling and 2 (2,4)-transitive tilings con-
taining digonal disks; 3 (3,4)-transitive normal tilings; altogether there are 60 tilings
(including 30 normal ones).

For the group 3 ∗ 2 there are 19 (1,2)-transitive Delone classes of normal 2-
isohedral tilings, 2 (1,2)-transitive non-normal tilings without digonal disks and
19 (1,2)-transitive tilings containing digons; 4 (1,3)-transitive normal tilings and
3 (1,3)-transitive tilings containing digonal disks; 7 (1,4)-transitive normal tilings,
2 (1,4)-transitive non-normal tilings without digonal disks and 4 (1,4)-transitive
tilings containing digons; 5 2-transitive normal tilings, 2 2-transitive non-normal
tilings without digonal disks and 6 2-transitive tilings containing digons; 4 (2,3)-
transitive normal tilings and 3 (2,3)-transitive tilings containing digonal disks; 1
(2,4)-transitive normal tiling and 4 (2,4)-transitive tilings containing digons; 3 (3,4)-
transitive normal tilings; altogether there are 88 tilings (including 43 normal ones).

For the group ∗532 there are 23 (1,2)-transitive Delone classes of normal 2-
isohedral tilings, 4 (1,2)-transitive non-normal tilings without digonal disks and
36 (1,2)-transitive tilings containing digons; 5 (1,4)-transitive normal tilings and 4
(1,4)-transitive tilings containing digonal disks; 3 (1,6)-transitive normal tilings, 2
(1,6)-transitive non-normal tilings without digonal disks and 4 (1,6)-transitive tilings
containing digons; 3 (1,10)-transitive normal tilings, 2 (1,10)-transitive non-normal
tilings without digonal disks and 4 (1,10)-transitive tilings containing digons; 22
2-transitive normal tilings, 4 2-transitive non-normal tilings without digonal disks
and 28 2-transitive tilings containing digons; 7 (2,4)-transitive normal tilings and
8 (2,4)-transitive tilings containing digonal disks; 7 (2,6)-transitive normal tilings,
2 (2,6)-transitive non-normal tilings without digonal disks and 6 (2,6)-transitive
tilings containing digons; 7 (2,10)-transitive normal tilings, 2 (2,10)-transitive non-
normal tilings without digonal disks and 6 (2,10)-transitive tilings containing digons;
1 (4,6)-transitive normal tiling and 2 (4,6)-transitive tilings containing digonal disks;
1 (4,10)-transitive normal tiling and 2 (4,10)-transitive tilings containing digons; 3
(6,10)-transitive normal tilings; altogether there are 198 tilings (including 82 normal
ones).

For the group 532 there are 7 (1,2)-transitive Delone classes of normal 2-isohedral
tilings and 10 (1,2)-transitive tilings containing digonal disks; 9 (1,3)-transitive
normal tilings, 2 (1,3)-transitive non-normal tilings without digonal disks and 6
(1,3)-transitive tilings containing digons; 9 (1,5)-transitive normal tilings, 2 (1,5)-
transitive non-normal tilings without digonal disks and 6 (1,5)-transitive tilings con-
taining digons; 1 (2,3)-transitive normal tiling and 2 (2,3)-transitive tilings contain-
ing digonal disks; 1 (2,5)-transitive normal tiling and 2 (2,5)-transitive tilings con-
taining digonal disks; 3 (3,5)-transitive normal tilings; altogether there are 60 tilings
(including 30 normal ones).
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Remark that in the pictures of tilings for simplicity straight-line segments are
drawn instead of some arcs.
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