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Fuzzy subquasigroups with respect to a s-norm
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Abstract. In this paper the notion of idempotent fuzzy subquasigroups with respect
to a s-norm is introduced and some related properties are investigated. Then prop-
erties of homomorphic image and inverse image of fuzzy subquasigroups respect to a
s-norm are discussed. Next some properties of direct product of fuzzy subquasigroups
with respect to a s-norm are presented. Finally abnormalization of fuzzy subquasi-
groups with respect to a s-norm is studied.
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1 Introduction

During the last decade, there have been many applications of quasigroups in
different areas, such as cryptography [12], modern physics [13], coding theory, cryp-
tology [17], geometry [11].

The notion of fuzzy sets was first introduced by Zadeh [19]. Fuzzy set theory
has been developed in many directions by many scholars and has evoked great in-
terest among mathematicians working in different fields of mathematics, and also
there have been wide-ranging applications of the theory of fuzzy sets, from the de-
sign of robots and computer simulation to engineering and water resources planning.
Rosenfeld [14] introduced the fuzzy sets in the realm of group theory. Since then
many mathematicians have been involved in extending the concepts and results of
abstract algebra to the broader framework of the fuzzy settings. Triangular norms
were introduced by Schweizer and Sklar [15, 16] to model the distances in proba-
bilistic metric spaces. In fuzzy sets theory triangular norm (t-norm) and triangular
co-norm (t-conorm or s-norm) are extensively used to model the logical connectives:
conjunction (AND) and disjunction (OR) respectively. There are many applications
of triangular norms in several fields of Mathematics, and Artificial Intelligence [10].
Dudek [6] introduced the notion of a fuzzy subquasigroup and studied some of its
properties. Dudek and Jun [7] introduced the notion of an idempotent fuzzy sub-
quasigroup with respect to a t-norm and discussed some of its properties. In this
paper the notion of idempotent fuzzy subquasigroups with respect to a s-norm is
introduced, and some related properties are investigated. Relationship between T -
fuzzy subquasigroups and S-fuzzy subquasigroups of quasigroups is given. Some
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properties of direct product of fuzzy subquasigroups with respect to a s-norm are
also discussed.

2 Preliminaries

In this section we first review some elementary aspects that are necessary for
this paper:
A groupoid (G, ·) is called a quasigroup if for any a , b ∈ G each of the equations
a · x = b, x · a = b has a unique solution in G. A quasigroup may be also defined
as an algebra (G, ·, \, /) with three binary operations ·, \, / satisfying the following
identities:

(x · y)/y = x, x \ (x · y) = y,

(x/y) · y = x, x · (x \ y) = y.

The operations \ and / are called left and right division. In abstract algebra, a
quasigroup is a algebraic structure resembling a group in the sense that ”division”
is always possible. Quasigroups differ from groups mainly in that they need not
be associative. A nonempty subset S of a quasigroup G = (G, ·, \, /) is called a
subquasigroup if it is closed with respect to these three operations, that is, if x ∗ y
∈ S for all x, y ∈ S and ∗ ∈ {·, \, /}.

The class of all equasigroups forms a variety. This means that a homomorphic
image of an equasigroup is an equasigroup. Also every subset of an equasigroup
closed with respect to these three operations is an equasigroup.

For the general development of the theory of quasigroups the unipotent quasi-
groups, i.e., quasigroups with the identity x ·x = y ·y, play an important role. These
quasigroups are connected with Latin squares which have one fixed element in the
diagonal [5]. Such quasigroups may be defined as quasigroups G with the special
element θ satisfying the identity x · x = θ. Obviously, θ is uniquely determined and
it is an idempotent, but, in general, it is not the (left, right) neutral element.

To avoid repetitions we use the following convention: a quasigroup G always
denotes an equasigroup (G, ·, \, /); G always denotes a nonempty set.

A mapping µ : G → [0, 1] is called a fuzzy set in a quasigroup G. For any fuzzy
set µ in G and any t ∈ [0, 1] we define set

L(µ; t) = {x ∈ G | µ(x) ≤ t},

which is called lower t-level cut of µ.

Definition 1. [6] A fuzzy set µ in G is called a fuzzy subquasigroup of G if

µ(x ∗ y) ≥ min(µ(x), µ(y))

for all x, y ∈ G and ∗ ∈ {·, \, /}.

Proposition 1. [6] A fuzzy set µ of a quasigroup G = (G, ·, \, /) is a fuzzy sub-
quasigroup if and only if for every α ∈ [0, 1], µα is empty or a subquasigroup
of G.
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Proposition 2. [6] If µ is a fuzzy subquasigroup of a unipotent quasigroup
(G, ·, \, /, θ), then µ(θ) ≥ µ(x) for all x ∈ G.

Definition 2. [15] A s-norm is a mapping S : [0, 1]× [0, 1] → [0, 1] that satisfies the
following conditions:

(S1) S(x, 0) = x,

(S2) S(x, y) = S(y, x),

(S3) S(x, S(y, z)) = S(S(x, y), z),

(S4) S(x, y) ≤ S(x, z) whenever y ≤ z

for all x, y, z ∈ [0, 1].

Definition 3. Given a t-norm T and a s-norm S, T and S are dual (with respect to
the negation ′) if and only if (T (x, y))′ = S(x′, y′).

Proposition 3. Conjunctive(AND) operator is a t-norm T and disjunctive(OR)
operator is its dual s-norm S.

3 Fuzzy subquasigroups with respect to a s-norm

Definition 4. The set of all idempotents with respect to S, i.e., the set ES = {x ∈
[0; 1] | S(x, x) = x}, is a subsemigroup of ([0, 1], S). If Im(µ) ⊆ ES , then a fuzzy
set µ is called an idempotent with respect to a s-norm S (briefly, a S-idempotent).

Definition 5. Let S be a s-norm. A fuzzy set µ in G is called a fuzzy subquasigroup
of G with respect to a s-norm S (briefly, S-fuzzy subquasigroup) if

µ(x ∗ y) ≤ S(µ(x), µ(y))

for all x, y ∈ G and ∗ ∈ {·, \, /}. If a S-fuzzy subquasigroup µ of G is an idempotent,
we say that µ is an idempotent S-fuzzy subquasigroup of G.

Example 1. Let G = {0, a, b, c} be a quasigroup with the following Cayley Table:

· 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Let Sm be a s-norm defined by Sm(x, y) = min{x + y, 1} for all x, y ∈ [0, 1]. Define
a fuzzy set µ in G by

µ(x) =

{

1, if x ∈ {0, a, b}

0, otherwise.
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It is easy to see that µ satisfies

µ(x ∗ y) ≤ Sm(µ(x), µ(y))

for all x, y ∈ G, and Im(µ) ⊆ ESm
. Hence µ is an idempotent fuzzy subquasigroup

of G with respect to Sm.

The following three propositions are obvious.

Proposition 4. If a fuzzy set µ is an idempotent with respect to a s-norm S, then
S(x, y) = max{x, y} for all x, y ∈ Im(µ).

Proposition 5. Let a fuzzy set µ on a quasigroup G be an idempotent with respect
to a s-norm S. If each nonempty level set µα is a subquasigroup of G, then µ is a
S-idempotent fuzzy subquasigroup.

Proposition 6. Let µ be a S-fuzzy subquasigroup of G and α ∈ [0, 1].

(a) If α = 0 , then L(µ;α) is either empty or a subquasigroup of G.

(b) If S = max, then L(µ;α) is either empty or a subquasigroup of G.

Theorem 1. Let S be a s-norm. If each nonempty level subset L(µ;α) of µ is a
subquasigroup of G, then µ is a S-fuzzy subquasigroup of G.

Proof. Assume that every nonempty level subset L(µ;α) of µ is a subquasigroup
of G. If there exist x, y ∈ G such that µ(x ∗ y) > S (µ(x), µ(y)), then by taking
t0 := 1

2{µ(x ∗ y) + S(µ(x), µ(y))}, we have x ∈ L(µ; t0) and y ∈ L(µ; t0). Since µ is
a subquasigroup of G, x ∗ y ∈ L(µ; t0), µ(x ∗ y) ≤ t0, a contradiction. Hence µ is a
S-fuzzy subquasigroup of G.

Definition 6. Let G be a quasigroup and a family of fuzzy sets {µi | i ∈ I} in a
quasigroup G. Then the union

∨

i∈I µi of {µi | i ∈ I} is defined by

(
∨

i∈I

µi)(x) = sup{µi(x) | i ∈ I},

for each x ∈ G.

Theorem 2. If {µi | i ∈ I} is a family of fuzzy subquasigroups of a quasigroup G
with respect to S, then

∨

i∈I µ(xi) is a fuzzy subquasigroup of G with respect to S.

Proof. Let {µi | i ∈ I} be a family of fuzzy subquasigroups of G with respect to S.
For x, y ∈ G, we have

(
∨

i∈I

µi)(x ∗ y) = sup{µi(x ∗ y) | i ∈ I}

≤ sup{S(µi(x), µi(y)) | i ∈ I}

= S(sup{µi(x) | i ∈ I}, sup{µi(y) | i ∈ I})

= S(
∨

i∈I

µi(x),
∨

i∈I

µi(y)).

Hence
∨

i∈I is a fuzzy subquasigroup of G with respect to S.
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Definition 7. Let f be a mapping on G. If v is a fuzzy set in f(G), then the fuzzy
set µ = v ◦ f (i.e., (v ◦ f)(x) = v(f(x))) in G is called the preimage of v under f .

Theorem 3. An onto homomorphism preimage of a S-fuzzy subquasigroup of G is
a S-fuzzy subquasigroup.

Proof. Let f : G1 → G2 be an onto homomorphism of quasigroups. If v is a S-fuzzy
subquasigroup of G2 and µ is the preimage of v under f , then for any x, y ∈ G1, we
have

µ(x ∗ y) = (v ◦ f)(x ∗ y) = v(f(x ∗ y))

≤ S(v(f(x)), v(f(y)))

= S((v ◦ f)(x), (v ◦ f)(y))

= S(µ(x), µ(y)).

This shows that µ is a fuzzy subquasigroup of G1 with respect to a s-norm S.

Definition 8. Let µ be a fuzzy set in a quasigroup G and let f be a mapping defined
on G. Then the fuzzy set µf in f(G) defined by

µf (y) = inf
x∈f−1(y)

µ(x) ∀y ∈ f(G)

is called the image of µ under f . A fuzzy set µ in G has the inf property if for any
subset A ⊆ G, there exists a0 ∈ A such that µ(a0) = inf

a∈A
µ(a).

Theorem 4. An onto homomorphism image of a fuzzy subquasigroup with the inf
property is a fuzzy subquasigroup.

Proof. Let f : G1 → G2 be an epimorphism of G1 and µ a fuzzy subquasigroup of G1

with the inf property. Consider f(x), f(y) ∈ f(G1). Now, let x0, y0 ∈ f−1(f(x)) be
such that

µ(x0) = inf
t∈f−1(f(x))

µ(t)

and
µ(y0) = inf

t∈f−1(f(y))
µ(t)

respectively. Then we can deduce that

µf (f(x) ∗ f(y)) = inf
t∈f−1(f(x)∗f(y))

µ(t)

≤ max{µ(x0), µ(y0)}

= max{ inf
t∈f−1(f(x))

µ(t), inf
t∈f−1(f(y))

µ(t)}

= max{µf (f(x)), µf (f(y))}.

Consequently, µf is a fuzzy subquasigroup of G2.
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Definition 9. Let G1 and G2 be two quasigroups and let f be a function from G1

into G2. If ν is a fuzzy set in G2, then the preimage of ν under f is the fuzzy set in
G1 defined by

f−1(ν)(x) = ν(f(x)) ∀ x ∈ G1.

Theorem 5. Let f : G1 → G2 be an epimorphism of quasigroups. If ν is a S-fuzzy
subquasigroup in G2, then f−1(ν) is a S-fuzzy subquasigroup in G1.

Proof. Let x, y ∈ G1, then

f−1(ν)(x ∗ y) = ν(f(x ∗ y))

≤ S(ν(f(x), f(y))

= S(ν(f(x)), ν(f(y)))

= S(f−1(ν)(x), f−1(ν)(y)).

Hence f−1(ν) is a S-fuzzy quasigroup in G1.

Definition 10. Let G1 and G2 be quasigroups and f a function from G1 into G2. If
ν is a fuzzy set in G2, then the image of µ under f is the fuzzy set in G1 defined by

f(µ)(x) =

{

infx∈f−1(y) µ(x), if f−1(y) 6= ∅ ,

0, otherwise,
for each y ∈ G2.

Theorem 6. Let f : G1 → G2 be an onto homomorphism of quasigroups. If µ is a
S-fuzzy subquasigroup in G1, then f(µ) is a S-fuzzy subquasigroup in G2.

Proof. Let y1, y2 ∈ G2, then

{x| x ∈ f−1(y1 ∗ y2)} ⊆ {x1 ∗ x2)|x1 ∈ f−1(y1), x2 ∈ f−1(y2)},

and hence

f(µ)(y1 ∗ y2) = inf{µ(x) | f−1(y1 ∗ y2)}

≤ inf{S(µ(x1), µ(x2)) | x1 ∈ f−1(y1), x2 ∈ f−1(y2)}

= S(inf{µ(x1) | x1 ∈ f−1(y1), x2 ∈ f−1(y2)}

, inf{µ(x2) | x2 ∈ f−1(y2)})

= S(f(µ)(y1), f(µ)(y2)).

Hence f(µ) is a S-fuzzy subquasigroup in G2.

Definition 11. A s-norm S on [0,1] is called a continuous s-norm if S is a contin-
uous function which maps [0,1]×[0,1] to [0, 1] with respect to the usual topology.
Obviously, the function ”max” is a continuous s-norm.

Theorem 7. Let S be a continuous s-norm and f be a homomorphism on G. If µ
is a S-fuzzy subquasigroup of G, then µf is a S-fuzzy subquasigroup of f(G).
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Proof. The proof is obtained dually by using the notion of s-norm S instead of
t-norm T in [7].

Lemma 1. Let T be a t-norm. Then s-norm S can be defined as

S(x, y) = 1 − T (1 − x, 1 − y).

Proof. Straightforward.

Theorem 8. A fuzzy set µ of a quasigroup G is a T -fuzzy subquasigroup of G if and
only if its complement µc is a S-fuzzy subquasigroup of G.

Proof. Let µ be a T -fuzzy subquasigroup of G. For x, y ∈ G, we have

µc(x ∗ y) = 1 − µ(x ∗ y)

≤ 1 − T (µ(x), µ(y))

= 1 − T (1 − µc(x), 1 − µc(y))

= S(µc(x), µc(y)).

Hence µc is a S-fuzzy subquasigroup of G. The converse is similar.

Theorem 9. Let S be a s-norm. Let G1 and G2 be quasigroups and let G = G1 ×G2

be the direct product quasigroup of G1 and G2. Let λ be a fuzzy subquasigroup of a
quasigroup G1 with a s-norm S and µ a fuzzy quasigroup of a quasigroup G2 also
with the s-norm S. Then ν = λ × µ is a fuzzy quasigroup of G = G1 × G2 with the
s-norm S which is defined by

ν(x1, x2) = (λ × µ)(x1, x2) = S(λ(x1), µ(x2)).

Moreover, if λ and µ are S-idempotent, then λ × µ is also S-idempotent.

Proof. The proof is obtained dually by using the notion of s-norm S instead of
t-norm T in [7].

Theorem 10. Let λ and µ be fuzzy sets in a unipotent quasigroup G such that λ×µ
is a S-fuzzy subquasigroup of G × G, then

(i) either λ(θ) ≤ λ(x) or µ(θ) ≤ µ(x) ∀x ∈ G.

(ii) If λ(θ) ≤ λ(x) ∀x ∈ G, then either µ(θ) ≤ λ(x) or µ(θ) ≤ µ(x).

(iii) If µ(θ) ≤ µ(x), ∀x ∈ G, then either λ(θ) ≤ λ(x) or λ(θ) ≤ µ(x).

Proof. (i) We prove it using reductio ad absurdum.

Assume λ(x) < λ(θ) and µ(y) < µ(θ) for some x, y ∈ G. Then
(λ × µ)(x, y) = S(λ(x), µ(y)) < S(λ(θ), µ(θ)) = (λ × µ)(θ, θ).

This implies (λ × µ)(x, y) < (λ × µ)(θ, θ) ∀ x, y ∈ G.

which is a contradiction. Hence (i) is proved.
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(ii) Again, we use reduction to absurdity.

Assume µ(θ) > λ(x) and µ(θ) > µ(y) ∀ x, y ∈ G. Then,
(λ × µ)(θ, θ)= S (λ(θ), µ(θ)) = µ(θ)

and (λ × µ)(x, y) = S (λ(x), µ(y)) < µ(θ) = (λ × µ)(θ, θ)

⇒ (λ × µ)(x, y) < (λ × µ)(θ, θ),

which is a contradiction. Hence (ii) is proved.

(iii) The proof is similar to (ii).

Theorem 11. Let µ and ν be fuzzy sets in a unipotent quasigroup G such that µ×ν
is a S-fuzzy subquasigroup of G × G. Then

(a) If ν(x) ≥ µ(θ) for all x ∈ G, then ν is a S-fuzzy subquasigroup of G.

(b) If µ(x) ≥ µ(θ) for all x ∈ G and ν(y) < µ(θ) for some y ∈ G, then µ is a
S-fuzzy subquasigroup of G.

Proof.

(a) If ν(x) ≥ µ(θ) for any x ∈ G, then

ν(x ∗ z) = S(µ(θ), ν(x ∗ y))

= (µ × ν)(θ, x ∗ y)

≤ S((µ × ν)(θ, x), (µ × ν)(θ, y))

= S(S(µ(θ), ν(x)), S(µ(θ), ν(y)))

= S(ν(x), ν(y)).

Hence ν is a S-fuzzy subquasigroup of G.

(b) Assume that µ(x) ≥ µ(θ) for all x ∈ G and ν(y) < µ(θ) for y ∈ G. Then
ν(θ) ≤ ν(y) < µ(θ). since µ(θ) ≤ µ(x) for all x ∈ G, it follows that ν(θ) < µ(x) for
any x ∈ G. Thus

(µ × ν)(x, θ) = S(µ(x), ν(θ)) = µ(x) for all x ∈ G.

Thus

µ(x ∗ y) = (µ × ν)(x ∗ y, θ)

≤ S((µ × ν)(x), θ), (µ × ν)(y, θ))

= S(S(µ(x), ν(θ)), S(µ(y), ν(θ)))

= S(µ(x), µ(y)).

Hence µ is a S-fuzzy subquasigroup of G.
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Definition 12. Let S be a s-norm. If ν is a fuzzy set in a set A , the weakest S-fuzzy
relation on A that is S-fuzzy relation on ν is µν given by µν(x, y)= S(ν(x), ν(y))
for all x, y ∈ A.

Theorem 12. Let ν be a fuzzy set in a quasigroup G and let µν be the weakest
S-fuzzy relation on G. Then ν is a S-fuzzy subquasigroup of G if and only if µν is a
S-fuzzy subquasigroup of G × G.

Proof. Suppose that ν is a fuzzy subquasigroup of G. Let x = (x1, x2), y = (y1, y2)
∈ G × G. Then

µν(x ∗ y) = µν((x1, x2) ∗ (y1, y2)) = µν((x1 ∗ y1, x2 ∗ y2))

= S(ν(x1 ∗ y1), ν(x2 ∗ y2))

≤ S(S(ν(x1), ν(y1)), S(ν(x2), ν(y2)))

= S(S(ν(x1), ν(x2), S(ν(y1), ν(y2)))

= S(µn(x1), x2), µν(y1, y2))

= S(µν((x1, x2)), µν((y1, y2)))

= S(µν(x), µν(y)).

Thus µν is a fuzzy subquasigroup of G × G.
The converse is proved similarly.

Definition 13. A S-fuzzy subquasigroup of a unipotent quasigroup G is said to be
abnormal if there exist x ∈ G such that µ(x) = 0. Note that if S-fuzzy subquasigroup
µ of G is abnormal, then µ(θ) = 0, and hence µ is an abnormal if and only if µ(θ) = 0.

Theorem 13. Let µ be a S-fuzzy subquasigroup of a unipotent quasigroup G and
µ+ be a fuzzy set in G defined by µ+(x) = µ(x) − µ(θ) for all x ∈ G. Then µ+ is
an abnormal S-fuzzysubquasigroup of G containing µ.

Proof. We have µ+(x) = µ(θ) − µ(θ) = 0 ≤ µ+(x) for all x ∈ G. For any x, y ∈ G,
we have

µ+(x ∗ y) = µ(x ∗ y) − µ(θ)

≤ S(µ(x), µ(y)) − µ(θ)

= S(µ(x) − µ(θ), µ(y) − µ(θ))

= S(µ+(x), µ+(y)).

This shows that µ+ is a S-fuzzy subquasigroup of a unipotent quasigroup.
Clearly, µ ⊂ µ+. This ends the proof.

Corollary 1. If µ is a S-fuzzy subquasigroup of a unipotent quasigroup satisfying
µ+(x) = 1 for some x ∈ G, then µ(x) = 1.

Theorem 14. Let µ and ν be S-fuzzy subquasigroups of a unipotent quasigroup G.
If ν ⊂ µ and µ(θ) = ν(θ), then Gµ ⊂ Gν .
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Proof. Assume that ν ⊂ µ and µ(θ) = ν(θ). If x ∈ Gµ, then ν(x) ≤ µ(x) = µ(θ) =
ν(θ). Noticing that ν(θ) ≤ ν(x) for all x ∈ G, we have ν(x) = ν(θ), i.e., x ∈ Gν . The
proof is complete.

Corollary 2. If µ and ν are abnormal S-fuzzy subquasigroups of a unipotent quasi-
group G satisfying ν ⊂ µ, then Gµ ⊂ Gν .

Theorem 15. A S-fuzzy subquasigroup of a unipotent quasigroup G is abnormal if
and only if µ+ = µ.

Proof. The sufficiency is obvious. Assume that µ is an abnormal S-fuzzy subquasi-
group of a quasigroup G and x ∈ G. Then µ+(x) = µ(x) − µ(θ) = µ(x), hence
µ+ = µ.

Theorem 16. If µ is a S-fuzzy subquasigroup of a unipotent quasigroup, then
(µ+)+ = µ+.

Proof. For any x ∈ G, we have (µ+)+(x) = µ+(x)−µ+(θ), completing the proof.

Corollary 3. If µ is an abnormal S-fuzzy subquasigroup of a unipotent quasigroup,
then (µ+)+ = µ.

Theorem 17. Let µ be a non-constant abnormal S-fuzzy subquasigroup of a unipo-
tent quasigroup, which is minimal in the poset of abnormal S-fuzzy subquasigroup
under set inclusion. Then clearly µ takes only two values 0 and 1.

Proof. Note that µ(θ) = 0. Let x ∈ G be such that µ(x) 6= 0. It is sufficient to show
that µ(x) = 1. Assume that then there exists a ∈ G such that 0 < µ(a) < 1. Define
on G a fuzzy set ν by putting ν(x) = 1

2 (µ(x) + µ(a)) for each x ∈ G. Then clearly
ν is well-defined and for all x, y ∈ G, we have

ν(x ∗ y) =
1

2
µ(x ∗ y) +

1

2
µ(a)

≤
1

2
(S(µ(x), µ(y) + µ(a)))

= S(
1

2
(µ(x) + µ(a)),

1

2
(µ(y) + µ(a)))

= S(ν(x), ν(y)).

Hence ν+ is an abnormal S-fuzzy subquasigroup of a unipotent quasigroup. Noticing
that ν+(θ) = 0 < ν+(a) = 1

2µ(a) < µ(a), we know that ν+ is non-constant. From
ν+(a) < µ(a), it follows that µ is not minimal. This proves the theorem.
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