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A closed form asymptotic solution

for the FitzHugh-Nagumo model
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Abstract. By means of a change of unknown function and independent variable,
the Cauchy problem of singular perturbation from electrophysiology, known as the
FitzHugh-Nagumo model, is reduced to a regular perturbation problem (Section 1).
Then, by applying the regular perturbation technique to the last problem and using
an existence, uniqueness and asymptotic behavior theorem of the second and third
author, the models of asymptotic approximation of an arbitrary order are deduced
(Section 2). The closed-form expressions for the solution of the model of first order
asymptotic approximation and for the time along the phase trajectories are derived
in Section 3. In Section 4, by applying several times the method of variation of
coefficients and prime integrals, the closed-form solution of the model of second order
asymptotic approximation is found. The results from this paper served to the author
to study (elsewhere) the relaxation oscillations versus the oscillations in two and three
times corresponding to concave limit cycles (canards).
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1 Mathematical model

The FitzHugh-Nagumo (F-N) model is the Cauchy problem x (0) = x0,
y (0) = y0 for the system of ordinary differential equations

dx

dt1
= c

(

x+ y − x3/3
)

,
dy

dt1
= − (x+ by − a) /c,

where x, y : R → R, x = x(t1), y = y(t1) are the state functions, t1, the time,
stands for the independent variable, and a, b, c ∈ R are three real parameters. For
asymptotically fixed a, b and c, the dynamics generated by this model and its changes
with respect to the parameters, i.e. the static, dynamic and perturbed bifurcation,
were investigated analytically in several papers among which we quote [1, 2] and
numerically, by the methods from [3, 4].

The present study continues these investigations with the asymptotic behavior
of the phase portrait of the N-S model as µ = c−2 → 0, when a and b remain
asymptotically fixed. For µ 6= 0 the F-N model is a singular perturbation problem,
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which by the change (x, y, t1, c) → (z, y, t, µ) , z = x, y = y, t = t1/c, µ = c−2,
reads

µ
dz

dt
= z + y − z3/3,

dy

dt
= −z − by + a, z (0, µ) = z0, y (0, µ) = y0. (1)

The problem (1) is a particular case of the singular perturbation problem

µ
dz

dt
= F (z, y, µ) ,

dy

dt
= f (z, y, µ) , z (0) = z0, y (0) = y0, (2)

where z0 and y0 are asymptotically fixed. Problems of type (2) were intensively
studied by methods of classical qualitative theory of ordinary differential equations
by the school of A.N. Tikhonov and A.B. Vasil’eva. They used the boundary layer
functions method, which, in applications leads to cumbersome computations. This
is why we preferred another way, namely to reduce (1) to a regular perturbation
problem, which is developed in the following.

By means of the transform (z, y) ↔ (η, ς), ς = z + y − z3/3, η = z, the inverse

of which reads y = ς − η +
1

3
η3, z = η and using the chain rule (of differentiation

of composite functions)

dz

dt
=
∂z

∂ς
· dς
dt

+
∂z

∂η
· dη
dt

=
dη

dt
,

dy

dt
=
∂y

∂ς
· dς
dt

+
∂y

∂η
· dη
dt

=
dς

dt
+

(

−1 + η2
) dη

dt
,

problem (1) becomes


















µ
dη

dt
= ς,

dς

dt
+

(

−1 + η2
) dη

dt
= −η + a− b

(

ς − η +
1

3
η3

)

,

{

ς (0, µ) = z0 + y0 − 1

3

(

z0
)

3 ≡ ς0,

η (0, µ) = z0 ≡ η0,

or, equivalently,


















µ · dη
dt

= ς,

µ · dς
dt

= aµ+ (−1 + b)µη + (1 − µb) ς − 1

3
bµη3 − ςη2,







ς (0, µ) = ς0,

η (0, µ) = η0.
(3)

By means of the change of variable t = µτ and taking into account that
d

dt
=

1

µ
· d
dτ
, the singular perturbation problem (3) becomes the problem of regular

perturbations


















dη

dτ
= ς,

dς

dτ
= aµ− (1 − b)µη + (1 − µb) ς − 1

3
bµη3 − ςη2,







ς (0, µ) = ξ0,

η (0, µ) = η0.
(4)
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2 Models of asymptotic approximation

The use of the time recalling τ = t/µ may be embarrassing: it is appropriate to in-
ner asymptotic approximations for singular perturbation two-point problems or to singular
perturbation Cauchy problems which possess one asymptotic boundary layer or asymptotic
initial layer respectively. The new time τ is the inner independent variable. In these cases
t is assumed to be small, namely of order of µ as µ → 0. For larger t and τ, the inner
component of the asymptotic solution looses its importance. In problems of the type (2)
there is an infinity of interval layers as t is increased beyond 0.

Therefore τ = t/µ can be large as t is other very small but t >> µ, or t >> 1. This means
that our study is appropriate to t larger than the order used to stretch the boundary or to
initial layers. On the other hand, we expect that the ”inner” component (i.e. corresponding
to τ) of the asymptotic solution be important as τ is increased, because if crosses other and
other interval layers. In other words, we expect that the problem involving τ has an ”outer”
role too, i.e. it takes the role of the problem (1) in t. As far as small τ is concerned, the
problem in τ plays the role of a genuine inner problem, corresponding to t<<µ or t ∼ µ.
These are the reasons for suspecting that (4) is a good approximation of (2) for every t,
irrespective of its order. The numerical results based on (4) confirmed this assumption.

Further we use a convenient variant of one (unpublished) result of the second and third
authors.

Theorem 1. Assume that in the Cauchy problem

dx

dt
= f (t, x, µ) , x (t0) = x0, (5)

the function f (t, x, µ)is continuous and satisfies in x (uniformly in t and µ) the condition
Lipschitz on the domain

0 ≡
{

(t, x, µ) | |t− t0| ≤ a,
∣

∣

∣

∣x− x0
∣

∣

∣

∣ ≤ b, |µ− µ0| ≤ 0
}

.

Then:
I. 1) there exists a unique continuous solution x (t, µ) of problem (5) on the compact

[t0, t0 +H ] × [µ0 − c, µ0 + c] , where H = min

{

a,
b

µ

}

, M = max
0

|f (t, x, µ)|;

2) the solution x (t, µ0) is defined on [t0, t0 +H0], where H0 = min

{

a,
b

M0

}

, M0 =

max
0

|f (t, x, µ0)|. There exists c0 ∈ (0, c) such that x (t, µ) is defined on [t0, t0 +H0] ×
[µ0 − c01µ0 − c0] and lim

µ→µ0

x (t, µ) = x (t, µ0) , uniformly in t ∈ [t0, t0 +H0];

II. 1) if, in addition, exist and are continuous fx, fµ on D, then there exists the derivative
∂x

∂µ
(t, µ),denoted by X, which is differentiable with respect to t, and it is the solution of the

Cauchy problem

dX

dt
= fx (t, x (t, µ) , µ) , X + fµ (t, x (t, µ) , µ) , X (t0) = 0. (6)

If, in addition, f possesses bounded partial derivatives up to the order n + 1 in x and
µ, then

x (t, µ) = x (t, µ0) + (µ− µ0)
∂x

∂µ
(t, µ0) + · · · + (µ− µ0)

n

n!

∂nx

∂µn
(t, µ0) + εn+1 (t, µ) (7)
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where εn+1 (t, µ) = O
(

|µ− µ0|n+1
)

.

Let us use this theorem by denoting
∂kx

∂µk
(t, µ0) by xk (t) and replacing x in (5) by (7)

we obtain

d

dt

[

x0 (t) + (µ− µ0)x1 (t) + · · · + (µ− µ0)
n

n!
xn (t) + εn+1 (t, µ)

]

=

= f (t, x
0
(t) + (µ− µ0)x1 (t) + · · · + (µ− µ0)

n

n!
xn (t) , µ) + εn+1 (t, µ)

(8)

and

x0 (t1) + (µ− µ0) x1 (t0) + ...+
(µ− µ0)

n!
xn (t0) + εn+1 (t0, µ) = x0. (9)

From (8) and (9), by matching, we deduce the problems satisfied by xk (t) , k = 0, n,
(they are the models of regular asymptotic approximation of order k ), namely: from (8) for
µ = µ0, we obtain

dx0

dt
= f (t, x0, µ0) , x0 (t0) = x0;

differentiating (8) with respect to µ and taking µ = µ0 it follows

dx1

dt
=
∂t

∂x
(t, x0, µ0)x1 +

∂f

∂µ
(t, x0, µ0) , x1 (t0) = 0;

differentiating (8) two times with respect to µ and taking µ = µ0, we have

dx2

dt
=
∂f

∂x
(t, x0, µ0) x2 +

∂2f

∂x2
(t, x0, µ0) (x1, x1)+

+
∂2f

∂x∂µ
(t, x0, µ0)x1 +

∂2f

∂µ2
(t, x0, µ0) , x2 (t0) = 0

and so on.

Since, by Theorem 1, the vector field associated with problem (4) is analytic with respect
to µ at µ = µ0 = 0, the solution of (4) possesses converging series of powers of µ

η (τ, µ) =
∑

k≥0

µk

k!

∂kη

∂µk
(τ, 0) , ς (τ, µ) =

∑

k≥0

µk

k!
∂kς
∂µk (τ, 0). (10)

Denoting ηk (τ) =
∂kη

∂µk
(τ, 0), ςk (τ) =

∂kς

∂µk
(τ, 0) and introducing (10) in (4) it follows
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the Cauchy problem










































































d

dτ

[

∑

k≥0

µk

k!
ηk (τ)

]

=
∑

k≥0

µk

k!
ςk (τ) ,

d

dτ

[

∑

k≥0

µk

k!
ςk (τ)

]

= aµ− (1 − b)µ

[

∑

k≥0

µk

k!
ηk (τ)

]

+

+ (1 − µb)

[

∑

k≥0

µk

k!
ςk (τ)

]

− 1

3
bµ

[

∑

k≥0

µk

k!
ηk (τ)

]3

−

−
[

∑

k≥0

µk

k!
ςk (τ)

] [

∑

k≥0

µk

k!
ηk (τ)

]2

,

(11)

∑

k≥0

µk

k!
ηk (0) = η0,

∑

k≥0

µk

k!
ςk (0) = ς0, (12)

whence, by matching, from (12) the models of asymptotic approximation of order k are
immediately deduced.

The model of the first approximation reads


















dη0
dτ

= ς0,

dς0
dτ

= ς0 − ς0η
2
0 ,







η0 (0) = η0,

ς0 (0) = ς0.
(13)

Like in any regular perturbation problem, (13) could be, formally, deduced by letting
µ = 0 in (12). The model of the second order asymptotic approximation (which, formally,
follows by taking µ = 0 in the derivative of (12) 1,2 with respect to µ) is



















dη1
dτ

= ς1,

dς1
dτ

= a− (1 − b) η0 − ς0 + ς1 −
1

3
bη3

0 − ς1η
2
0 − ς02η0η1,







η1 (0) = 0,

ς1 (0) = 0.
(14)

Similarly, differentiating (12) 1,2 two times with respect to µ and taking µ = 0 in the
obtained equation, we obtain the model of the second order asymptotic approximation



















dη2
dτ

= ς2,

dς2
dτ

= −2 (1 − b) ς1 − 2bς1 + ς2 −
2

3
bςη2

0η1 − ς2η
2
0−2ς1ςη0η1 − 2ς0 (η2η1 + η1η1) ,

η2 (0) = 0, ς2 (0) = 0. (15)

Apparently, the equations (13) 1,2 are simpler in form than (14) 1,2 and (15) 1,2 but
they have cubic nonlinearities. In addition the conditions (13) 3 are nonhomogenous. The
equations in (14) and (15) look more complicated but, in fact, they are affine and the
associated conditions (14) 3, (15) 3 are homogenous. Hence the model (13) is the most
difficult to be solved, at least in principle.
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Proposition 1. As µ → 0, the limit cycle of the dynamical system associated with the model
(13) contains two parallel straightlines y = y0.

Indeed, (13) implies
d

dτ

(

ς0 − η0 + η3
0/3

)

= 0, (16)

therefore ς0 − η0 + η3
0/3=ς00 − η0

0 − η3
0/3, i.e. y0 = y0. This shows that as µ → 0, some

portions of the trajectory limit cycle, are straightlines. In Section 3 we show that they are
situated between the two external (stable) branches of the infinitecline ς + η − η3/3 = 0
(written, equivalently, as ς = 0).

3 Model of the first asymptotic approximation

The dynamical system associated with (13) has an infinity of equilibria; their locus is the
y0 – axis. The closed-form or (algebraically) implicit form of each nonconstant solution of
(13) can be found immediately by eliminating ς0 between the equations of (13). We obtain

d2η0
dτ2

=
(

1 − η2
0

) dη0
dτ

, η0|τ=0 = η0,
dη0
dτ

|τ=0 = ς0,

or, equivalently, denoting (only in Section 3 and 4) c = ς0 − η0 +
η03

3
, integrating this

equation and taking into account the initial conditions, it follows

dη0
dτ

= η0 −
η3
0

3
+ c, η0|τ=0 = η0. (17)

Since, by (16) ς0 = 0 implies η0 = η0, i.e.
(

ς0, η0
)

corresponds to a point
(

z0, y0
)

situated on the infinitecline y=0, we assume ς0 6=0. Let us also remark that c = y0.

Case c = 0. The solution of (17) is

η0 (τ) =

√
3η0eτ

√

|η02e2τ + 3 − η02|
, (18)

and from (13)1, it follows

ς0 (τ) =

√
3η0

(

3 − η02
)

eτ

|η02e2τ + 3 − η02|3/2
, with ς0 = η0 − η03

3
6= 0. (19)

The relations (18) and (19) represent the parametic form of the solutions of (13).
Whence, as expected by (16), the closed form

ς0 = η0 −
η3
0

3
, (20)

or, coming back to the phase functions y and z, we have















y (t) = 0,

z (t) =
z0
√

3et/µ

√
z0e2t/µ + 3 − z02

,

z0 6= 0,±
√

3.
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The form (20) shows that, in the case c=0, the trajectory starting at a point of the z -axis
is a portion of that axis, namely that one for which z0 6=0, ±

√
3 and e2t/µ 6=

(

z02 − 3
)

/z0.

Case c 6= 0. Equation η3
0 −3η0−3c = 0, defining the equilibria of (17) has the discrim-

inant ∆ = −1 +
9c2

4
. Hence, for it has three real mutually distinct roots η01,; η02 ; η03, for

∆ = 0 it has a double root and a simple root (a triple root is not possible, because it should
be null, whereas c 6= 0); for ∆ > 0, there exists a unique real root η00.

Subcase ∆ < 0. Take by convention η01 < η02 < η03. From (17) it follows the (implicit,
algebraic) form of its solution

|η0 − η01|A |η0 − η03|D

|η0 − η02|−B
= ke−τ/ε, (21)

or, equivalently, the closed form of τ as a function of η0 , where

A =
1

(η01 − η02) (η01 − η03)
> 0, B =

1

(η02 − η01) (η02 − η03)
< 0,

D =
1

(η03 − η01) (η03 − η02)
> 0

and k is a constant obtained by taking τ = 0 in (21). Since, by (16) ς0 − η0 +
η3
0

3
= c is a

prime integral it follow that ς0 is a function of η0. Consequently, it is sufficient to determine
only η0 (because ς0 follows).

Subcase ∆ > 0. Equation (17) is equivalent (in the class of nonconstant solutions) to
anyone among the following three forms

dη0
dτ

= η0 −
η3
0

3
+ c,

dη0

c+ η0 −
η3
0

3

= dτ,

∫ η0

η0

dη0

c+ η0 −
η3
0

3

= τ − τ0.

In this way, by expressing τ as a function of η0, we obtain the closed-form solution.
Taking into account the decomposition in simple fractions

1

η0 + c− 1

3
η3
0

=
1

η2
00 − 1

[

1

η0 − η00
+

1

3
η0 + 2

3
η00

1

3
η2
0 + 1

3
η00η0 +

(

1

3
η2
00 − 1

)

]

the solution of (17) becomes successively

τ =

∫ η0

η0

dη0

η0 + c− 1

3
η3
0

=

=
1

η2
00 − 1

∫ η0

η0









1

η0 − η00
+

1

2

2

3
η0 +

1

3
η00

1

3
η2
0 +

1

3
η00η0 +

(

1

3
η2
00 − 1

) +

+
1

3











1

1

3

(

η0 +
1

2
η00

)2
+

1

4
η2
00 − 1





















=
1

η2
00 − 1

[

ln

[

η0 − η00
η0 − η00

]

+
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+
1

2
ln

∣

∣

∣

∣

∣

∣

∣

1

3
η2
0 +

1

3
η00η0 +

1

3
η2
0 − 1

1

3
(η0)2 +

1

3
η00η0 +

1

3
η2
00 − 1

∣

∣

∣

∣

∣

∣

∣

−

− 3η00

2

√

3

(

1

4
η2
00 − 1

)













arctg

(

η0 +
1

2
η00

)

√

3

(

1

4
η2
00 − 1

)













− arctg

(

η0 +
1

2
η00

)

√

3

(

1

4
η2
00 − 1

)

























.

Subcase ∆ = 0. If ∆ = 0 and the equation η0 + c− η3
0

3
= 0 has a simple root η01 and

a double root η02, hence η0 + c− η3
0

3
=

−1

3
(η0 − η01) (η0 − η02)

2
, then

1

η0 + c− 1

3
η3
0

= − 3

(η01 − η02)
2
· 1

η0 − η01
· −3

(η01 − η02)
2
· η0 − η01 + 2η02

(η0 − η02)
2

,

implying the closed-form solution τ as a function of η0

τ =

∫ η0

η0

dη0

η0 + c− 1

3
η3
0

=

∫ η0

η0

−3

(η01 − η02)
2
· 1

η0 − η01
dη0−

− 3

(η01 − η02)
2

∫ η0

η0

[

1

η0 − η02
+

−η01 + 3η02

(η0 − η02)
2

]

dη0 =

= − 3

(η01 − η02)
2

[

ln
η0 − η01
η0 − η01

+ ln

[

η0 − η02
η0 − η02

]

−

− (−η01 + 3η02) ·
(

1

η0 − η02
− 1

η2 − η02

)]

.

4 Model of the second order asymptotic approximation

The system (14), can be successively written as

d2η1
dτ2

= a− η0 − b

(

ς0 − η0 +
η3
0

3

)

+ ς1
(

1 − η2
0

)

− 2ς0η0η1 =

= a− η0 − bc+
(

1 − η2
0

) dη1
dτ

− 2η0
dη0
dτ

η1 =

= a− η0 − bc+
(

1 − η2
0

) dη1
dτ

− η1
dη2

0

dτ
=

= a− η0 − bc+
(

1 − η2
0

) dη1
dτ

+ η1
d

(

1 − η2
0

)

dτ
,
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hence
d2η1
dτ2

= a− η0 − bc+
d

[

η1
(

1 − η2
0

)]

dτ
. (22)

Further we solve the Cauchy problem for this equation by applying several times the
method of variation of coefficients. Thus, the linear equation corresponding to (22) is

d2η1
dτ2

=
d

[

η1
(

1 − η2
0

)]

dτ
, (23)

which can be written as

dη1
dτ

= η1
(

1 − η2
0

)

+ C1, (24)

where C1 is an arbitrary constant. The linear equation corresponding to (24) is

dη1
dτ

= η1
(

1 − η2
0

)

,

whence ln |η1| =
∫ (

1 − η2
0

)

dτ =
∫ dς0
dτ

· 1

ς0
dτ =

∫ dς0
ς0

= ln |ς0| + C2, i.e. η1 = K2ς0.

Then, the method of variation of coefficients applied to (24), where C1 is a constant and

K2 is a function of τ, implies K2 (τ) =
∫ C1dτ

ς0
+ C3, where C3 is a constant. Therefore,

η1 (τ) = ς0

[

C1

∫ dτ

ς0
+ C3

]

is the general solution of (23). In order to find the solution of

(22) we apply again the method of variation of coefficients to find

dη1
dτ

=
dς0
dτ

[

C1

∫

dτ

ς0
+ C3

]

+ ς0

[

dC1

dτ

∫

dτ

ς0
+
dC3

dτ
+
C1

ς0

]

=

=
dς0
dτ

[

C1

∫ dτ

ς0
+ C3

]

+
dC1

dτ
ς0

∫ dτ

ς0
+ ς0

dC3

dτ
+ C1 =

= ς0
(

1 − η2
0

)

[

C1

∫ dτ

ς0
+ C3

]

+ C1,

and impose

ς0
dC3

dτ
+ ς0

dC1

dτ

∫

dτ

y0
= 0, (25)

d2η1
dτ2

=
d

dτ

{

ς0
(

1 − η2
0

)

[

C1

∫

dτ

ς0
+ C3

]}

+
dC1

dτ
=

=
d

dτ

[

η1
(

1 − η2
0

)]

+
dC1

dτ

[

1 +
(

1 − η2
0

)

y0

∫

dτ

y0

]

+ y0
(

1 − η2
0

)

· dC3

dτ
=

=
d

dτ

(

1 − η2
0

)

+ a− η0 − bc. (26)

Hence from (25) and (26), we have successively
dC1

dτ
= a−η0− bc, i.e.

dC1

dη0
· dη0
dτ

= a−

η0 − bc, therefore
dC1

dη0
=
a− η0 − bc

ς0
, which implies

dC1

dη0
=

a− η0 − bc

c+ η0 −
η3
0

3

, whence C1 (η0) =
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ψ (η0) + C10, where ψ (η0) is an integral which can be computed immediately, for instance
by using some formulae from [5]. Then the relation (25) reads

dC3

dη0

dη0
dτ

= −dC1

dη0

dη0
dτ

∫ (

c+ η0 −
η3
0

3

)−2

dη0

and, by integration with respect to η0, we have

C3 (η0) − C3 = −
∫



















a− η0 − bc

c+ η0 −
η3
0

3

∫

dη0
(

c+ η0 −
η3
0

3

)2



















dη0 ,

i.e. C3 (η0) = ϕ (η0) + C30, where ϕ (η0) is an integral which can be computed by using
appropriate formulae from [5]. Finally, η1 reads

η1 (τ) = y0

[

(ψ (η0) + C10)

∫

dτ

y0
+ ϕ (η0) + C30

]

, (27)

where C10 and C30 are constants related to y0
0 and η0

0 . Thus η1 and y1 are completely
determined.

An alternative procedure is: from (14) it follows

dς1
dη0

=
a− η0 − bc

c+ η0 −
η3
0

3

+
d

dη0

[

η1
(

1 − η2
0

)]

,

hence
d

dη0

[

ς1 − η1
(

1 − η2
0

)]

=
a− η0 − bc

c+ η0 −
η3
0

3

,

whence the prime integral

ς1 = η1
(

1 − η2
0

)

+

∫

a− η0 − bc

c+ η0 −
η3
0

3

dη0 +K,

is a computation of η1 and y1 in terms of τ .
In order to determine ς1 and η1 as functions of η0, we use (14) to obtain

dη1
dη0

· dη0
dτ

= η1
(

1 − η2
0

)

+

∫

a− η0 − bc

c+ η0 −
η3
0

3

dη0 +K,

dη1
dη0

= η1

(

1 − η2
0

)

c+ η0 −
η3
0

3

+
1

c− η0 −
η3
0

3

·
∫

a− η0 − bC

c+ η0 −
η3
0

3

dη0 +
K

c+ η0 −
η3
0

3

,

The last equation (affine in η1) can be solved by the method of the variation of coeffi-
cients. This ends the determination of the closed-form of the solution of model (14), also by
the alternative procedure.



34 A. GEORGESCU, GH. NISTOR, M. POPESCU, D. POPA

References

[1] Rocşoreanu C., Georgescu A., Giurgiuţeanu N. The FitzHugh-Nagumo model.
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