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Ideal Theory in Commutative Semirings
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Abstract. In this paper, we analyze some results on ideal theory of commuta-
tive semirings with non-zero identity analogues to commutative rings with non-zero
identity. Here we will make an intensive examination of the notions of Noetherian
semirings, Artinian semirings, local semirings and strongly irreducible ideals in com-
mutative semirings. It is shown that this notion inherits most of essential properties
of strongly irreducible ideals of a commutative rings with non-zero identity. Also,
the relationship among the families of primary ideals, irreducible ideals and strongly
irreducible ideals of a semiring R is considered.
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1 Introduction

The concept of semirings was introduced by H. S. Vandiver in 1935 and has
since then been studied by many authors (see, for example, [1–3, 7, 12]). Semirings
constitute a fairly natural generalization of rings, with broad applications in the
mathematical foundations of computer science. The main part of this paper is
devoted to stating and proving analogues to several well-known results in the theory
of rings (see Sections 2 and 3).

For the sake of completeness, we state some definitions and notations used
throughout. By a commutative semiring, we mean a commutative semigroup
(R, .) and a commutative monoid (R,+, 0) in which 0 is the additive identity and
r.0 = 0.r = 0 for all r ∈ R, both are connected by ring-like distributivity. In this
paper, all semirings considered will be assumed to be commutative semirings with
non-zero identity.

A subset I of a semiring R will be called an ideal if a, b ∈ I and r ∈ R implies
a + b ∈ I and ra ∈ I. A subtractive ideal (= k-ideal) I is an ideal such that if
x, x + y ∈ I then y ∈ I (so {0} is a k-ideal of R). The k-closure cl(I) of I is defined
by cl(I) = {a ∈ R : a + c = d for some c, d ∈ I} is an ideal of R satisfying I ⊆ cl(I)
and cl(cl(I)) = cl(I). So an ideal I of R is a k-ideal if and only if I = cl(I). A prime
ideal of R is a proper ideal P of R in which x ∈ P or y ∈ P whenever xy ∈ P . So
P is prime if and only if A and B are ideals in R such that AB ⊆ P , then A ⊆ P
or B ⊆ P where AB = {ab : a ∈ A and b ∈ B} ⊆ A ∩ B (see [3, Theorem 5]). A
primary ideal P of R is a proper ideal of R such that, if xy ∈ P and x /∈ P , then
yn ∈ P for some positive integer n. If I is an ideal of R, then the radical of I,denoted
by rad(I), is the set of all x ∈ R for which xn ∈ I for some positive integer n. This is
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an ideal of R, containing I, and if 1 ∈ R is the intersection of all the prime ideals of
R that contain I [1]. A proper ideal I of R is said to be maximal (resp. k-maximal)
if J is an ideal (resp. k-ideal) in R such that I $ J , then J = R. An ideal I of a
semiring R is strongly irreducible if for ideals J and K of R, the inclusion J ∩K ⊆ I
implies that either J ⊆ I or K ⊆ I. An ideal of R is said to be irreducible if I is
not the intersection of two ideals of R that properly contain it. We say that R is
a Noetherian (resp. Artinian) if any non-empty set of k-ideals of R has a maximal
(resp. minimal) member with respect to set inclusion. This definition is equivalent
to the ascending chain condition (resp. descending chain condition) on k-ideals
of R.

2 Local semirings

Let R be a semiring with non-zero identity. A non-zero element a of R is said
to be semi-unit in R if there exist r, s ∈ R such that 1 + ra = sa. R is said to be a
local semiring if and only if R has a unique maximal k-ideal.

Lemma 1. Let I be a k-ideal of a semiring R. Then the following hold:

(i) If a is a semi-unit element of R with a ∈ I, then I = R.

(ii) If x ∈ R, then cl(Rx) is a k-ideal of R.

Proof. (i) Is clear. To see (ii), let y, x+ y ∈ cl(Rx); we show that x ∈ cl(Rx). There
are elements a, b, c and d of Rx such that x + y + a = b and y + c = d. It follows
that x + a + d = b + c, as needed.

Lemma 2. Let R be a semiring with 1 6= 0. Then R has at least one k-maximal
ideal.

Proof. Since {0} is a proper k-ideal of R, the set ∆ of all proper k-ideals of R is
not empty. Of course, the relation of inclusion, ⊆, is a partial order on ∆, and by
using Zorn’s Lemma to this partially ordered set, a maximal k-ideal of R is just a
maximal member of the partially ordered set (∆,⊆).

An ideal I of a semiring R is called a partitioning ideal (= Q-ideal) if there
exists a subset Q of R such that R = ∪{q + I : q ∈ Q} and if q1, q2 ∈ Q then
(q1 + I)∩ (q2 + I) 6= ∅ if and only if q1 = q2. Let I be a Q-ideal of a semiring R and
let R/I = {q + I : q ∈ Q}. Then R/I forms a semiring under the binary operations
⊕ and ⊙ defined as follows: (q1 + I)⊕ (q2 + I) = q3 + I, where q3 ∈ Q is the unique
element such that q1 + q2 + I ⊆ q3 + I. (q1 + I) ⊙ (q2 + I) = q4 + I, where q4 ∈ Q
is the unique element such that q1q2 + I ⊆ q4 + I. This semiring R/I is called the
quotient semiring of R by I. By definition of Q-ideal, there exists a unique q0 ∈ Q
such that 0 + I ⊆ q0 + I. Then q0 + I is a zero element of R/I. Clearly, if R is
commutative , then so is R/I (see [7, 8]). The next result should be compared with
[12, Corollary 2.2].
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Theorem 1. Let I be a proper Q-ideal of a semiring R. Then there exists a maximal
k-ideal M of R with I ⊆ M .

Proof. Since R/I is non-trivial, and so, by Lemma 2, has a k-maximal ideal L,
which, by [5, Theorem 2.3], will have to have the form M/I for some k-ideal M of
R with I ⊆ M . It now follows from [5, Theorem 2.14] that M is a k-maximal ideal
of R.

Lemma 3. Let R be a semiring and let a ∈ R. Then a is a semi-unit of R if and
only if a lies outside each k-maximal ideal of R.

Proof. By Lemma 1 (i), a is a semi-unit of R if and only if R = clRa. First, Suppose
that a is a semi-unite of R and let a ∈ M for some maximal k-ideal ideal M of R.
Then we should have Ra ⊆ M $ R, so that a could not be a semi-unit of R.
Conversely, if a were not a semi-unit of R, then 1 + ra = sa holds for no r, s ∈ R.
Hence, 1 /∈ cl(Ra) yields that cl(Ra) is a proper k-ideal of R by Lemma 1 (ii). By
[12, Corollary 2.2], cl(Ra) ⊆ J for some maximal k-ideal J of R; but this would
contradict the fact that a lies outside each maximal k-ideal of R.

Theorem 2. Let R be a semiring. Then R is a local semiring if and only if the set
of non-semi-unit elements of R is a k-ideal.

Proof. Assume that R is a local semiring with unique maximal k-ideal P . By Lemma
3, P is precisely the set of non-semi-unit elements of R. Conversely, assume that
the set of non-semi-units of R is a k-ideal I of R (so I 6= R since 1 is a semi-unit of
R). Since R is not trivial, it has at least one maximal k-ideal: let J be one such. By
Lemma 3, J consists of non-semi-units of R, and so J ⊆ I $ R. Thus I = J since
J is k-maximal. We have thus shown that R has at least one maximal k-ideal, and
for any maximal k-ideal of R must be equal to I.

Let R be a given semiring, and let S be the set of all multiplicatively cancellable
elements of R (so 1 ∈ S). Define a relation ∼ on R× S as follows: for (a, s), (b, t) ∈
R × S, we write (a, s) ∼ (b, t) if and only if ad = bc. Then ∼ is an equivalence
relation on R × S. For (a, s) ∈ R × S, denote the equivalence class of ∼ which
contains (a, s) by a/s, and denote the set of all equivalence classes of ∼ by RS .
Then RS can be given the structure of a commutative semiring under oprerations
for which a/s + b/t = (ta + sb)/st, (a/s)(b/t) = (ab)/st for all a, b ∈ R and s, t ∈ S.
This new semiring RS is called the semiring of fractions of R with respect to S; its
zero element is 0/1, its multiplicative identity element is 1/1 and each element of S
has a multiplicative inverse in RS (see [10, 11]).

Thoughout this paper we shall assume unless otherwise stated, that S is
the set of all multiplicatively cancellable elements of a semiring R. Now suppose
that I be an ideal of a semiring R. The ideal generated by I in RS , that is, the set
of all finite sums s1a1 + ..., snan where ri ∈ RS and si ∈ I, is called the extention
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of I to RS , and it is denoted by IRS . Again, if J is an ideal of RS then by the
contraction of J in R we mean J ∩ R = {r ∈ R : r/1 ∈ J}, which is clearly an ideal
of R.

We need the following lemma proved in [6, Lemma 2.3].

Lemma 4. Assume that I, J and K are ideals of a semiring R and let L be an ideal
of semiring RS. Then the following hold:

(i) x ∈ IRS if and only if it can be written in the form x = a/c for some a ∈ I
and c ∈ S.

(ii) (L ∩ R)RS = L.

(iii) (I ∩ J)RS = (IRS) ∩ (JRS).

Lemma 5. Let I be a k-ideal of a semiring R. Then IRS is a k-ideal of RS.

Proof. Suppose that a/s, a/s + b/t ∈ IRS ; we show that b/t ∈ IRS . By Lemma 4,
there are elements c, d ∈ I and u, v ∈ S such that (at+ bs)/st = c/u and a/t = d/w,
so atuw + bsuw = t2ud + sbuw = cstw ∈ I; hence bsuw ∈ I since I is a k-ideal. It
follows that b/t = (bsuw)/(tsuw) ∈ IRS , as required.

Theorem 3. Let R be a local semiring with unique maximal k-ideal P such that
S ∩ P = ∅. Then RS is a local semiring with unique maximal k-ideal of PRS.

Proof. By Lemma 5 and Theorem 2, it is enough to show that PRS is exactly the set
of non-semi-units of RS . Let z ∈ RS − PRS , and take any representation z = a/s
with a ∈ R, s ∈ S. We must have a /∈ P , so 1 + ra = sa for some r, s ∈ R by
Lemma 3. It then follows from 1/1+((rs)/1)(a/s) = (s2/1)(a/s) that a/s is a semi-
unit of RS . On the other hand, if y is a semi-unit of RS , and y = b/t for some b ∈ R,
t ∈ S, then there exist c, d ∈ R and u,w ∈ S such that 1/1 + (bc)/(tu) = (bd)/(tw).
It follows that t2uw + bctw = tubc; hence b /∈ P since P is a k-ideal, and since this
reasoning applies to every representation y = b/t with b ∈ R, t ∈ S, of y as a formal
fraction, it follows that y /∈ PRS , and so the proof is complete.

For the remainder of this section we turn our attention to study some essential
properties of Noetherian and Artinian semirings.

Lemma 6. If R is a Noetherian semiring, then every proper k-ideal is a finite
intersection of irreducible k-ideals.

Proof. The proof is trivial.

Proposition 1. Let R be a Noetherian semiring and let I be an irreducible k-ideal
of R. Then I is primary.

Proof. The proof is straightforward (see [13, Proposition 4.34]).
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Theorem 4. If R is a Noetherian semiring, then every proper k-ideal is a finite
intersection of primary k-ideals.

Proof. This follows from Lemma 6 and Proposition 1.

Let R be a semiring. R is called cancellative if whenever ac = ab for some
elements a, b and c of R with a 6= 0, then b = c. Also, we define the Jacobson
radical of R, denoted by Jac(R), to be the intersection of all the maximal k-ideals
of R. Then by [12, Corollary 2.2], the Jacobson radical of R always exists and by
[5, Lemma 2.12], it is a k-ideal of R.

Theorem 5. Let R be an Artinian cancellative semiring. Then the following hold:

(i) Every prime k-ideal of R is k-maximal.

(ii) Jac(R) = rad(0) (the nilradical of R).

Proof. (i) Assume that I is a prime k-ideal of R and let I $ J for some k-ideal J of
R; we show that J = R. There is an element x ∈ J with x /∈ I. Then by Lemma 1,
cl(Rx) ⊇ cl(Rx2) ⊇ ... is a descending chain of k-ideals of R, so cl(Rxn) = cl(Rxn+1)
for some n; hence xn + rxn+1 = sxn+1 for some r, s ∈ R. Since R is cancellative and
x 6= 0, it follows that we may cancel xn, hence 1 + rx = sx. Hence x is a semi-unit
in J , and therefore J = R by Lemma 1. (ii) follows from (i).

Lemma 7. Let R be a semiring. Then the following hold:

(i) Let P1, ..., Pn be prime k-ideals and let I be an ideal of R contained in
⋃

n

i=1
Pi.

Then I ⊆ Pi for some i.

(ii) Let I1, ..., In be ideals and let P be a prime ideal containing
⋂

n

i=1
Ii. Then

Ii ⊆ P for some i. If P =
⋂

n

i=1
, then P = Ii for some i.

Proof. (i) The proof is straightforward by induction on n (see [13, Theorem 3.61]).

(ii) Suppose Ii * P for all i. Then there exist xi ∈ Ii, xi /∈ P (1 ≤ i ≤ n),
and therefore x1x2...xn ∈ I1I2...In ⊆

⋂
n

i=1
Ii; but x1x2...xn /∈ P ; hence

⋂
n

i=1
Ii * P

which is a contradiction. Finally, if P =
⋂

n

i=1
Ii, then Ii ⊆ P and hence P = Ii for

some i.

Theorem 6. An Artinian cancellative semiring has only a finite number of maximal
k-ideals.

Proof. Consider the set of all finite intersections P1 ∩ ... ∩ Pn, where the Pi are
maximal k-ideals (note that an intersection of a family of k-ideals of R is a k-ideal
by [5, Lemma 2.12]). This set has a minimal element, say Q1 ∩ ... ∩ Qs; hence for
any maximal k-ideal Q we have Q ∩ Q1 ∩ ... ∩ Qs = Q1 ∩ ... ∩ Qs, and therefore
Q1 ∩ ... ∩ Qs ⊆ Q. By Lemma 7, Qi ⊆ Q for some i, hence Q = Qi since Qi is
k-maximal, as required.
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3 Strongly irreducible ideals

In this section we list some basic properties concerning strongly irreducible ideals.
The results of this section should be compared with [9].

Theorem 7. Let I be an ideal of a semiring R. Then the following hold:

(i) If I is strongly irreducible, then I is irreducible.

(ii) If R is Noetherian and I is a strongly irreducible k-ideal of R, then I is
primary.

Proof. (i) Assume that I is strongly irreducible and let J and K be ideals of R such
that J ∩K = I. Then J ∩K ⊆ I, so either J ⊆ I or K ⊆ I, and it then follows that
either I = J or I = K, so I is irreducible.

(ii) This follows from (i) and Proposition 1.

Proposition 2. Let I be an ideal of a semiring R. Then the following hold:

(i) To show that I is strongly irreducible, it suffices to show that if Ra and Rb
are cyclic ideals of R such that Ra ∩ Rb ⊆ I, then either a ∈ I or b ∈ I.

(ii) If I is a prime ideal of R, then I is strongly irreducible.

Proof. (i) Let J and K be ideals of R such that J ∩ K ⊆ I; we show that either
J ⊆ I or k ⊆ I. Suppose J * I. Then there exists a ∈ J such that a /∈ I. Then for
all b ∈ K it holds Ra ∩ Rb ⊆ J ∩ K ⊆ I, so b ∈ I, as required.

(ii) Assume that I is prime and let J and K be ideals of R such that J ∩K ⊆ I.
Since IJ ⊆ I ∩ J ⊆ I, I prime gives either J ⊆ I or K ⊆ I, as needed.

Lemma 8. Let I be a Q-ideal of a semiring R. If J,K and L are k-ideals of R
containing I, then (J/I) ∩ (K/I) = L/I if and only if J ∩ K = L.

Proof. Suppose that (J/I)∩ (K/I) = L/I; we show that J ∩K = L. Let x ∈ J ∩K.
Then there exist q1 ∈ Q and a ∈ I such that x = q1 + a, so q1 ∈ Q ∩ J and
q1 ∈ Q ∩ K since J,K are k-ideals; hence q1 + I ∈ (J/I) ∩ (K/I) = L/I by [5,
Proposition 2.2]. Therefore, q1 ∈ L; thus x ∈ L since L is a k-ideal. So, J ∩ K ⊆ L.
Now suppose that z ∈ L. Then z = q2 + b for some q2 ∈ Q and b ∈ I. It follows that
q2 + I ∈ L/I = (J/I) ∩ (K/I), so q2 ∈ K ∩ J ; hence z ∈ K ∩ J . Thus L = J ∩ K.
The other implication is similar.

Theorem 8. Let R be a semiring, I a Q-ideal of R and J a strongly irreducible
k-ideal of R with I ⊆ J . Then J/I is a strongly irreducible ideal of R/I.

Proof. Let N and M be ideals of R/I such that N ∩ M ⊆ J/I. Then there are
k-ideals K,H of R such that N = K/I and M = H/I by [5, Theorem 2.3]; hence
Lemma 8 gives K ∩ H ⊆ J . Since J is strongly irreducible it follows that either
K ⊆ J or H ⊆ J ; hence either N = K/I ⊆ J/I or M = H/I ⊆ J/I by [5, Lemma
2.13 (ii)]. So J/I is strongly irreducible.
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Lemma 9. Let I be a primary ideal of a semiring R with rad(I) = P . Then the
following hold:

(i) IRS is a primary ideal of RS.
(ii) If P ∩ S = ∅, then IRS ∩ R = I.
(iii) If P ∩ S = ∅, then (IRS :RS

PRS) = (I :R P )RS.
(iv) If P ∩ S = ∅ and J is an ideal of R such that JRS ⊆ IRS, then J ⊆ I.

Proof. (i) Let a/s, b/t ∈ RS , where a, b ∈ R, s, t ∈ S, be such that (ab)/(st) ∈ IRS

but a/s /∈ IRS . Then there exist e ∈ I and z ∈ S such that abz = ste ∈ I but
az /∈ I (otherwise, a/s = (az)/(zs) ∈ IRS); hence I primary gives bn ∈ I for some
positive integer n. It follows that bn/tn = (b/t)n ∈ IRs, as needed.

(ii) Clearly, I ⊆ IRS ∩ R. Let a ∈ IRS ∩ R. Then there are elements b ∈ I and
s ∈ S such that a/1 = b/s, so as = b ∈ I; hence I primary gives a ∈ I, as required.

(iii) Clearly, (I :R P )RS ⊆ (IRS :RS
PRS). For the other direction, let a/s ∈

(IRS :RS
PRS), where a ∈ R, s ∈ S. It suffices to show that ab ∈ I for every

b ∈ P . There are elements c ∈ I and t ∈ S such that (a/s)(b/1) = (ab)/s = c/t, so
abt = sc ∈ I but t /∈ P ; hence ab ∈ I, and so the proof is complete.

(iv) Let a ∈ J . As a/1 ∈ JRS , there are elements b ∈ I and t ∈ S such that
a/1 = b/t, so at = b ∈ I; hence I primary gives a ∈ I. Thus J ⊆ I.

Proposition 3. Let I be an ideal of a semiring R. If IRS is a strongly irreducible
ideal of RS, then IRS ∩ R is an irreducible ideal of R.

Proof. Assume that IRS is strongly irreducible and let J and K be ideals of R such
that J ∩ K ⊆ IRS ∩ R. Then JRS ∩ KRS ⊆ IRS by Lemma 4. It follows that
either JRS ⊆ IRS or KRS ⊆ IRS , so either J ⊆ IRS ∩ R or K ⊆ IRS ∩ R, as
required.

Theorem 9. Let I be a strongly irreducible primary ideal of a semiring R such that
Rad(I) ∩ S = ∅. Then IRS is strongly irreducible.

Proof. Assume that I is a strongly irreducible primary ideal of R and let H and G
be ideals of RS such that H ∩ G ⊆ IRS . Then (H ∩ R) ∩ (G ∩ R) ⊆ IRS ∩ R = I
by Lemma 9. So either H ∩ R ⊆ I or G ∩ R ⊆ I since I is strongly irreducible.
Therefore it follows that either G = (G ∩ R)RS ⊆ IRS or H = (H ∩ R)RS ⊆ IRS

by Lemma 4, and hence IRS is strongly irreducible.

Theorem 10. Assume that I is a primary ideal of a semiring R with Rad(I)∩S = ∅
and let IRS be strongly irreducible ideal of RS. Then I is strongly irreducible.

Proof. By Lemma 9 and Proposition 3, IRS ∩ R = I is a strongly irreducible ideal
of R.

Lemma 10. Assume that R is a semiring and let a, b ∈ R. Then the following hold:
(i) Ra∩Rb = (Ra : Rb)b = (Rb : Ra)a. Moreover, if I is an ideal of R such that

I ⊆ Ra, then I = (I : Ra)a.
(ii) cl(Ra) ∩ Rb = (cl(Ra) : Rb)b.
(iii) If I is a k-ideal of R such that I ⊆ Ra, then I = (I : cl(Ra))a.
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Proof. (i) Clearly, (Ra : Rb)b ⊆ Ra∩Rb. For the other direction, if z ∈ Ra∩Rb, then
z = ra = sb for some r, s ∈ R. It is clear that s ∈ (Ra : Rb); hence z ∈ (Ra : Rb)b.
By symmetry it follows that Ra ∩ Rb = (Rb : Ra)a. For the last statement, assume
that I is an ideal of R such that I ⊆ Ra. Then it is clear that (I : Ra)a ⊆ I, and if
x ∈ I ⊆ Ra, then x = ta for some t ∈ R, so t ∈ (I : Ra); thus x = ta ∈ (I : Ra)a, as
required.

(ii) Since the inclusion (cl(Ra) : Rb)b ⊆ (cl(Ra) ∩ Rb is clear, we will prove the
reverse inclusion. Let y ∈ cl(Ra)∩Rb. Then there are elements r, s and t of R such
that y + ra = sa and y = tb, so tb ∈ cl(Ra) gives t ∈ (cl(Ra) : Rb). Therefore, we
must have y ∈ (cl(Ra) : Rb)b.

(iii) It is clear that (I : cl(Ra))a ⊆ I. For the other containment, assume that
z ∈ I ⊆ Ra, so z = ra for some r ∈ R. Let c ∈ cl(Ra). Then c + ta = sa, so
rc + rta = rsa; hence rc ∈ I since I is a k-ideal. It follows that r ∈ (I : cl(Ra));
hence z ∈ (I : cl(Ra))a, as needed.

Theorem 11. Let R be a local semiring with unique maximal k-ideal P and let I
be a strongly irreducible P -primary k-ideal in R. Assume that I $ (I : P ). Then
the following hold:

(i) (I : P ) = cl(Rx) for some x ∈ R.

(ii) For each k-ideal J in R either J ⊆ I or (I : P ) ⊆ J .

Proof. (i) By hypothesis, I $ (I : P ), so there exists x ∈ (I : P ) − I; we show that
(I : P ) = cl(Rx). Suppose not. Let y ∈ (I : P ) − cl(Rx). Since (cl(Rx) : Ry) 6= R,
[12, Corollary 2.2], [4, Lemma 2.1], Lemma 1 and Lemma 10 gives cl(Rx) ∩ Ry =
(cl(Rx) : Ry)y ⊆ yP ⊆ I. However, I strongly irreducible implies that either
cl(Rx) ⊆ I or Ry ⊆ I, hence y ∈ I. Therefore, (I : P ) ⊆ I ∪ cl(Rx). For the other
direction, it suffices to show that cl(Rx) ⊆ (I : P ). Let d ∈ cl(Rx). Then d+tx = ux
for some u, t ∈ R, so d ∈ (I : P ) since x ∈ (I : P ) and (I : P ) is a k-ideals by [4,
Lemma 2.1]. Thus, (I : P ) = I ∪ cl(Rx). Since by [4, Lemma 2.2], if an ideal is the
union of two k-ideals, then it is equal to one of them, we must have (I : P ) ⊆ cl(Rx)
or (I : P ) ⊆ I which is a contradiction. Therefore, (I : P ) = cl(Rx), so (i) holds.

(ii) It may clearly be assumed that J * I, so it remains to show that cl(Rx) =
(I : P ) ⊆ J ; that is, that x ∈ J since J is a k-ideal. For this, if x /∈ J , then let b ∈ J ,
so x /∈ Rb and (Rb : Rx) 6= R. Therefore [12, Corollary 2.2] and Lemma 10 gives
Rx ∩ Rb = (Rb : Rx)x ⊆ xP ⊆ I, hence Rb ⊆ I since I is a strongly irreducible
ideal and Rx * I. Since this holds for each b ∈ J , it follows that J ⊆ I, and this is
a contradiction. Therefore x ∈ J , hence (ii) holds.

Corollary 1. Let I be a strongly irreducible k-ideal in a local Noetherian semiring
R with the unique maximal k-ideal of rad(I) = P , and assume that I 6= P and
P ∩ S = ∅. Then the following hold:

(i) (IRS :R PRS)RS = cl(RSX) for some X ∈ RS.

(ii) For each k-ideal L in RS either L ⊆ IRS or (IRS :RS
PRS) ⊆ L.
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Proof. By Theorem 3, RS is a local semiring with unique maximal k-ideal PRS and
by Lemma 5, Lemma 9 and Theorem 9, IRS is a PRS-primariy strongly irreducible
k-ideal of RS . So (i) and (ii) follows immediately from Theorem 11.

Proposition 4. Let I be a strongly irreducible k-ideal in a local Noetherian semiring
R with the unique maximal k-ideal of rad(I) = P , and assume that I 6= P and
P ∩ S = ∅. Then the following hold:

(i) (I :R P )RS = cl(RSX) for some X ∈ RS.

(ii) For each k-ideal J in R either J ⊆ I or (I : P )RS ⊆ JRS.

Proof. This follows from Lemma 9 and Corollary 1.

Proposition 5. Let R be a local semiring with unique maximal k-ideal P and
let I be a strongly irreducible P -primary k-ideal of R with P 6= I. Then I
and (I : P ) are comparable (under containment) to all ideals in R; in fact,
I =

⋃
{J : J is a k-ideal in R and J $ (I : P )} and (I : P ) =

⋂
{J :

J is a k-ideal in R and I $ J}.

Proof. As (I : P ) is a k-ideal of R, we must have (I : P ) =
⋂
{J :

J is a k-ideal in R and I $ J} by Theorem 11 (ii). Also, if J is a k-ideal in R
such that J $ (I : P ), then (I : P ) * J , so J ⊆ I by Proposition 4 (ii); hence
I =

⋃
{J : J is a k-ideal in R and J $ (I : P )} since I is a k-ideal.

Theorem 12. Let I be an ideal of a local Noetherian semiring R with rad(I)∩S = ∅.
Then I is a non-prime strongly irreducible k-ideal if and only if there exist k-ideals
J and P of R such that I $ J ⊆ P and: (1) P is prime; (2) I is P -primary;
and, (3) for all k-ideals L in R either L ⊆ I or JRS ⊆ LRS. Also if this holds,
then JRS = (IRS :RS

PRS). In particular, a local Noetherian semiring R contains
a non-prime strongly irreducible k-ideal if and only if there exists a k-ideal of R
satisfying these conditions.

Proof. Proposition 4 and Proposition 5 gives a non-prime strongly irreducible k-
ideal in a local Notherian semiring satisfies the stated conditions. For the converse,
assume that I is a P -primary k-ideal of R. By Theorem 10, it suffices to show that
IRS is strongly irreducible. Let L and T be ideals in RS such that L∩ T ⊆ IRS . If
L * IRS and T * IRS , then it follows from Lemma 4 and Lemma 9 that (L∩R) * I
and (T ∩ R) * I. By assumption, IRS ⊆ JRS ⊆ T ∩ L, and this is a contradiction.
Therefore, either L ⊆ IRS or T ⊆ IRS, hence IRS is strongly irreducible.

Finally, the ideal JRS is clearly uniquely determined by the properties (1) IRS $
JRS ⊆ PRS and (2) for all k-ideals L in RS either L ⊆ IRS or JRS ⊆ L. Since
(IRS : PRS) also has these properties by Corollary 1 (ii), JRS = (IRS : PRS).

Theorem 13. Let I be an irreducible P -primary k-ideal over a local Noetherian
semiring R with the unique maximal k-ideal of P , and assume that I 6= P and
P ∩ S = ∅. Then I is strongly irreducible if and only if I comparable to all k-ideals
of R.



IDEAL THEORY IN COMMUTATIVE SEMIRINGS 23

Proof. By Corollary 1 and Proposition 4, it is enough to show that an irreducible
ideal that is comparable to all k-ideals in R is strongly irreducible. To see that, by
Theorem 12, it suffices to show that (I : P ) is comparable to all k-ideals in R. For
this, if J is a k-ideal of R that is not contained in I, then I $ J , by hypothesis.
Since I is irreducible, it follows that (I : P ) ⊆ J .

References

[1] Allen P. Ideal theory in semirings. Dissertation, Texas Christian University, 1967.

[2] Allen P.J. A fundamental theorem of homomorphisms for simirings. Proc. Amer. Math. Soc.,
1969, 21, 412–416.

[3] Allen P.J., Neggers J. Ideal theory in commutative A-semirings. Kyungpook Math. J., 2006,
46, 261–271.

[4] Ebrahimi Atani S. On k-weakly primary ideals over semirings. Sarajevo J. of Math., 2007,
15, 9–13.

[5] Ebrahimi Atani S. The ideal theory in quotients of commutative semirings. Glasnik Matema-
ticki, 2007, 42, 301–308.

[6] Ebrahimi Atani S. On primal and weakly primal ideals over commutative semirings. Glasnik
Matematicki, to appear.

[7] Gupta V., Chaudhari J.N. Some remarks on semirings. Radovi Matematicki, 2003, 12,
13–18.

[8] Gupta V., Chaudhari J.N. Some remarks on Right π-regular semirings. Sarajevo J. of Math.,
2006, 14, 3–9.

[9] Heinzer W.J., Ratlif L.J., Rush D.E. Strongly Irreducible Ideals of a Commutative Ring.
J. Pure Appl. Algebra, 2002, 166, 267–275.

[10] Mosher J.R. Generalized quotients of semirings. Compositio Math., 1970, 22, 275–281.

[11] Murta K. On the quotient semigroup of non-commutative semigroup. Osaka Math. J., 1950,
2, 1–5.

[12] Sen M.K., Adhikari M.R. On maximal k-ideals of simirings. Proc. Amer. Math. Soc., 1993,
118, 699–703.

[13] Sharp R.Y. Steps in Commutative Algebra. Cambridge University Press, Cambriddge, 1990.

Reza Ebrahimi Atani

Electrical Engineering Department, University of Guilan
E-mail: rebrahimi@guilan.ac.ir

Shahabaddin Ebrahimi Atani

Department of Mathematics, University of Guilan
E-mail: ebrahimi@guilan.ac.ir

Received January 10, 2007


