Classification of $A f f(2, \mathbb{R})$-orbit's dimensions for quadratic differential system

N. Gherstega, V. Orlov

Abstract

Affine invariant conditions for $A f f(2, \mathbb{R})$-orbit's dimensions are defined for two-dimensional autonomous quadratic differential system.

Mathematics subject classification: 34C14.
Keywords and phrases: Differential system, Lie algebra of the operators, $A f f(2, \mathbb{R})$-orbit.

Consider two-dimensional quadratic differential system

$$
\begin{equation*}
\frac{d x^{j}}{d t}=a^{j}+a_{\alpha}^{j} x^{\alpha}+a_{\alpha \beta}^{j} x^{\alpha} x^{\beta} \quad(j, \alpha, \beta=\overline{1,2}), \tag{1}
\end{equation*}
$$

where the coefficient tensor $a_{\alpha \beta}^{j}$ is symmetrical in lower indices in which the complete convolution holds.

Consider also the group $\operatorname{Aff}(2, \mathbb{R})$ of affine transformations given by the equalities:

$$
\bar{x}^{1}=\alpha x^{1}+\beta x^{2}+h^{1}, \quad \bar{x}^{2}=\gamma x^{1}+\delta x^{2}+h^{2}, \quad \Delta=\operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \neq 0,
$$

where $\alpha, \beta, \gamma, \delta, h^{1}, h^{2}$ take real values.
Further will use the notations

$$
\begin{align*}
& a^{1}=a, \quad a^{2}=b, \quad a_{1}^{1}=c, \quad a_{2}^{1}=d, \quad a_{1}^{2}=e, \quad a_{2}^{2}=f, \quad a_{11}^{1}=g, \quad a_{12}^{1}=h, \\
& a_{22}^{1}=k, \quad a_{11}^{2}=l, \quad a_{12}^{2}=m, \quad a_{22}^{2}=n, \quad x^{1}=x, \quad x^{2}=y . \tag{2}
\end{align*}
$$

According to [1] and taking into consideration (2), the representation operators of the group $\operatorname{Aff}(2, \mathbb{R})$ in the space of coefficients and variables of the system (1) will

[^0]take the form
\[

$$
\begin{gather*}
X_{1}=x \frac{\partial}{\partial x}+a \frac{\partial}{\partial a}+d \frac{\partial}{\partial d}-e \frac{\partial}{\partial e}-g \frac{\partial}{\partial g}+k \frac{\partial}{\partial k}-2 l \frac{\partial}{\partial l}-m \frac{\partial}{\partial m}, \\
X_{2}=y \frac{\partial}{\partial x}+b \frac{\partial}{\partial a}+e \frac{\partial}{\partial c}+(f-c) \frac{\partial}{\partial d}-e \frac{\partial}{\partial f}+l \frac{\partial}{\partial g}+ \\
+(m-g) \frac{\partial}{\partial h}+(n-2 h) \frac{\partial}{\partial k}-l \frac{\partial}{\partial m}-2 m \frac{\partial}{\partial n}, \\
X_{3}=x \frac{\partial}{\partial y}+a \frac{\partial}{\partial b}-d \frac{\partial}{\partial c}+(c-f) \frac{\partial}{\partial e}+d \frac{\partial}{\partial f}-2 h \frac{\partial}{\partial g}-k \frac{\partial}{\partial h}+ \\
\quad+(g-2 m) \frac{\partial}{\partial l}+(h-n) \frac{\partial}{\partial m}+k \frac{\partial}{\partial n}, \tag{3}\\
X_{4}=y \frac{\partial}{\partial y}+b \frac{\partial}{\partial b}-d \frac{\partial}{\partial d}+e \frac{\partial}{\partial e}-h \frac{\partial}{\partial h}-2 k \frac{\partial}{\partial k}+l \frac{\partial}{\partial l}-n \frac{\partial}{\partial n}, \\
X_{5}= \\
\frac{\partial}{\partial x}-c \frac{\partial}{\partial a}-e \frac{\partial}{\partial b}-2 g \frac{\partial}{\partial c}-2 h \frac{\partial}{\partial d}-2 l \frac{\partial}{\partial e}-2 m \frac{\partial}{\partial f}, \\
X_{6}= \\
\frac{\partial}{\partial y}-d \frac{\partial}{\partial a}-f \frac{\partial}{\partial b}-2 h \frac{\partial}{\partial c}-2 k \frac{\partial}{\partial d}-2 m \frac{\partial}{\partial e}-2 n \frac{\partial}{\partial f} .
\end{gather*}
$$
\]

The operators (3) form a six-dimensional Lie algebra [1]. Let $\tilde{a}=(a, b, \ldots, n) \in$ $E^{12}(\tilde{a})$, where $E^{12}(\tilde{a})$ is the Euclidean space of the coefficients of the right-hand sides of the system (1). Denote by $\tilde{a}(q)$ the point from $E^{12}(\tilde{a})$ that corresponds to the system, obtained from the system (1) with coefficients \tilde{a} by a transformation $q \in \operatorname{Aff}(2, \mathbb{R})$.

Definition 1. Call the set $O(\tilde{a})=\{\tilde{a}(q) \mid q \in \operatorname{Aff}(2, \mathbb{R})\}$ the Aff $(2, \mathbb{R})$ - orbit of the point a for the system (1).

It is known from [1] that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{R}} O(\tilde{a})=\operatorname{rank} M_{1} \tag{4}
\end{equation*}
$$

where M_{1} is the following matrix

$$
M_{1}=\left(\begin{array}{cccccccccccc}
a & 0 & 0 & d & -e & 0 & -g & 0 & k & -2 l & -m & 0 \tag{5}\\
b & 0 & e & -c+f & 0 & -e & l & -g+m & -2 h+n & 0 & -l & -2 m \\
0 & a & -d & 0 & c-f & d & -2 h & -k & 0 & g-2 m & h-n & k \\
0 & b & 0 & -d & e & 0 & 0 & -h & -2 k & l & 0 & -n \\
-c & -e & 2 g & -2 h & -2 l & -2 m & 0 & 0 & 0 & 0 & 0 & 0 \\
-d & -f & 2 h & -2 k & -2 m & -2 n & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

constructed on coordinate vectors of operators (3). Denote by $\Delta_{i, j, k, l, m, n}$ the minor of the 6 th order of the matrix M_{1}, constructed on columns i, j, k, l, m, n $(i, j, k, l, m, n \in\{1, \ldots, 12\})$.

For the system (1) from [2], [4] are known the following center-affine comitants and invariants

$$
\begin{gather*}
I_{1}=a_{\alpha}^{\alpha}, I_{2}=a_{\beta}^{\alpha} a_{\alpha}^{\beta}, I_{3}=a_{p}^{\alpha} a_{\alpha q}^{\beta} a_{\beta \gamma}^{\gamma} \varepsilon^{p q}, I_{4}=a_{p}^{\alpha} a_{\beta q}^{\beta} a_{\alpha \gamma}^{\gamma} \varepsilon^{p q}, \\
I_{5}=a_{p}^{\alpha} a_{\gamma q}^{\beta} a_{\alpha \beta}^{\gamma} \varepsilon^{p q}, I_{7}=a_{p r}^{\alpha} a_{\alpha q}^{\beta} a_{\beta s}^{\gamma} a_{\gamma \delta}^{\delta} \varepsilon^{p q} \varepsilon^{r s}, I_{8}=a_{p r}^{\alpha} a_{\alpha q}^{\beta} a_{\delta s}^{\gamma} a_{\beta \gamma}^{\delta} \varepsilon^{p q} \varepsilon^{r s}, \\
I_{9}=a_{p r}^{\alpha} a_{\beta q}^{\beta} a_{\gamma s}^{\gamma} a_{\alpha \delta}^{\delta} \varepsilon^{p q} \varepsilon^{r s}, K_{3}=a_{\beta}^{\alpha} a_{\alpha \gamma}^{\beta} x^{\gamma}, K_{4}=a_{\gamma}^{\alpha} a_{\alpha \beta}^{\beta} x^{\gamma}, \\
K_{5}=a_{\alpha \beta}^{p} x^{\alpha} x^{\beta} x^{q} \varepsilon^{p q}, K_{6}=a_{\alpha \beta}^{\alpha} a_{\gamma \delta}^{\beta} x^{\gamma} x^{\delta}, K_{7}=a_{\beta \gamma}^{\alpha} a_{\alpha \delta}^{\beta} x^{\gamma} x^{\delta}, \tag{6}\\
K_{11}=a_{\alpha}^{p} a_{\beta \gamma}^{\alpha} x^{\beta} x^{\gamma} x^{q} \varepsilon_{p q}, K_{12}=a_{\beta}^{\alpha} a_{\alpha \gamma}^{\beta} a_{\delta \mu}^{\gamma} x^{\delta} x^{\mu}, K_{13}=a_{\gamma}^{\alpha} a_{\alpha \beta}^{\beta} a_{\delta \mu}^{\gamma} x^{\delta} x^{\mu}, \\
K_{17}=a_{\beta \nu}^{\alpha} a_{\alpha \gamma}^{\beta} a_{\delta \mu}^{\gamma} x^{\delta} x^{\mu} x^{\nu}, K_{21}=a^{p} x^{q} \varepsilon_{p q}, K_{23}=a^{p} a_{\alpha \beta}^{q} x^{\alpha} x^{\beta} \varepsilon_{p q} .
\end{gather*}
$$

According to [3], write a transvectant of index k for binary forms f and φ as follows

$$
\begin{equation*}
(f, \varphi)^{(k)}=\sum_{h=0}^{k}(-1)^{h}\binom{k}{h} \frac{\partial^{k} f}{\partial x^{k-h} \partial y^{h}} \frac{\partial^{k} \varphi}{\partial x^{h} \partial y^{k-h}} \tag{7}
\end{equation*}
$$

According to [4], the transvectant (7) on two comitants of the system (1) is a comitant (invariant) of this system too.

For the system (1) from [4] will use the following transvectants

$$
\begin{equation*}
T_{5}=(C, K)^{(2)}, T_{16}=(C, D)^{(1)} \tag{8}
\end{equation*}
$$

where $C=K_{5}, D=I_{1} K_{1} K_{2}+K_{2} K_{3}-K_{2} K_{4}+\frac{1}{2} I_{1}^{2} K_{5}-\frac{1}{2} I_{2} K_{5}-I_{1} K_{11}-2 K_{1}^{2} K_{21}+$ $4 K_{6} K_{21}-2 K_{7} K_{21}, K=\frac{1}{2}\left(K_{1}^{2}-K_{7}\right)$.

Denote by $\tilde{a}(\tau)$ the point from the space $E^{12}(\tilde{a})$, that corresponds to the system, obtained from the system (1) with coefficients \tilde{a} by the transformation of translation $\tau: x=\bar{x}+x_{0}, y=\bar{y}+y_{0}$. It is evident $\tilde{a}(\tau)=\tilde{a}\left(x_{0}, y_{0}\right)$. According to [6], if $I(\tilde{a})$ is the center-affine invariant of the system (1), then the polynomial

$$
K(\tilde{a}, x, y)=\left.I\left(\tilde{a}\left(x_{0}, y_{0}\right)\right)\right|_{\left\{x_{0}=x, y_{0}=y\right\}}
$$

is a affine comitant of this system. Then considering (6), we construct the following affine comitants:

$$
\begin{equation*}
A f_{i}(\tilde{a}, x, y)=\left.I_{i}\left(\tilde{a}\left(x_{0}, y_{0}\right)\right)\right|_{\left\{x_{0}=x, y_{0}=y\right\}} \quad(i=3,4,5) \tag{9}
\end{equation*}
$$

Lemma 1. For $\beta \neq 0$, the rang of matrix M_{1} is equal to six, where

$$
\begin{equation*}
\beta=27 I_{8}-I_{9}-18 I_{7} \tag{10}
\end{equation*}
$$

and I_{8}, I_{9}, I_{7} are from (6).
Proof. We suppose the contrary $\beta \neq 0$, and all minors of the sixth order of the matrix M_{1} are zero. We observe that β is the discriminant of the cubic form K_{5}. It is known [2] that for $\beta \neq 0$ there exists a linear transformation of the system (1). Such that the comitant K_{5} from (6) evaluated for the transformed system takes the form:

$$
\begin{equation*}
K_{5}=x\left(x^{2}+\delta y^{2}\right),(\delta= \pm 1, l=-1, k=0, g=2 m, n=2 h-\delta) . \tag{11}
\end{equation*}
$$

In case of (10) we obtain $\Delta_{3,4,7,8,9,10}=-16 \delta h^{4}=0, \delta \neq 0$, this implies $h=0$. Taking into consideration $h=0$, we obtain $\Delta_{3,6,7,9,11,12}=-16 \delta^{4} \mathrm{~m}^{2}=0$, this implies $m=0$. Taking into consideration $m=0$, we obtain $\Delta_{5,6,9,10,11,12}=8 \delta^{4} \neq 0$. We obtain a contradiction. Lemma 1 is proved.

Lemma 2. For $K_{5} \not \equiv 0, \beta=0$, the rang of matrix M_{1} is equal to six if and only if

$$
\begin{equation*}
A f_{5}^{2}+T_{5}^{2}+T_{16}^{2}+\text { Kom }^{2} \not \equiv 0, \tag{12}
\end{equation*}
$$

where

$$
\begin{gather*}
K o m \equiv I_{1} K_{1}^{2}\left(2 K_{1}^{2} K_{2}-2 K_{2} K_{6}-K_{1} K_{11}\right)-2 K_{1}^{3}\left(K_{2} K_{4}+2 K_{7} K_{21}\right)+ \\
+4 K_{1} K_{6}^{2} K_{21}+K_{1}^{2}\left[2 K_{4} K_{11}+K_{2} K_{13}+2 K_{23}\left(K_{6}+K_{7}\right)\right]-4 K_{6}^{2} K_{23} \tag{13}
\end{gather*}
$$

and $I_{1}, K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, K_{7}, K_{11}, K_{12}, K_{13}, K_{16}, K_{17}, K_{21}, K_{23}$ are from (6), T_{5}, T_{16} are from (8), β is from (9), $A f_{5}$ is affine comitant of the system (1).

Proof. It is known from [2] that for $K_{5} \not \equiv 0$ and $\beta=0$ there exists such affine transformation exists that the comitant K_{5} will take the form:

$$
\begin{equation*}
K_{5}=x^{2}(x+\delta y),(\delta=0,1 ; l=-1, k=0, g=2 m+\delta, n=2 h) \tag{14}
\end{equation*}
$$

Let (12) be not true. It is easy to verify that in case (14) $T_{5} \equiv 8 h^{2} \delta y+8 h(3 h-$ $\left.2 m \delta-\delta^{2}\right) x$, from $T_{5} \equiv 0$ we have $h=0$. Taking into consideration $h=0$ in the case (14), we obtain $A f_{5} \equiv-d\left(\delta^{2}+4 m \delta+5 m^{2}\right)$. From $A f_{5} \equiv 0$ it follows

$$
\begin{equation*}
d[\delta+(1-\delta) m]=0, \quad(\delta=0,1) \tag{15}
\end{equation*}
$$

In the case $\delta=1$ from (15) we obtain $d=0, T_{16} \equiv 6 m\left(c f+e f-f^{2}-2 a m-2 b m\right) x^{4}$, and $K o m$ is the $C T$ comitant [5], $K o m \equiv(1+3 m)^{3}\left(c f+e f-f^{2}-2 a m-2 b m\right) x^{6}$. It is evident if $T_{16} \equiv K o m \equiv 0$, we obtain:

$$
\begin{equation*}
h=d=c f+e f-f^{2}-2 a m-2 b m=0 . \tag{16}
\end{equation*}
$$

In the case when $\delta=0$ from (15) we obtain: $m=0, K o m \equiv 0, T_{16} \equiv 6 d f x^{4}-$ $6 d^{2} x^{3} y$ or $d=0, K o m \equiv 27 m^{3}\left(c f-f^{2}-2 a m\right) x^{6}, T_{16} \equiv 6 m\left(c f-f^{2}-2 a m\right) x^{4}$. It is evident if $T_{16} \equiv K o m \equiv 0$ it follows:

$$
\begin{equation*}
h=d=m\left(c f-f^{2}-2 a m\right)=0 . \tag{17}
\end{equation*}
$$

It is easy to verify that in cases (16), (17) all $6^{\text {th }}$ order minors of the matrix M_{1} are equal to zero. The necessity of Lemma 2 is proved.

Prove the sufficiency. In the case when (14) holds for $\delta=1$ we obtain: $\Delta_{3,4,7,8,11,12}=-8 h^{4}$, for $h=0 \Delta_{1,3,4,6,7,11}=2 d^{3}(1+3 m)^{2}, \Delta_{4,5,6,10,11,12}=-8 d m^{4}$;
for $h=d=0 \Delta_{2,5,6,10,11,12}=4 m^{3}\left(c f+e f-f^{2}-2 a m-2 b m\right), \Delta_{2,3,5,7,10,11}=$ $2(1+2 m)(1+3 m)\left(c f+e f-f^{2}-2 a m-2 b m\right)$.

In the case when (14) holds for $\delta=0$ we obtain: $\Delta_{3,4,7,8,10,11}=-24 h^{4}$, for $h=0$ $\Delta_{1,3,4,6,7,11}=18 d^{3} m^{2}$; for $h=m=0, \Delta_{1,3,4,5,7,10}=2 d^{3}$. If $h=d=0$, we obtain $\Delta_{2,3,5,7,10,11}=12 m^{2}\left(c f-f^{2}-2 a m\right)$. Lemma 2 is proved.

Lemma 3. For $K_{5} \equiv 0$, the rang of matrix M_{1} is equal to six if and only if $A f_{4}\left(A f_{4}-A f_{3}\right) \not \equiv 0$, where $A f_{3}, A f_{4}$ are affine comitants of the system (1).

Proof. For $K_{5} \equiv 0$, according to (2), (6) $(l=k=0, g=2 m, n=2 h)$ we obtain that $A f_{4}\left(A f_{4}-A f_{3}\right) \equiv 27\left(e h^{2}+c h m+f h m-d m^{2}\right)^{2}$, and all $6^{\text {th }}$ order minors of the matrix M_{1} consist of the factor expession $e h^{2}+c h m-f h m-d m^{2}$. Taking into consideration the above mentioned proof of the Lemma 3 follows.

From Lemmas 1,2,3 follows:
Theorem. The dimension of $\operatorname{Aff}(2, \mathbb{R})$-orbit of the system (1) is equal to six if and only if

$$
\begin{gathered}
\beta \neq 0, \text { or } \\
\beta=0, K_{5}\left(A f_{5}^{2}+T_{5}^{2}+T_{16}^{2}+\text { Kom }^{2}\right) \not \equiv 0, \text { or } \\
\beta=0, K_{5} \equiv 0, A f_{4}\left(A f_{4}-A f_{3}\right) \not \equiv 0,
\end{gathered}
$$

where K_{5} from (6), T_{5}, T_{16} from (8), β from (9), K om from (13), $A f_{3}, A f_{4}, A f_{5}$ from (9) are affine comitants of the system (1).

The authors tender thank Professor N.I. Vulpe for help and effective discussion of the results of the paper.

References

[1] Popa M.N. Algebraic methods for differential systems. Editura the Flower Power, Universitatea din Piteşti, Seria Matematică Aplicată şi Industrială, 2004, 15 (in Romanian).
[2] Sibirsky K.S. Introduction to algebraic theory of invariants of differential equations, Chisinau, Stiinta, 1982 (in Russian, published in English in 1988).
[3] Olver P.J. Classical Invariant Theory. London Mathematical Society student texts: 44, Cambridge University Press, 1999.
[4] Boularas D., Calin Iu., Timochouk L., Vulpe N. T-comitants of quadratic systems: a study via the translation invariants. Delft University of Technology, Report 96-90, Delft 1996.
[5] Schlomiuk D., Vulpe N. Geometry of quadratic differential systems in the neighborhood of infinity. J. Differential Equations, 2005, 215, 357-400.
[6] Boularas D. Computation of affine covariants of quadratic bivariate differential systems. J. Complexity, 2000, 16, No. 4, 691-715.

Institute of Mathematics and Computer Sciences
Received July 10, 2008
Academy of Sciences of Moldova
str. Academiei 5, MD-2028 Chisinau
Moldova
E-mail: gherstega@gmail.com, orlovictor@gmail.com

[^0]: (c) N. Gherstega, V. Orlov, 2008

