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Symmetric random evolution in the space R
6

Alexander D. Kolesnik

Abstract. A closed-form expression for the transition density of a symmetric Marko-
vian random evolution in the Euclidean space R

6 is presented.
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This note is motivated by the recent works on random motions at finite speed
(also called the random flight, isotropic transport process or, in a more general sense,
random evolution) in the Euclidean space R

m. Such processes in the Euclidean
spaces of different dimensions have thoroughly been examined in a series of works.
In the study of such processes the most desirable goal is undoubtedly their explicit
distributions in the cases (very few indeed) when such distributions can be obtained.
The explicit form of the distribution of a two-dimensional symmetric random motion
at finite speed was derived (by different methods) by Stadje [9], Masoliver et al. [7],
Kolesnik and Orsingher [6], Kolesnik [2]. The distribution of a random flight in R

3

was given by Tolubinsky [11] and Stadje [10] in fairly complicated integral forms.
Finally, the explicit form of the distribution of a random flight in the space R

4 was
obtained by Kolesnik [4] and by Orsingher and De Gregorio [8]. The random flights
in arbitrary higher dimensions were examined by Kolesnik [1, 3, 5] and by Orsingher
and De Gregorio [8], however no new distributions were obtained in these works for
higher dimensions m ≥ 5.

Since the exact probability laws of random flights in lower dimensions were de-
rived by fairly complicated and sometimes tricky methods, the possibility of obtain-
ing the explicit form of the distributions seemed very doubtful in higher dimensions
m ≥ 5.

However, a general and unified method of studying the random flights in ar-
bitrary dimension was suggested in the works by Kolesnik [1, 3, 5] based on the
analysis of the integral transforms of their distributions. This method, applied to
the six-dimensional random motion, enables us to obtain the explicit probability law
of the process and this result is presented here. While this method works in any
dimension, the derivation of the explicit probability law in such a fairly high dimen-
sion m = 6 looks like a ”lucky accident” which, apparently, cannot be extended in
higher dimensions.

The distribution derived has a considerably more complicated form in comparison
with those obtained for the dimensions 2 and 4. It is presented as a series of the finite
sums of the Gauss hypergeometric functions which seemingly cannot be reduced to
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a more elegant formula. Nevertheless, this formula is of a certain interest because
it gives the explicit form of the distribution which can be directly used for practical
calculations and, on the other hand, it is a new step toward the most desirable
goal, namely, constructing a general theory of distributions for random flights in the
Euclidean spaces R

m of arbitrary dimension m ≥ 2.

We consider the stochastic motion performed by a particle starting its motion
from the origin 0 = (0, 0, 0, 0, 0, 0) of the six-dimensional Euclidean space R

6 at time
t = 0. The particle is endowed with constant, finite speed c (note that c is treated as
the constant norm of the velocity). The initial direction is a six-dimensional random
vector with uniform distribution (Lebesgue probability measure) on the unit sphere

S1 =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R
6 : ‖x‖2 =

6
∑

i=1

x2
i = 1

}

.

The particle changes direction at random instants which form a homogeneous Pois-
son process of rate λ > 0. At these moments it instantaneously takes on the new
direction with uniform distribution on S1, independently of its previous motion.

Let X(t) = (X1(t),X2(t),X3(t),X4(t),X5(t),X6(t)) be the position of the par-
ticle at an arbitrary time t > 0 and denote by dx the infinitesimal element in the
space R

6.
At any time t > 0 the particle, with probability 1, is located in the six-

dimensional ball of radius ct

Bct =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R
6 : ‖x‖2 =

6
∑

i=1

x2
i ≤ c2t2

}

.

The distribution Pr {X(t) ∈ dx} , x ∈ Bct, t ≥ 0, consists of two components.
The singular component corresponds to the case when no Poisson event occurs in
the interval (0, t) and is concentrated on the sphere

Sct = ∂Bct =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R6 : ‖x‖2 =
6

∑

i=1

x2
i = c2t2

}

.

In this case the particle is located on the sphere Sct and the probability of this event
is

Pr {X(t) ∈ Sct} = e−λt.

If one or more than one Poisson events occur, the particle is located strictly
inside the ball Bct, and the probability of this event is

Pr {X(t) ∈ int Bct} = 1 − e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior

int Bct =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R
6 : ‖x‖2 =

6
∑

i=1

x2
i < c2t2

}

,
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and forms its absolutely continuous component.

Therefore there exists the density p(x, t) = p(x1, x2, x3, x4, x5, x6; t),
x ∈ int Bct, t > 0, of the absolutely continuous component of the distribution
function Pr {X(t) ∈ dx}. Our principal result is given by the following theorem.

Theorem. For any t > 0 the density p(x, t) has the form

p(x, t) =
16λte−λt

π3(ct)6

(

1 −
5

6

‖x‖2

c2t2

)

+

+
e−λt

2π3(ct)6

∞
∑

n=2

(λt)n(n + 1)!

n+1
∑

k=0

(k + 1)(k + 2)(n + 2k + 1)

3k(n − k + 1)!(n + k − 2)!
×

×F

(

−(n + k − 2), k + 3; 3;
‖x‖2

c2t2

)

(1)

where ‖x‖2 =
6

∑

i=1

x2
i
,

F (ξ, η; ζ; z) = 2F1(ξ, η; ζ; z) =

∞
∑

k=0

(ξ)k(η)k
(ζ)k

zk

k!

is the Gauss hypergeometric function and

(a)k = a(a + 1) . . . (a + k − 1) =
Γ(a + k)

Γ(a)

is the standard Pochgammer symbol.

It’s interesting to note that, since the first coefficient of the hypergeometric
function in formula (1) is always negative for arbitrary n and k, the hypergeometric
function itself represents, in fact, some polynomial. This is a characteristic feature
of random flights in even-dimensional spaces.

The proof of the theorem is substantially based on the ideas and methods devel-
oped in the works by Kolesnik [1, 3, 5]. In particular, the applications of formulae
(2.13) of [1] or (9) of [5] yield an explicit form of the Laplace transforms of the con-
ditional characteristic functions corresponding to an arbitrary number of changes of
directions, which then can be easily inverted. This gives the easy-treatable formulas
for the conditional characteristic functions of the process from which the closed-
form expressions for the conditional densities can be easily obtained by applying the
classical Hankel inversion formula. By using then the total probability formula we
immediately obtain our main result (1).
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