
BULETINUL ACADEMIEI DE ŞTIINŢE
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1 Introduction

The global attractors play a very important role in the qualitative study of
difference equations (both autonomous and non-autonomous). The present work is
dedicated to the study of global attractors of quasi-linear non-autonomous difference
equations

un+1 = A(σ(n, ω))un + F (un, σ(n, ω)), (1)

where Ω is a metric space (generally speaking non-compact), (Ω, Z+, σ) is a dynam-
ical system with discrete time Z+, A ∈ C(Ω, [E]) and the function F ∈ C(E×Ω, E)
satisfies ”the condition of smallness” (see condition (ii) in Theorem 4). An analo-
gous problem was studied by Cheban D. and Mammana C. [6] when the space Ω is
compact and Cheban D., Mammana C. and Michetti E. [8] in general case.

The obtained results are applied while studying a special class of triangular
maps describing a discrete-time growth model of the Solow type where workers and
shareholders have different but constant saving rates and the population growth rate
dynamic is described by the logistic equation (see Brianzoni S., Mammana C. and
Michetti E. [3]). The resulting system is given by T = (T2, T1), where

T2(u, ω) =
(1 − δ)u + (uǫ + 1)

1−ǫ

ǫ (sw + sru
ǫ)

1 + ω

and
T1(ω) = λω(1 − ω)
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(for all (u, ω) ∈ R+ × [0, 1]), δ ∈ (0, 1) is the depreciation rate of capital, sw ∈ (0, 1)
and sr ∈ (0, 1) are the constant saving rates for workers and shareholders respec-
tively, ǫ ∈ (−∞, 1), ǫ 6= 0, is a parameter related to the elasticity of substitution
between labor and capital.

This paper is organized as follows.
In Section 2 we establish the relation between triangular maps and non-

autonomous dynamical systems with discrete time.
Section 3 is devoted to the study of the existence of compact global attractors of

skew-product dynamical systems. The sufficient conditions of existence of compact
global attractors for skew-product dynamical systems with non-compact base are
given (Theorem 2).

In Section 4 we study the linear non-autonomous dynamical systems with dis-
crete time and prove that they admit a unique compact invariant manifold and its
description is given (Theorem 3).

In Section 5 we prove the existence of compact global attractors of quasi-linear
dynamical systems (Theorem 5) and give the description of the structure of these
attractors (Theorem 6).

In Section 6 we give some applications of general results from Sections 2–5 to
the study of special class of the triangular maps T : R2

+ → R2
+ describing a trian-

gular growth model with logistic population growth rate as studied in Brianzoni S.,
Mammana C. and Michetti E. [3].

2 Triangular maps and non-autonomous dynamical systems

Let W and Ω be two complete metric spaces and denote by X := W × Ω
their Cartesian product. Recall (see, for example, [16–18]) that a continuous map
F : X → X is called triangular if there are two continuous maps f : W × Ω → W
and g : Ω → Ω such that F = (f, g), i.e. F (x) = F (u, ω) = (f(u, ω), g(ω)) for all
x =: (u, ω) ∈ X.

Consider a system of difference equations
{

un+1 = f(un, ωn)
ωn+1 = g(ωn),

(2)

for all n ∈ Z+, where Z+ is the set of all non-negative integer numbers.
Along with system (2) we consider the family of equations

un+1 = f(un, g
nω) (ω ∈ Ω), (3)

which is equivalent to system (2). Let ϕ(n, u, ω) be a solution of equation (3)
passing through the point u ∈ W for n = 0. It is easy to verify that the map
ϕ : Z+ ×W × Ω →W ((n, u, ω) 7→ ϕ(n, u, ω) ) satisfies the following conditions:

1. ϕ(0, u, ω) = u for all u ∈W and ω ∈ Ω;

2. ϕ(n+m,u, ω) = ϕ(n,ϕ(m,u, ω), σ(m,ω)) for all n,m ∈ Z+, u ∈W and ω ∈ Ω,
where σ(n, ω) := gnω;
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3. the map ϕ : Z+ ×W × Ω →W is continuous.

Denote by (Ω, Z+, σ) the semi-group dynamical system generated by positive
powers of the map g : Ω → Ω, i.e. σ(n, ω) := gnω for all n ∈ Z+ and ω ∈ Ω.

Recall [5,19] that a triple 〈W,ϕ, (Ω, Z+, σ)〉 (or briefly ϕ) is called a cocycle over
the semi-group dynamical system (Ω, Z+, σ) with fiber W .

Let X := W ×Ω and (X,Z+, π) be a semi-group dynamical system on X, where
π(n, (u, ω)) := (ϕ(n, u, ω), σ(n, ω)) for all u ∈W and ω ∈ Ω, then (X,Z+, π) is called
[19] a skew-product dynamical system, generated by the cocycle 〈W,ϕ, (Ω, Z+, σ)〉.

Remark 1. Thus, the reasoning above shows that every triangular map generates
a cocycle and, obviously, vice versa, i.e. having a cocycle 〈W,ϕ, (Ω, Z+, σ)〉 we can
define a triangular map F : W × Ω →W × Ω by the equality

F (u, ω) := (f(u, ω), g(ω)),

where f(u, ω) := ϕ(1, u, ω) and g(ω) := σ(1, ω) for all u ∈ W and ω ∈ Ω. The
semi-group dynamical system defined by the positive powers of the map F : X →
X (X := W × Ω) coincides with the skew-product dynamical system, generated by
cocycle 〈W,ϕ, (Ω, Z+, σ)〉

Taking into consideration this remark we can study triangular maps in the frame-
work of cocycles with discrete time.

Let (X,Z+, π) (respectively, 〈W,ϕ, (Ω, Z+, σ)〉) be a semi-group dynamical sys-
tem (respectively, a cocycle).

A map γ : Z → X is called an entire trajectory of the semi-group dynamical
system (X,Z+, σ) passing through the point x ∈ X (respectively, u ∈W ) if γ(0) = x
and γ(n+m) = π(m,γ(n)) for all n ∈ Z and m ∈ Z+.

Denote by Φω(σ) the set of all the entire trajectories of the semi-group dynamical
system (Ω, Z+, σ) passing through the point ω ∈ Ω at the initial moment n = 0 and
Φ(σ) :=

⋃{Φω(σ) | ω ∈ Ω}.
A map µ : Z →W is called an entire trajectory of the cocycle 〈W,ϕ, (Ω, Z+, σ)〉

passing through the point (u, ω) ∈ W × Ω if µ(0) = u and there exists α ∈ Φω(σ)
such that µ(n+m) = ϕ(m,µ(n), α(n)) for all n ∈ Z and m ∈ Z+.

Let Y be a complete metric space, (X,Z+, π) (respectively, (Y, Z+, σ)) be a semi-
group dynamical system on X (respectively, Y ), and h : X → Y be a homomorphism
of (X,Z+, π) onto (Y,Z+, σ). Then the triple 〈(X,Z+, π), (Y,Z+, σ), h〉 is called a
non-autonomous dynamical system.

Let W and Y be complete metric spaces, (Y,Z+, σ) be a semi-group dynamical
system on Y and 〈W,ϕ, (Y,Z+, σ)〉 be a cocycle over (Y,Z+, σ) with the fiber W
(or, for short, ϕ), i.e. ϕ is a continuous mapping of Z+ ×W × Y into W satisfying
the following conditions: ϕ(0, w, y) = w and ϕ(t + τ, w, y) = ϕ(t, ϕ(τ, w, y), σ(τ, y))
for all t, τ ∈ Z+, w ∈W and y ∈ Y .

We denote X := W × Y and define on X a skew product dynamical system
(X,Z+, π) by the equality π = (ϕ, σ), i.e. π(t, (w, y)) = (ϕ(t, w, y), σ(t, y)) for all
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t ∈ Z+ and (w, y) ∈ W × Y . Then the triple 〈(X,Z+, π), ((Y,Z+, σ), h〉 is a non-
autonomous dynamical system (generated by cocycle ϕ), where h = pr2 : X 7→ Y is
the projection on the second component.

3 Global attractors of dynamical systems

Let M be a family of subsets from X.
A semi-group dynamical system (X,Z+, π) will be called M-dissipative if for

every ε > 0 and M ∈ M there exists L(ε,M) > 0 such that π(n,M) ⊆ B(K, ε) for
any n ≥ L(ε,M), where K is a certain fixed subset from X depending only on M.
In this case we will call K an attracting set for M.

For the applications the most important ones are the cases when K is bounded
or compact and M := {{x} | x ∈ X} or M := C(X), or M := {B(x, δx) | x ∈
X, δx > 0}, or M := B(X) where C(X) (respectively, B(X)) is the family of all
compact (respectively, bounded) subsets from X.

The system (X,Z+, π) is called:

− point dissipative if there exists K ⊆ X such that for every x ∈ X

lim
n→+∞

ρ(π(n, x),K) = 0; (4)

− compactly dissipative if the equality (4) takes place uniformly w.r.t. x on the
compact subsets from X.

Let (X,Z+, π) be a compactly dissipative semi-group dynamical system and K
be an attracting set for C(X). We denote by

J := Ω(K) =
⋂

n≥0

⋃

m≥n

π(m,K),

then the set J does not depend of the choice of K and is characterized by the
properties of the semi-group dynamical system (X,Z+, π). The set J is called a
Levinson center of the semi-group dynamical system (X,Z+, π).

Theorem 1. [5] Let (X,Z+, π) be point dissipative. For (X,Z+, π) to be com-
pactly dissipative it is necessary and sufficient that Σ+

K be relatively compact for any
compact K ⊆ X.

Let E be a finite-dimensional Banach space and 〈E,ϕ, (Ω, Z+, σ)〉 be a cocycle
over (Ω, Z+, σ) with the fiber E (or shortly ϕ).

A cocycle ϕ is called:

- dissipative if there exists a number r > 0 such that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (5)

for all ω ∈ Ω and u ∈ E;
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- uniform dissipative on every compact subset from Ω if there exists a number
r > 0 such that

lim sup
n→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(n, u, ω)| ≤ r

for all compact subset Ω
′ ⊆ Ω and R > 0.

Let (X,Z+, π) be a dynamical system and x ∈ X. Denote by ωx the ω-limit set
of point x.

Theorem 2. The following statements hold:

1. if the semi-group dynamical system (Ω, Z+, σ) and the cocycle ϕ are point dissi-
pative, then the skew-product dynamical system (X,Z+, π) is point dissipative;

2. if the semi-group dynamical system (Ω, Z+, σ) is compactly dissipative and the
cocycle ϕ is uniform dissipative on every compact subset from Ω, then the
skew-product system (X,Z+, π) is compactly dissipative.

Proof. Let x := (u, ω) ∈ X := E × Ω, then under the conditions of theorem the
set Σ+

x := {π(n, x) : n ∈ Z+} is relatively compact and ωx ⊆ B[0, r] × K, where
B[0, r] := {u ∈ E : |u| ≤ r}, r is a number figuring in the inequality (5) and K is
the compact appearing in (4). Thus the semi-group dynamical system (X,Z+, π) is
point dissipative.

According to first statement of theorem the skew-product dynamical system (X,
Z+, π) is point dissipative. Let M be an arbitrary compact subset from X := E×Ω,
then there are R > 0 and a compact subset Ω

′ ⊆ Ω such that M ⊆ B[0, R] × Ω
′

.
Note that Σ+

M := {π(n,M) : n ∈ Z+} ⊆ Σ+
B[0,R]×Ω′ := {(ϕ(n, u, ω), σ(n, ω)) : n ∈

Z+, u ∈ B[0, R], ω ∈ Ω
′}. We will show that the set Σ+

M is relatively compact.
In fact, let {xk} ⊆ Σ+

M , then there are {uk} ⊆ B[0, R], {ωk} ⊆ Ω
′

and {nk} ⊆
Z+ such that xk = (ϕ(nk, uk, ωk), σ(nk, ωk)). By compact dissipativity of system
(Ω, Z+, σ) and uniform dissipativity of the cocycle ϕ the sequences {ϕ(nk, uk, ωk)}
and σ(nk, ωk)) are relatively compact and, consequently, the sequence {xk} is so.
Now to finish the proof it is sufficient to refer to Theorem 1. 2

4 Linear non-autonomous dynamical systems

Let Ω be a complete metric space and (Ω, Z+, σ) be a semi-group dynamical
system on Ω with discrete time.

Recall that a subset A ⊆ Ω is called invariant (respectively, positively invariant,
negatively invariant) if σ(n,A) = A (respectively, σ(n,A) ⊆ A, A ⊆ σ(n,A)) for all
n ∈ Z+.

Below in this section we will suppose that the set Ω is invariant, i.e. σ(n,Ω) = Ω
for all n ∈ Z+. Let E be a finite-dimensional Banach space with the norm | · |
and W be a complete metric space. Denote by [E] the space of all linear continuous
operators on E and by C(Ω,W ) the space of all the continuous functions f : Ω →W
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endowed with the compact-open topology, i.e. the uniform convergence on compact
subsets in Ω. The results of this section will be used in the next sections.

Consider a linear equation

un+1 = A(σ(n, ω))un (ω ∈ Ω) (6)

and an inhomogeneous equation

un+1 = A(σ(n, ω))un + f(σ(n, ω)), (7)

where A ∈ C(Ω, [E]) and f ∈ C(Ω, E).
Recall that a linear bounded operator P : E → E is called a projection if P 2 = P,

where P 2 := P ◦ P .
Let U(n, ω) be the Cauchy operator of linear equation (6). Following [10] we will

say that equation (6) has an exponential dichotomy on Ω if there exists a continuous
projection valued function P : Ω → [E] satisfying:

1. P (σ(n, ω))U(n, ω) = U(n, ω)P (ω);

2. UQ(n, ω) is invertible as an operator from ImQ(ω) to ImQ(σ(n, ω)), where
Q(ω) := I − P (ω) and UQ(n, ω) := U(n, ω)Q(ω);

3. there exist constants 0 < q < 1 and N > 0 such that

‖UP (n, ω)‖ ≤ Nqn and ‖UQ(n, ω)−1‖ ≤ Nqn

for all ω ∈ Ω and n ∈ Z+, where UP (n, ω) := U(n, ω)P (ω).

Let ω ∈ Ω and γω ∈ Φω(σ). Consider a difference equation

un+1 = A(γω(n))un + f(γω(n)), (8)

and the corresponding homogeneous linear equation

un+1 = A(γω(n))un (ω ∈ Ω). (9)

Let (X, ρ) be a metric space with distance ρ. Denote by C(Z,X) the space of
all the functions f : Z → X equipped with a product topology. This topology can
be metricised. For example, by the equality

d(f1, f2) :=

+∞
∑

1

1

2n

dn(f1, d2)

1 + dn(f1, d2)
,

where dn(f1, d2) := max{ρ(f1(k), f2(k)) | k ∈ [−n, n]}, a distance is defined on
C(Z,X) which generates the pointwise topology.

If x ∈ X and A,B ⊆ X, then denote by ρ(x,A) := inf{ρ(x, a) | a ∈ A} and
β(A,B) := sup{ρ(a,B) | a ∈ A} the semi-distance of Hausdorff.

Denote by C(X) (respectively, B(X)) the family of all compact (respectively,
bounded) subsets from X, C(Ω, E) the space of all the continuous functions f : Ω →
E , Cb(Ω, E) := {f ∈ C(Ω, E) : ‖f‖ := sup

ω∈Ω
|f(ω)| < +∞} . Note that the space

Cb(Ω, E) equipped with the norm ‖ · ‖ is a Banach space.
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Theorem 3. Suppose that the linear equation (6) has an exponential dichotomy on
Ω. Then for f ∈ Cb(Ω, E) the following statements hold:

1. the set Iω := {u ∈ E | ∃γω ∈ Φω such that equation (8) admits a bounded
solution ψω defined on Z with the initial condition ψω(0) = u} is nonempty
and compact;

2. ϕ(n, Iω, ω) = Iσ(n,ω) for all n ∈ Z+ and ω ∈ Ω, where ϕ(n, u, ω) is a so-
lution of equation (7) with the condition ϕ(0, u, ω) = u and ϕ(n,M,ω) :=
{ϕ(n, u, ω) | u ∈M};

3. the map ω → Iω is upper-semicontinuous, i.e.

lim
ω→ω0

β(Iω, Iω0) = 0

for every ω0 ∈ Ω, where β is the semi-distance of Hausdorff;

4. if Ω is compact, then the set I :=
⋃{Iω | ω ∈ Ω} is also compact.

Proof. Let ω ∈ Ω. Since Ω is invariant, the set Φω(σ) 6= ∅. We fix γω ∈ Φω(σ).
Under the conditions of Theorem 3 equation (9) has an exponential dichotomy on
Ω with the same constants N and q that in equation (6). Then equation (8) admits
the unique solution νγω

: Z → E with the condition

‖νγω
‖∞ ≤ N

1 + q

1 − q
‖f(νγω

(·))‖∞ ≤ N
1 + q

1 − q
‖f‖, (10)

where ‖b‖ := sup{|f(ω)| | ω ∈ Ω} and ‖νω‖∞ := sup{|νω(n)| | n ∈ Z} (see, for
example, [11, 15]). Thus, the set Iω is not empty. From the continuity of the
function ϕ : Z+ ×E×Ω → E and inequality (10) it follows that the set Iω is closed,
bounded and

|u| ≤ N
1 + q

1 − q
‖f‖

for all u ∈ Iω and ω ∈ Ω.
The second statement of the theorem follows from the equality Sh(Φω(σ)) =

Φσ(h,ω)(σ) (h ∈ Z), where Shγω is an h-translation of the trajectory γω, i.e.
Shγω(n) := γω(n+ h) for all n ∈ Z.

We will prove now the third statement. Let ω0 ∈ Ω, ωk → ω0, uk ∈ Iωk
and

uk → u. To prove our statement it is sufficient to show that u ∈ Iω0 . Since uk ∈ Iωk
,

there is a trajectory γωk
∈ Φωk

(σ) such that γωk
converges to γω0 ∈ Φω0(σ) in

C(Z,Ω) and the equation

un+1 = A(γωk
(n))un + f(γωk

(n)) (11)

has a solution νγωk
with the initial condition νγωk

(0) = uk and satisfying inequality
(10), i.e.

|νγωk
(n)| ≤ N

1 + q

1 − q
‖f(νγωk

)‖∞ ≤ N
1 + q

1 − q
‖f‖ (12)
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for all n ∈ Z and k = 1, 2, . . . . We will show that the sequence {νγω
k
(n)} converges

for every n ∈ Z. In fact, by Tihonoff theorem the sequence {νωk
} ⊂ C(Z,E) is

relatively compact. From equality (11) and inequality (12) it follows that every
limit point of the sequence {νγωk

} is a (bounded on Z) solution of the equation

un+1 = A(γω0(n))un + f(γω0(n)). (13)

Taking into account that equation (13) admits a unique solution bounded on Z,
we obtain the convergence of the sequence {νγωk

} in the space C(Z,E). We put
ν0 := lim

k→+∞
νγω

k
. It is easy to see that ν0(0) = u and, consequently, u ∈ Iω0.

To prove the fourth assertion it is sufficient to remark that for every ω ∈ Ω the
set Iω is compact, the map ω → Iω is upper-semicontinuous and, consequently, the
set I :=

⋃{Iω | ω ∈ Ω} is compact. The theorem is completely proved. 2

5 Global attractors of quasi-linear triangular systems

Consider a difference equation

un+1 = F(un, σ(n, ω)) (ω ∈ Ω). (14)

Denote by ϕ(n, u, ω) a unique solution of equation (14) with the initial condition
ϕ(0, u, ω) = u.

Equation (14) is said to be dissipative (respectively, uniform dissipative on every
compact subset from Ω) if there exists a positive number r such that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (respectively, lim sup
n→+∞

sup
ω∈Ω′ ,|u|≤R

|ϕ(n, u, ω)| ≤ r)

for all u ∈ E and ω ∈ Ω (respectively, for all R > 0 and Ω
′ ∈ C(Ω)).

Consider a quasi-linear equation

un+1 = A(σ(n, ω))un + F (un, σ(n, ω)), (15)

where A ∈ C(Ω, [E]) and the function F ∈ C(E × Ω, E) satisfies ”the condition of
smallness” (condition (ii) in Theorem 4).

Denote by U(k, ω) the Cauchy matrix for the linear equation

un+1 = A(σ(n, ω))un.

Theorem 4. Suppose that the following conditions hold:

1. there are positive numbers N and q < 1 such that

‖U(n, ω)‖ ≤ Nqn (n ∈ Z+); (16)

2. |F (u, ω)| ≤ C +D|u| (C ≥ 0, 0 ≤ D < (1− q)N−1) for all u ∈ E and ω ∈ Ω.
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Then equation (15) is uniform dissipative on every compact subset from Ω.

Proof. Let ϕ(·, u, ω) be the solution of equation (14) passing through the point
u ∈ E for n = 0. According to the formula of the variation of constants (see, for
example,[14] and [15]) we have

ϕ(n, u, ω) = U(k, ω)u+
n−1
∑

m=0

U(n−m− 1, ω)F (ϕ(m,u, ω), σ(m,ω)),

and, consequently,

|ϕ(n, u, ω)| ≤ Nqn|u| +
n−1
∑

m=0

qn−m−1(C +D|ϕ(m,u, ω)|). (17)

We set u(n) := q−n|ϕ(n, u, ω)| and, taking into account (17), obtain

u(n) ≤ N |u| + CNq−1
n−1
∑

m=0

q−m +DNq−1
n−1
∑

m=0

u(m). (18)

Denote the right hand side of inequality (18) by v(n). Note that

v(n + 1) − v(n) = q−nCN

q
+
DN

q
u(n) ≤ DN

q
v(n) +

CN

q
q−n,

and, hence,

v(n+ 1) ≤
(

1 +
DN

q

)

v(n) +
CN

q
q−n.

From this inequality we obtain

v(n) ≤
(

1 +
DN

q

)n−1
v(1) +

CN

q

1 − qn−1

1 − q
.

Therefore,

|ϕ(n, u, ω)| ≤ (q +DN)n−1qN |u| + CN

q − 1
(qn−1 − 1), (19)

because v(1) = N |u|. From (19) it follows that

lim sup
n→+∞

sup
ω∈Ω

′
,|u|≤R

|ϕ(n, u, ω)| ≤ CN

1 − q

for all R > 0 and Ω
′ ∈ C(Ω). The theorem is proved. 2

Let 〈E,ϕ, (Ω, Z+, σ)〉 be a cocycle over (Ω, Z+, σ) with the fiber E.
A family {Iω | ω ∈ JΩ} of nonempty compact subsets Iω ⊂ E is called a compact

global attractor of the cocycle ϕ if the following conditions are fulfilled:

1. the semi-group dynamical system (Ω, Z+, σ) is compactly dissipative;
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2. the set I :=
⋃{Iω | ω ∈ JΩ} is relatively compact, where JΩ is the Levinson

center of (Ω, Z+, σ);

3. the family I := {Iω | ω ∈ JΩ} is invariant with respect to the cocycle ϕ, i.e.
∪{ϕ(n, Iq, q) | q ∈ (σn)−1(σ(n, ω))} = Iσ(n,ω) for all n ∈ Z+ and ω ∈ JΩ, where
σn := σ(n, ·);

4. the equality

lim
n→+∞

sup
ω∈Ω

′

β(ϕ(n,K,ω), I) = 0

takes place for every K ∈ C(E) and Ω
′ ∈ C(Ω), where C(E) (respectively,

C(Ω)) is a family of compact subsets from E (respectively, Ω).

Lemma 1. The cocycle ϕ is compactly dissipative if and only if the skew-product
system (X,Z+, π) (X := E × Ω and π := (ϕ, σ)) is so.

Proof. This statement follows directly from the correspondig definitions. 2

Theorem 5. Let (Ω, Z+, σ) be a compactly dissipative system and ϕ be a cocycle
generated by equation (15). Under the conditions of Theorem 4 the skew-product
system (X,Z+, π) (X := E × Ω and π := (ϕ, σ)), generated by cocycle ϕ admits a
compact global attractor.

Proof. This statement follows directly from Theorems 4, 2 and Lemma 1. 2

Remark 2. Simple examples show that under the conditions of Theorem 5 the
compact global attractor {Iω | ω ∈ Ω}, generally speaking, is not trivial, i.e. the
component set Iω contains more than one point. This statement can be illustrated

by the following example: un+1 =
1

2
un +

2un

1 + u2
n

.

Theorem 6. Let A ∈ C(Ω, [E]) and F ∈ C(E×Ω, E) and the following conditions
be fulfilled:

1. the semi-group dynamical system (Ω, Z+, σ) is compactly dissipative and JΩ is
its Levinson center;

2. there exist positive numbers N and q < 1 such that inequality (16) holds;

3. there exists C > 0 such that |F (0, ω)| ≤ C for all ω ∈ Ω;

4. |F (u1, ω) − F (u2, ω)| ≤ L|u1 − u2| (0 ≤ L < N−1(1 − q)) for all ω ∈ Ω and
u1, u2 ∈ E.

Then

1. the equation (15) (the cocycle ϕ generated by this equation) admits a compact
global attractor;
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2. there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω) − ϕ(n, u2, ω)| ≤ Nνn|u1 − u2| (20)

for all u1, u2 ∈ E, ω ∈ Ω and n ∈ Z+.

Proof. First step. We will prove that under the conditions of Theorem 6 equation
(15) admits a compact global attractor I = {Iω | ω ∈ JΩ}. In fact,

|F (u, ω)| ≤ |F (0, ω)| + L|u| ≤ C + L|u|

for all u ∈ E, where C := sup{|F (0, ω)| | ω ∈ Ω}. According to Theorems 2 and 4,
equation (15) admits a compact global attractor I = {Iω | ω ∈ JΩ}.

Second step. Let ϕ be the cocycle generated by equation (15). In virtue of the
formula of the variation of constants, we have

ϕ(n, u, ω) = U(n, ω)u+
n−1
∑

m=0

U(n−m− 1, ω)F (ϕ(m,u, ω), σ(m,ω)).

Consequently,
ϕ(n, u1, ω) − ϕ(n, u2, ω) = U(n, ω)(u1 − u2)+

n−1
∑

m=1

U(n −m− 1, A)[F (ϕ(m,u, ω), σ(m,ω)) − F (ϕ(m,u2, ω), σ(m,ω))].

Thus,

|ϕ(n, u1, ω) − ϕ(n, u2, ω)| ≤ Nqn(|u1 − u2|

+Lq−1
n−1
∑

m=0

q−m|ϕ(m,u1, ω) − ϕ(m,u2, ω)|). (21)

Let u(n) := |ϕ(n, u1, ω) − ϕ(n, u2, ω)|q−n. From (21) it follows that

u(n) ≤ N
(

|u1 − u2| + Lq−1
n−1
∑

m=0

u(m)
)

. (22)

Denote by v(n) the right hand side of (22). The following inequality

v(n + 1) − v(n) = LNq−1u(n) ≤ LNq−1v(n). (23)

holds. From (23) we obtain

v(n) ≤ (1 + LNq−1)n−1v(1)

and, since v(1) = N |u1 − u2|, we get

u(n) ≤ (1 + LNq−1)N |u1 − u2|. (24)
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From (24) we have

|ϕ(n, u1, ω) − ϕ(n, u2, ω)| ≤ (q + LN)n−1qN |u1 − u2| (25)

for all u1, u2 ∈ E and ω ∈ Ω.

To finish the proof of Theorem it is sufficient to put ν := q + LN and N :=
qN(q + LN)−1. The theorem is proved. 2

Remark 3. It is possible to show that under the conditions of Theorems 3 and 6
the set Iω contains a single point (for all ω ∈ JΩ) if the mapping σ(1, ·) : Ω → Ω
is invertible. If the mapping σ(1, ·) is not invertible, then the set Iω may be very
complicated (for example Iω may be a Cantor set). Below we give an example which
confirms this statement.

Example 1. Let Y := [−1, 1] and (Y,Z+, σ) be a cascade generated by positive
powers of the odd function g, defined on [0, 1] in the following way:

g(y) =







−2y , 0 ≤ y ≤ 1
2

2(y − 1) , 1
2 < y ≤ 1.

It is easy to check that g(Y ) = Y . Let us put X := R×Y and denote by (X,Z+, π)
a semi-group dynamical system generated by the positive powers of the mapping
P : X → X

P

(

u
y

)

=

(

f(u, y)
g(y)

)

, (26)

where f(u, y) := 1
10u + 1

2y. Finally, let h = pr2 : X → Y . From (26), it fol-
lows that h is a homomorphism of (X,Z+, π) onto (Y,Z+, σ) and, consequently,
〈(X,Z+, π), (Y,Z+, σ), h〉 is a non-autonomous dynamical system. Note that

|(u1, y) − (u2, y)| = |u1 − u2| = 10|P (u1, y) − P (u2, y)|. (27)

From (27), it follows that

|Pn(u1, y) − Pn(u2, y)| ≤ N e−νn|(u1, y) − (u2, y)| (28)

for all n ∈ Z+, where N = 1 and ν = ln 10. By Theorem 6 the cocycle
〈R,ϕ, (Y,Z+, σ)〉 admits a compact global attaror I := {Iy : y ∈ Y } and ϕ is expo-
nentially convergent, i.e. the inequality (20) takes place. According to [18, p.43] Iy
is homeomorphic to the Cantor set for all y ∈ [−1, 1].

Remark 4. 1. If Ω is a compact metric space the close results (Sections 2–5) were
established in [6].

2. The results of Sections 2–5 are true also in the case we replace the finite-
dimensional Banach space E by its closed subset.
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6 Applications

6.1 The model

The model we consider is a particular case of the growth model by Solow; it
has been obtained while considering the standard, neoclassical one-sector growth
model where the two types of agents, workers and shareholders, have different but
constant saving rates as in Bohm V. and Kaas L. [4] and where the production
function F : R+ → R+, mapping capital per worker k into output per worker y, is
of the CES type (as in Brianzoni S., Mammana C. and Michetti E. [1] and [2]), that
is given by

F (u) = (1 + uǫ)
1
ǫ . (29)

However in the present work we add a further assumption, that is the population
growth rate evolves according to the logistic law, as also considered in Brianzoni S.,
Mammana C. and Michetti E. [3].

The resulting system, T = (ω′, u′), describing capital per worker (u) and popu-
lation growth rate (ω) dynamics, is given by:

T :=











u′ = 1
1+ω

[

(1 − δ)u+ (uǫ + 1)
1−ǫ

ǫ (sw + sru
ǫ)

]

ω′ = λω(1 − ω)

(30)

where δ ∈ (0, 1) is the depreciation rate of capital, sw ∈ (0, 1) and sr ∈ (0, 1) are the
constant saving rates for workers and shareholders respectively, ǫ ∈ (−∞, 1), ǫ 6= 0 is
a parameter related to the elasticity of substitution between labor and capital (the

elasticity of substitution between the two production factors is given by
1

1 − ǫ
) and,

finally, λ ∈ (0, 4] for the dynamics generated by the logistic map not being explosive.

We get a dicrete-time dynamical system described by the iteration of a map of
the plane of triangular type. In fact the second component of the previous system
does not depend on k, therefore the map is characterized by the triangular structure:

T :=







u′ = g(u, ω)

ω′ = f(ω)
. (31)

As a consequence, the dynamics of the map T are influenced by the dynamics of
the one–dimensional map f , that is the well-known logistic map.

6.2 Dynamics of the logistic map fλ(x) = λx(1 − x)

We recall some general results for map fλ (see, for example, [20]). For λ ∈ (0, 4]
the map fλ acts from interval [0, 1] into itself and, consequently, it admits a compact
global attractor Iλ ⊆ [0, 1]. Since Iλ is connected (see, for example, Theorem 1.33 [5])
and 0 ∈ Iλ, then Iλ = [0, aλ] (aλ ≤ 1).
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1. If 0 < λ ≤ λ0 := 1, then Iλ = {0}.

2. If λ0 < λ < λ1 := 3, then the map fλ has two fixed points: x = 0 is a repelling
fixed point and p0 = 1 − 1/λ is an attracting fixed point. If x ∈ Iλ \ {0, p0},
then αx = 0 and ωx = p0.

3. If λ1 < λ ≤ λ2 := 1 +
√

6, then the map fλ has one repelling fixed point x = 0
and there is an attracting 2-periodic point p1.

4. There exists a increasing sequence {λk}∞k=0 such that

(a) λk → λ∞ as k → ∞, where λ∞ ≈ 3, 569 . . . .

(b) If λk < λ < λk+1 (k = 2, 3, . . . ), then the map fλ has one repelling fixed
point x = 0 and there is an attracting 2k-periodic point pk.

5. For all 0 < λ < λ∞ the structure of the attractor Iλ is sufficiently simple.
Every trajectory is asymptotically periodic. There exists a unique attracting
2m−periodic point p (the numberm depends on λ) which attracts all trajectory
from [0, 1], except for a countable set of points. For λ ≥ λ∞ the attractor Iλ
is more complicated, in particularly, it may be a strange attractor (see [20]).

Let (X,Z+, π) be a semi-group dynamical system with discrete time.

A numberm is called an ε-almost period of the point x if ρ(π(m+n, x), π(n, x)) <
ε for all n ∈ Z+.

The point x is called almost periodic if for any ε > 0 there exists a positive
number l ∈ Z+ such that on every segment (in Z+) of length l there may be found
an ε-almost period of the point x.

(vi) Denote by Per(fλ) the set of all periodic points of fλ. If λ = λ∞, then
the map fλ has the 2i-periodic point pi for all i ∈ Z+ (all the points pi are
repelling). The boundary K = ∂Per(fλ) of set P (fλ) is a Cantor set. The set
K is an almost periodic minimal and it does not contain periodic points. The
set K attracts all trajectory from [0, 1], except for a countable set of points
P = ∪∞

i=0f
−i
λ (Per(fλ)). If x ∈ [0, 1] \ P , then ωx = K (see [20]).

6.3 Existence of an attractor for ǫ ∈ (−∞, 0)

Lemma 2. Let (R+ × [0, 1], T ) be a triangular map admitting a compact global
attractor J ⊂ R+ × [0, 1]. If p ∈ [0, 1] is a m-periodic point of the map T1 : [0, 1] 7→
[0, 1] (T = (T2, T1)), then

1. Jp = Ip × {p}, where Ip = [ap, bp] (ap, bp ∈ R+ and ap ≤ bp);

2. there exists q ∈ Ip = [ap, bp] such that (q, p) is an m-periodic point of the
map T.
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Proof. Let p ∈ [0, 1] be an m-periodic point of T1, i.e. Tm
1 (p) = p. Denote by

S := Tm the mapping from Xp := R+ × {p} into itself. Then, the semi-group
dynamical system (Xp, S) is compactly dissipative and its Levinson center coincides
with Jp = Ip ×{p}. By Theorem 1.33 from [5] the compact set Ip ⊂ R+ is connected
and, consequently, there are ap, bp ∈ R+ such that ap ≤ bp, Ip = [ap, bp] and

U(m, p)[ap, bp] = [ap, bp], (32)

where Tm(q, p) = (U(m, p)q, Tm
1 (p)) for all (q, p) ∈ R+ × [0, 1]. Since U(m, p) is a

continuous mapping from [ap, bp] onto itself, then there exists at least one q ∈ [ap, bq]
such that U(m, p)q = q. It is evident that (q, p) is anm-periodic point of the mapping
T = (T2, T1). 2

Theorem 7. For all ǫ < 0 the dynamical system (R+ × [0, 1], T ) admits a compact
global attractor J ⊂ R+ × [0, 1]. If p ∈ [0, 1] is an m-periodic point of the map
T1 : [0, 1] 7→ [0, 1] (T = (T2, T1)), then

1. Jp = Ip × {p}, where Ip = [ap, bp] (ap, bp ∈ R+ and ap ≤ bp);

2. there exists q ∈ Ip = [ap, bp] such that (q, p) is an m-periodic point of the map
T.

Proof. Assume ǫ ∈ (−∞, 0) and let λ = −ǫ, then λ ∈ (0,+∞). We write T1 in
terms of λ

T1(u, ω) =
1

1 + ω

[

(1 − δ)u+ (u−λ + 1)
1+λ

−λ (sw + sru
−λ)

]

=

=
1

1 + ω



(1 − δ)u +

(

1 + uλ

uλ

)− 1+λ

λ
(

sr + swu
λ

uλ

)



 =

=
1

1 + ω



(1 − δ)u+

(

uλ

1 + uλ

)

1+λ

λ
(

sr + swu
λ

uλ

)



 =

=
1

1 + ω

[

(1 − δ)u +
u

(1 + uλ)
1+λ

λ

(sr + swu
λ)

]

=

=
1

1 + ω

[

(1 − δ)u+
u

(1 + uλ)
1
λ

sr + swu
λ

1 + uλ

]

. (33)

Note that
u

(1 + uλ)
1
λ

−→ 1 as u −→ +∞,
sr + swu

λ

1 + kλ
−→ sw as u −→ +∞ and,

consequently, there exists M > 0 such that

∣

∣

∣

∣

∣

u

(1 + uλ)
1
λ

sr + swu
λ

1 + uλ

∣

∣

∣

∣

∣

≤M, (34)
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for all u ∈ [0,+∞).
Since 0 ≤ 1

1+ω ≤ 1 for all ω ∈ [0, 1], then from (33) and (34) we obtain

0 ≤ T1(u, ω) ≤ αu+M (35)

for all (u, ω) ∈ R+ × [0, 1], where α := 1 − δ > 0.
Since the map T is triangular, to prove the first statement of Theorem it is

sufficient to apply Theorem 5. The second statement follows from Lemma 2. 2

Remark 5. 1. It is easy to see that the previous theorem is true also for δ = 1
because in this case α = 1 − δ = 0 and from (35) we have T1(u, ω) ≤ M , ∀(u, ω) ∈
R+ × [0, 1]. Now it is sufficient to refer to Theorem 2.

2. If δ = 0 the problem is open.

6.4 Existence of an attractor for ǫ ∈ (0, 1) and sr < δ

The semi-group dynamical system (X,Z+, π) is said to be:

- locally completely continuous if for every point p ∈ X there exist δ = δ(p) > 0
and l = l(p) > 0 such that πlB(p, δ) is relatively compact;

- weakly dissipative if there exists a nonempty compact K ⊆ X such that for
every ε > 0 and x ∈ X there is τ = τ(ε, x) > 0 for which π(τ, x) ∈ B(K, ε).
In this case we will call K a weak attractor.

Note that every semi-group dynamical system (X,Z+, π) defined on the locally
compact metric space X is locally completely continuous.

Theorem 8. [5] For the locally completely continuous dynamical systems the weak,
point and compact dissipativity are equivalent.

Theorem 9. For all ǫ ∈ (0, 1) and sr < δ the dynamical system (R+ × [0, 1], T )
admits a compact global attractor J ⊂ R+ × [0, 1]. If p ∈ [0, 1] is an m-periodic point
of the map T1 : [0, 1] 7→ [0, 1] (T = (T2, T1)), then

1. Jp = Ip × {p}, where Ip = [ap, bp] (ap, bp ∈ R+ and ap ≤ bp);

2. there exists q ∈ Ip = [ap, bp] such that (q, p) is an m-periodic point of the map
T.

Proof. If ǫ ∈ (0, 1) we have

T1(u, ω) =
1

1 + ω

[

(1 − δ)u+ (uǫ + 1)
1−ǫ

ǫ (sw + sru
ǫ)

]

=

=
1

1 + ω

[

(1 − δ)u +
(uǫ + 1)

1
ǫ

1 + uǫ
(sw + sru

ǫ)

]

=

=
1

1 + ω
[(1 − δ)u+ sru+ θ(u)u] (36)
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where θ(u) → 0 as u→ +∞. In fact
(uǫ + 1)

1
ǫ

u
→ 1 as u→ +∞ while

(sw + sru
ǫ)

1 + uǫ
→

sr as u→ +∞ and, consequently,

(uǫ + 1)
1
ǫ

1 + uǫ
(sw + sru

ǫ)

sru
=

(uǫ + 1)
1
ǫ

u

(sw + sru
ǫ)

sr(uǫ + 1)
→ 1

as u→ +∞, i.e.
(uǫ + 1)

1
ǫ

1 + uǫ
(sw + sru

ǫ) = sru+ θ(u)u. From (36) we have

T1(u, ω) =
1

1 + ω
[(1 − δ + sr)u+ θ(u)u]

for all (u, ω) ∈ R2
+.

Since sr < δ then α := 1 − δ + sr < 1. Let R0 > 0 be a positive number such
that

|θ(u)| < 1 − α

2
, (37)

for all u > R0. Note that for every (u0, ω0) ∈ R+ × [0, 1], with u0 > R0, the
trajectory {T n(u, ω) | n ∈ Z+} starting from point (u0, ω0) at the initial moment
n = 0, at least one time intersects the compact K0 := [0, h0] × [0, R0], (h0 > h). In
fact, if we suppose that this statement is false, then there exists a point (u0, ω0) ∈
R+ × [0, 1] \K0 such that

(un, ωn) := T n(u0, ω0) ∈ R+ × [0, 1] \K0 (38)

for all n ∈ Z+. Taking into consideration that ωn → h (or 0) as n→ +∞, we obtain
from (38) that un > R0 for all n ≥ n0, where n0 is a sufficiently large number from
Z+. Without loss of generality, we may suppose that n0 = 0 (if n0 > 0 then we
start from the initial point (un0 , ωn0) := T n0(u0, ω0), where T n0 := T ◦ T n0−1 for all
n0 ≥ 2). Thus we have

un > R0 (39)

for all n ≥ 0 and

un+1 =
1

1 + ω
[αun + θ(un)un] (40)

From (37) and (40) we obtain

un+1 ≤ αun +
1 − α

2
un =

1 + α

2
un (41)

since
1

1 + ω
≤ 1 for all ω ≥ 0. From (41) we have

un ≤
(

1 + α

2

)n

u0 → 0 as n→ +∞, (42)

but (39) and (42) are contradictory. The obtained contradiction proves the state-
ment. Let now (u0, ω0) ∈ R+ × [0, 1] be an arbitrary point.
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(a) If u0 < R0 and un ≤ R0 for all n ∈ N , then lim sup
n→+∞

un ≤ R0;

(b) If there exists n0 ∈ N such that un0 > R0, then there exists m0 ∈ N (m0 > n0)
such that (um0 , ωm0) ∈ K0 (see the proof above).

Thus we proved that for all (u0, ω0) ∈ R2
+ there existsm0 ∈ N such that (um0 , ωm0) ∈

K0. According to Theorem 8 the semi-group dynamical system (R+ × [0, 1], T )
admits a compact global attractor.

The second statement follows from Lemma 2. The theorem is proved. 2

6.5 Structure of the attractor

Lemma 3. Suppose that the following conditions are fulfilled:

1. (R+ × [0, 1], T ) is a triangular map admitting a compact global attractor J ⊂
R+ × [0, 1];

2. p ∈ [0, 1] is a periodic point of the map T1 : [0, 1] 7→ [0, 1] (T = (T2, T1));

3. there are two positive numbers N and q < 1 such that

ρ(T n(u1, ω), T n(u2, ω)) ≤ N qnρ(u1, u2) (43)

for all (ui, ω) ∈ R+ × [0, 1] (i = 1, 2) and n ∈ N .

Then Jp = Ip × {p}, where Ip = [ap, bp] (ap, bp ∈ R+ and ap = bp, i.e. Ip consists of
a single point.

Proof. To prove this statement we note that from the conditions (43) and (32) we
have

diam(Jp) = diam(Tmk(Jp)) ≤ N qkdiam(Jp) (44)

for all k ∈ N . From the inequality (44) we obtain diam(Jp) = 0. Taking into
consideration the equalities Jp = Ip × {p} and (32) we obtain ap = bp. 2

Theorem 10. [9] Let X be a compact metric space and 〈(X,Z+, π), (Ω, Z+, σ), h〉
be a non-autonomous dynamical system. Suppose that the following conditions are
fulfilled:

1. The point ω ∈ Ω is almost periodic;

2. lim
t→+∞

ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X such that h(x1) = h(x2).

Then there exists a unique almost periodic point xω ∈ Xω such that

lim
t→+∞

ρ(π(t, x), π(t, xω)) = 0

for all x ∈ Xω.
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Theorem 11. Suppose that ǫ < 0 and one of the following conditions holds:

1. sw < min{δ, sr} and 0 < λ < λ0, where λ0 is a positive root of the quadratic
equation (sr − sw)λ2 + (sr − 2δ)λ − δ = 0;

2. sr < sw < δ.

Then

1. the semi-group dynamical system (R+ × [0, 1], T ) admits a compact global at-
tractor J ⊂ R+ × [0, 1];

2. if p ∈ [0, 1] is an m-periodic (respectively, almost periodic) point of the map
T1 : [0, 1] 7→ [0, 1] (T = (T2, T1)), then Jp = Ip × {p}, where Ip = [ap, bp]
(ap, bp ∈ R+ and ap = bp, i.e. Ip consists of a single m-periodic (respectively,
almost periodic) point .

Proof. Assume ǫ ∈ (−∞, 0) and let λ = −ǫ, then λ ∈ (0,+∞). We write T1 in
terms of λ (see the proof of Theorem 9)

T1(u, ω) =
1

1 + ω

[

(1 − δ)u +
u

(1 + uλ)
1
λ

sw + sru
λ

1 + uλ

]

.

Denote by

f(u) :=
u

(1 + uλ)
1
λ

sw + sru
λ

1 + uλ
,

then

f ′(u) =
sw + (−swλ+ (λ+ 1)sr)u

λ

(1 + uλ)2+1/λ
.

It is easy to verify that under the conditions of theorem f ′(u) < sw for all u ≥ 0.
Consider the non-autonomous difference equation

un+1 = A(σ(n, ω))un + F (un, σ(n, ω)) (45)

corresponding to triangular map T = (T1, T2), where A(ω) := 1
ω+1 , F (u, ω) :=

1
ω+1f(u) and σ(n, ω) := T n

2 (ω) for all n ∈ Z+ and ω ∈ [0, 1]. Under the conditions
of theorem we can apply Theorem 6. By this theorem the semi-group dynamical
system (R+ × [0, 1], T ) is compactly dissipative with Levinson center J and there
are two positive numbers N and q < 1 such that

ρ(T n(u1, ω), T n(u2, ω)) ≤ N qnρ(u1, u2) (46)

for all (ui, ω) ∈ R+ × [0, 1] (i = 1, 2). To finish the proof of theorem it is sufficient
to apply Lemma 3 and Theorem 10. 2
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6.6 Conclusion

Under the conditions of Theorem 7 or 9 the mapping T = (T2, T1) (T1 = fλ)
admits a compact global attractor Jλ ⊂ R+ × [0, 1]. There exists an increasing
sequence {λk}∞k=0 such that

1. λk → λ∞ as k → ∞, where λ∞ ≈ 3, 569 . . . .

2. If λk < λ < λk+1 (k = 2, 3, . . . ), then the map T = (T2, T1) has at least one
fixed point (q0, 0) ∈ Jλ and there is a 2k-periodic point (qk, pk) ∈ Jλ.

3. For λ ≥ λ∞ the set Jλ may be a strange attractor. For example, under the
conditions of Theorem 11, for λ = λ∞ the attractor Jλ contains an almost
periodic (but not periodic) minimal set.
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