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Singularly perturbed Cauchy problem for abstract

linear differential equations of second order
in Hilbert spaces

Andrei Perjan, Galina Rusu

Abstract. We study the behavior of solutions to the problem
(

ε
“

u′′

ε (t) + A1uε(t)
”

+ u′

ε(t) + A0uε(t) = f(t), t > 0,

uε(0) = u0, u′

ε(0) = u1,

in the Hilbert space H as ε 7→ 0, where A1 and A0 are two linear selfadjoint operators.

Mathematics subject classification: 35B25, 35K15, 35L15, 34G10.
Keywords and phrases: Singular perturbations, Cauchy problem, boundary
function.

1 Introduction

Let H be a real Hilbert space endowed with scalar product (·, ·) and norm | · |.
Let V ⊂ H be a real Hilbert space which is endowed with norm || · || such that the
inclusion is dense and continuous. Let V = V0 ∩ V1, and Ai : D(Ai) = Vi → H,
i = 0, 1, be two linear selfadjoint operators such that

(
(A0 + εA1)u, u

)
≥ γ||u||2, u ∈ V, γ > 0, (1)

for some ε≪ 1 and εA1 generates a C0- semigroup {S(t, ε), t ≥ 0} with the following
two properties:

A0S(t, ε)u = S(t, ε)A0u,∀u ∈ V. (2)

∃δ > 0 : |S(t, ε)u| ≥ δ|u|, u ∈ V. (3)

Consider the following Cauchy problem, which will be called (Pε):
{
ε
(
u′′ε(t) +A1uε(t)

)
+ u′ε(t) +A0uε(t) = f(t), t > 0,

uε(0) = u0, u′ε(0) = u1,

where ε > 0 is a small parameter, u, f : [0,∞) → H. We will investigate the
behavior of solutions uε(t) to the perturbed system (Pε) as ε→ 0. We will establish
a relationship between solutions to the problem (Pε) and the corresponding solutions
to the following unperturbed system, which will be called (P0):

{
v′(t) +A0v(t) = f(t), t > 0,

v(0) = u0.
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2 A priori estimates for solutions to the problems (Pε) and (P0)

In this section we remind the existence theorems for the solutions to the problems
(Pε) and (P0) and give some a priori estimations for them.

Definition 1. We say a function u ∈ L2(0, T, V ), with u′ ∈ L2(0, T, V ′) is a solution
of (P0) if

〈u′, v〉 + (A0u, v) = (f, v)

for each v∈ V and a.e. time 0 < t < T , and

u(0) = u0.

Definition 2. We say a function u ∈ L2(0, T, V ), with u′ ∈ L2(0, T,H) and u′′ ∈
L2(0, T, V ′) is a solution of (Pε) if

ε〈u′′, v〉 + ε(A1u, v) + (u′, v) + (A0u, v) = (f, v)

for each v∈ V and a.e. time 0 < t < T , and

u(0) = u0, u′(0) = u1,

where 〈, 〉 express the pairing between H and H ′.

Theorem A [1]. Let T > 0. If condition (1) is fulfilled, f ∈W 1,1(0, T ;H), u0 ∈ V,
then there exists a unique solution v ∈W 1,∞(0, T ;H) of the problem (P0) such that

|v(t)| + |v′(t)| ≤ C(T, u0, f, γ), t ∈ [0, T ].

Theorem B [1, 2]. Let T > 0. If condition (1) is fulfilled, f ∈ W 1,1(0, T ;H),
u0 ∈ V, u1 ∈ H, then there exists a unique solution of the problem (Pε) such that
uε ∈ C(0, T ;V ), u′ε ∈ C(0, T ;H) ∩ L∞(0, T ;V ), u′′ε ∈ L∞(0, T ;H). Moreover, for u
the following estimate

|uε(t)| + |u′ε(t)| ≤ C(T, u0, u1, f, γ), t ∈ [0, T ],

is true.

3 Relation between solution to the problems (Pε) and (P0)

Now we are going to establish the relationship between the solution of the prob-
lem (Pε) and the corresponding solutions of the problem (P0). This relationship was
inspired by the work [2]. To this end we defined the kernel of transformation which
realizes this relationship.

For ε > 0 denote

K(t, τ, ε) =
1

2
√
πε

(
K1(t, τ, ε) + 3K2(t, τ, ε) − 2K3(t, τ, ε)

)
,
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where

K1(t, τ, ε) = exp
{3t− 2τ

4ε

}
λ
(2t− τ

2
√
εt

)
,

K2(t, τ, ε) = exp
{3t+ 6τ

4ε

}
λ
(2t+ τ

2
√
εt

)
,

K3(t, τ, ε) = exp
{τ
ε

}
λ
( t+ τ

2
√
εt

)
, λ(s) =

∫
∞

s

e−η2
dη.

The properties of kernel K(t, τ, ε) are collected in the following lemma.

Lemma 1 [2]. The function K(t, τ, ε) possesses the following properties:

(i) For any fixed ε > 0 K ∈ C({t ≥ 0} × {τ ≥ 0}) ∩ C∞(R+ ×R+);

(ii) Kt(t, τ, ε) = εKττ (t, τ, ε) −Kτ (t, τ, ε), t > 0, τ > 0;

(iii) K(0, τ, ε) =
1

2ε
exp

{
− τ

2ε

}
, τ ≥ 0; εKτ (t, 0, ε) −K(t, 0, ε) = 0, t ≥ 0;

(iv) For each fixed t > 0, s, q ∈ N there exist constants C1(s, q, t, ε) > 0 and
C2(s, q, t) > 0 such that

|∂s
t ∂

q
τK(t, τ, ε)| ≤ C1(s, q, t, ε) exp{−C2(s, q, t)τ/ε}, τ > 0;

(v) Let ε be fixed, 0 < ε ≪ 1 and H is a Hilbert space. For any ϕ : [0,∞) → H
continuous on [0,∞) such that |ϕ(t)| ≤M exp{Ct}, t ≥ 0, the relation

lim
t→0

∫
∞

0
K(t, τ, ε)ϕ(τ)dτ =

∫
∞

0
e−τϕ(2ετ)dτ,

is valid in H;

(vi)
∫
∞

0 K(t, τ, ε)dτ = 1, t ≥ 0; K(t, τ, ε) > 0, t ≥ 0, τ ≥ 0;

(vii) Let f ∈W 1,∞(0,∞;H). Then there exists a positive constant C such that

∣∣∣
∣∣∣f(t) −

∫
∞

0
K(t, τ, ε)f(τ)dτ

∣∣∣
∣∣∣
H

≤ C
√
ε(1 +

√
t)‖f ′‖L∞(0,∞;H), t ≥ 0;

(viii) There exists C > 0 such that

∫ t

0

∫
∞

0
K(τ, θ, ε) exp

{
− θ

ε

}
dθdτ ≤ Cε, t ≥ 0, ε > 0.

Denote by K(t, τ, ε) = K(t, τ, ε)S(t, ε).

Theorem 1. Suppose that A1 satisfies condition (2). If f ∈ L∞(0,∞;H) and
uε ∈ W 2,∞(0,∞;H) ∩ L∞(0,∞;V ), is the solution to the problem (Pε), then the
function v0ε which is defined as

v0ε(t) =

∫
∞

0
K(t, τ, ε)uε(τ)dτ
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is the solution to the problem:

{
v′0ε(t) +A0v0ε(t) = f0(t, ε), t > 0,
v0ε(0) = ϕε,

where

f0(t, ε) = F0(t, ε) +

∫
∞

0
K(t, τ, ε)f(τ)dτ,

F0(t, ε) =
1√
π

[
2 exp

{ 3t

4ε

}
λ
(√

t

ε

)
− λ

(1

2

√
t

ε

)]
S(t, ε)u1,

ϕε =

∫
∞

0
e−τuε(2ετ)dτ.

Moreover, v0ε ∈W 2,∞(0,∞;H) ∩ L∞(0,∞;V ).

Proof. Integrating by parts,using the properties of C0- semigroups, (ii), (iii) from
Lemma 1 and (2) we get:

v′0ε(t) =
(∫

∞

0
K(t, τ, ε)uε(τ)dτ

)
′

=

∫
∞

0
Kt(t, τ, ε)S(t, ε)uε(τ)dτ+

+

∫
∞

0
K(t, τ, ε)S′(t, ε)uε(τ)dτ =

=

∫
∞

0
[εKττ (t, τ, ε) −Kτ (t, τ, ε)]S(t, ε)uε(τ)dτ+

+

∫
∞

0
K(t, τ, ε)S′(t, ε)uε(τ)dτ = εKτ (t, τ, ε)S(t, ε)uε(τ)|∞0 −

−
∫

∞

0
εKτ (t, τ, ε)S(t, ε)u′ε(τ)dτ −K(t, τ, ε)S(t, ε)uε(τ)|∞0 +

+

∫
∞

0
K(t, τ, ε)S(t, ε)u′ε(τ)dτ+

+

∫
∞

0
K(t, τ, ε)S′(t, ε)uε(τ)dτ = [εKτ (t, τ, ε) −K(t, τ, ε)]S(t, ε)uε(τ)|∞0 −

−εK(t, τ, ε)S(t, ε)u′ε(τ)|∞0 +

∫
∞

0
εK(t, τ, ε)S(t, ε)u′′ε (τ)dτ+

+

∫
∞

0
K(t, τ, ε)S(t, ε)u′ε(τ)dτ +

∫
∞

0
K(t, τ, ε)S′(t, ε)uε(τ)dτ =

= [εKτ (t, 0, ε) −K(t, 0, ε)]S(t, ε)uε(0) + εK(t, 0, ε)S(t, ε)u1+

+

∫
∞

0
K(t, τ, ε)S(t, ε)(εu′′ε (τ) + u′(τ))dτ +

∫
∞

0
K(t, τ, ε)S′(t, ε)uε(τ)dτ =

= εK(t, 0, ε)S(t, ε)u1+
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+

∫
∞

0
K(t, τ, ε)S(t, ε)(f(τ) −A0uε(τ) − εA1uε(τ))dτ+

+

∫
∞

0
K(t, τ, ε)S′(t, ε)uε(τ)dτ =

= εK(t, 0, ε)S(t, ε)u1 +

∫
∞

0
K(t, τ, ε)S(t, ε)f(τ)dτ −A0v0ε(t)+

+

∫
∞

0
K(t, τ, ε)[S′(t, ε)uε(τ) − εA1S(t, ε)uε(τ)]dτ =

= εK(t, 0, ε)S(t, ε)u1 +

∫
∞

0
K(t, τ, ε)S(t, ε)f(τ)dτ −A0v0ε(t) =

= F0(t, ε) +

∫
∞

0
K(t, τ, ε)S(t, ε)f(τ)dτ −A0v0ε(t).

Thus v0ε(t) satisfies the equation from Theorem 1.

The initial condition is a simple consequence of property (iii) from Lemma 1.

Theorem 1 is proved.

4 The limit of solutions to the problem (Pε) as ε 7→ 0

In this section we will study the behavior of solutions to the problem (Pε)
as ε 7→ 0.

Lemma 2. Let A0 and A1 satisfy the conditions (1) and (2).
If u0 ∈ V, u1, f ∈W 1,∞(0, T ;H) then the estimate:

|S(t, ε)uε(t) − v0ε(t)| ≤ C(T, u0, u1, f, γ, γ1)
√
ε, t ∈ [0, T ],

is true.

Proof. According to the C0-semigroup theory there exists a constant γ1 > 0 such
that

|S(t, ε)| ≤ γ1(T, ε). (4)

Using the last mentioned property of S(t, ε), Theorem B and the property(vii) of
Lemma 1 we can easy obtain:

|S(t, ε)uε(t) −
∫

∞

0
K(t, τ, ε)uε(τ)dτ | ≤ |S(t, ε)||uε(t) −

∫
∞

0
K(t, τ, ε)uε(τ)dτ | ≤

≤ γ1|uε(t)−
∫

∞

0
K(t, τ, ε)uε(τ)dτ | ≤ c̃(1+

√
t) ‖ f ′ ‖L∞(0,T :H)≤ C(T, u0, u1, f, γ, γ1).

Lemma 2 is proved.

To prove the following result we need to remember an important inequality:
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Lemma A [4]. Let ψ ∈ L1(a, b)(−∞ < a < b < ∞) with ψ ≥ 0 a. e. on (a,b) and
c be a fixed real constant. If h ∈ C[a, b] verifies

1

2
h2(t) ≤ 1

2
c2 +

∫ t

a

ψ(s)h(s)ds,∀t ∈ [a, b],

then

h(t) ≤ |c| +
∫ t

a

ψ(s)ds,∀t ∈ [a, b]

also holds.

Lemma 3. Let the operators A0, A1 satisfy conditions (1)- (3).
If u0, A1u0 ∈ V, u1 ∈ H, f,A1f ∈W 1,∞(0, T ;H) then the estimate:

|S(t, ε)v(t) − v0ε(t)| ≤ C(T, u0, u1, f, γ, γ1, )
√
ε, t ∈ [0, T ]

is true.

Proof. Let v(t) be the solution to the problem (P0). We will denote by w(t) =
S(t, ε)v(t). Thus

w′(t) = S′(t, ε)v(t) + S(t, ε)v′(t) = εA1S(t, ε)v(t)+

+S(t, ε)v′(t) = εA1w(t) + S(t, ε)[f(t) −A0v(t)] =

= εA1w(t) + S(t, ε)f(t) −A0S(t, ε)v(t) = εA1w(t) + S(t, ε)f(t) −A0w(t),

and
w(0) = S(0, ε)v(0) = v(0) = u0.
So we obtained the following Cauchy problem for w(t):

{
w′(t) + (A0 − εA1)w(t) = S(t, ε)f(t),
w(0) = u0.

To estimate |S(t, ε)v(t) − v0ε(t)| we denote by Rε(t)=w(t) − v0ε(t). Then for Rε(t)
we get the following Cauchy problem:

{
R′

ε(t) +A0Rε(t) = εA1w(t) + S(t, ε)f(t) − f0(t), t > 0
Rε(0) = u0 − ϕε

Then taking scalar product of last equation with Rε(t) and integrating on [0,t],
by Lemma A we get:

|Rε(t)| ≤ C(T )
[
|u0 − ϕε| + 1/C(T )

∫ t

0

∣∣∣εA1w(τ) + S(τ, ε)f(τ) − f0(τ)
∣∣∣dτ

]
≤

≤ C(T )
[
|u0 − ϕε| + 1/C(T )

∫ t

0
|εA1w(τ)|dτ + 1/C(T )

∫ t

0
|F0(τ, ε)|dτ+
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+1/C(T )

∫ t

0

∣∣∣S(τ, ε)f(τ) −
∫

∞

0
K(τ, µ, ε)S(τ, ε)f(µ)dµ)

∣∣∣dτ
]
, 0 ≤ t ≤ T. (5)

Now step by step we will estimate all terms in the right of inequality (5).

In what follows we will denote by C all constants depending on T, u0, u1, f, γ, γ1.
In conditions of Theorem B we can estimate the difference

|u0 − ϕε| =
∣∣∣
∫

∞

0
e−τ (uε(2ετ) − u0)dτ

∣∣∣ ≤
∫

∞

0
e−τ

∫ 2ετ

0
|u′ε(µ)|dµ ≤ Cε. (6)

Using the property (vii) from Lemma 1 we have

∣∣∣S(τ, ε)f(τ) −
∫

∞

0
K(τ, µ, ε)S(τ, ε)f(µ)dµ

∣∣∣ ≤

≤ |S(τ, ε)|
∣∣∣f(τ) −

∫
∞

0
K(τ, µ, ε)f(µ)dµ

∣∣∣ ≤

≤ γ1
√
ε(1 +

√
t)‖f ′‖L∞(0,∞;H = C

√
ε. (7)

In [2] it is also shown that

∫ t

0
eγτ |F0(τ, ε)|dτ ≤ C̃ε|u1| ≤ Cε. (8)

To estimate |A1w(t)| we will consider now the (P0) problem and will apply to it
the operator A1 to obtain:

{
A1v

′(t) +A1A0v(t) = A1f(t), t > 0
A1v(0) = A1u0.

(9)

In condition (2) we can observe that

εA1A0v(t) = lim
h 7→0

S(h, ε)A0v(t) −A0v(t)

h
= lim

h 7→0

A0S(h, ε)v(t) −A0v(t)

h
=

= lim
h 7→0

A0
S(h, ε)v(t) − v(t)

h
= εA0A1v(t)

Thus, denoting by y(t) = A1v(t) we can write the problem for y

{
y′(t) +A0y(t) = A1f(t), t > 0
y(0) = A1u0.

If A1u0 ∈ V,A1f ∈W 1,1(0, T,H), then by Theorem B we obtain the estimate

|y(t)| ≤ C(T, u0, f, γ).

But

|A1w(t)| = |A1S(t, ε)v(t)| ≤ γ1|A1v(t)| = γ1|y(t)| ≤ C. (10)
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From estimates (5)-(10) we finally obtain the estimate

|Rε(t)| ≤
√
εC(T, u0, u1, f, γ, γ1).

Lemma 3 is proved.

Theorem 2. Let T > 0. If u0, A1u0 ∈ V, u1 ∈ H, f,A1f ∈ W 1,∞(0, T ;H) and
A0, A1 satisfies conditions (1)-(3) then the estimate:

|uε(t) − v(t)| ≤ C(u0, u1, f, γ, γ1, δ)
√
ε, t ∈ [0, T ], 0 < ε≪ 1

is true.
The proof of this theorem is a simple consequence of Lemmas 1 and 2. Indeed

|uε(t) − v(t)| ≤ 1

δ
|S(t, ε)uε(t) − S(t, ε)v(t)| ≤

≤ 1

δ
[|S(t, ε)uε(t) − v0ε(t)| + |S(t, ε)v(t) − v0ε(t)|] ≤

√
εC(T, u0, u1, f, γ, γ1, δ).

Theorem 3. Let T > 0. If

u0, A0u0, A1u0, A1A0u0, u1, f(0), A1f(0) ∈ V, f,A1f ∈W 2,∞(0, T ;H)

and A0, A1 satisfies conditions (1)-(3), then the estimate

|u′ε(t) − v′(t) + he−
t

ε | ≤
√
εC(u0, u1, f, γ, γ1, δ),

is true, where h = f(0) − u1 −A0u0.

Proof. Denote by zε(t) = u′ε(t) + he−
t

ε . Then for zε(t) we get the following Cauchy
problem:

{
εz′′ε (t) + z′ε(t) + (A0 + εA1)zε(t) = f ′(t) + e−

t

ε (A0 + εA1)h, t > 0
z(0) = f(0) −A0u0, z′(0) = −A1u0.

(11)

As A0u0, f(0) ∈ V, f ∈W 2,∞(0, T ;H), according to Theorem 1 the function

w1ε(t) =

∫
∞

0
K(t, τ, ε)zε(τ)dτ

is the solution to the problem:

{
w′

1ε(t) +A0w1ε(t) = F1 (t, ε), t > 0,
w1ε(0) =

∫
∞

0 e−τzε(2ετ)dτ,
(12)

where

F1 (t, ε) =

∫
∞

0
K(t, τ, ε)[f ′(τ)dτ + e−

τ

ε (A0 + εA1)h]dτ−
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− 1√
π

[
2 exp

{ 3t

4ε

}
λ
(√

t

ε

)
− λ

(1

2

√
t

ε

)]
S(t, ε)A1u0.

Denoting by v1(t) = v′(t), (P0), for v1 we have the problem (Pv1):

{
v′1(t) +A0v1(t) = f ′(t), t > 0,

v1(0) = f(0) −A0u0.

If w2ε(t) = S(t, ε)v1(t), then (Pv1) becomes

{
w′

2ε(t) + [A0 − εA1]w2ε(t) = S(t, ε)f ′(t), t > 0,
w2ε(0) = f(0) −A0u0.

(13)

Let R1ε(t) = w1ε(t)−w2ε(t). Then, using (12) and (13) we get the following Cauchy
problem for it:

{
R′

1ε(t) +A0R1ε(t) = F1 (t, ε) − S(t, ε)f ′(t) − εA1w2ε(t), t > 0,

R1ε(0) =
∫
∞

0 e−τ
∫ 2ετ

0 z′ε(θ)dθdτ.
(14)

Taking scalar product of (14) with R1ε(t), integrating on [0, t] and using Lemma
A we get the estimate

|R1ε(t)| ≤ e−γt
(
|R1ε(0)| +

∫ t

0
eγτ

∣∣∣F1 (τ, ε) − S(τ, ε)f ′(τ) − εA1w2ε(τ)
∣∣∣dτ

)
. (15)

As we can see in (11) zε(t) is the solution to a second order Cauchy problem which
is similar to (Pε). So, in conditions of this theorem, using Theorem B, the following
estimate is true:

|zε(t)| ≤ C(|f |W 2,∞(0,T ;H), |A0u0|, |A1u0|, γ) = C.

Then

|R1ε(0)| =
∣∣∣
∫

∞

0
e−τ

∫ 2ετ

0
z′ε(θ)dθdτ

∣∣∣ ≤ Cε.

From properties (vii), (viii) and (4) it follows:

∫ t

0
eγτ

∣∣∣F1 (τ, ε)−S(τ, ε)f ′(τ)
∣∣∣dτ ≤

∫ t

0
eγτ

∣∣∣
∫

∞

0
K(τ, µ, ε)f ′(µ)dµ−S(τ, ε)f ′(τ)

∣∣∣dτ+

+

∫ t

0

∫
∞

0
K(τ, µ, ε)e−

µ

ε |(A0 + εA1)h|dµdτ+

+

∫ t

0

1√
π

∣∣∣2 exp
{3τ

4ε

}
λ
(√

τ

ε

)
− λ

(1

2

√
τ

ε

)∣∣∣
∣∣∣S(τ, ε)A1u0

∣∣∣dτ ≤

≤ Cγ1

[√
ε(1 +

√
t)‖f ′′‖L∞(0,T ;H) + ε+

√
ε|A0u0|

]
≤ C

√
ε.
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To estimate |εA1w2ε(t)| we will apply A1 to (Pv1) and denote by y1(t) = A1v1(t)
to get {

y′1(t) +A0y1(t) = A1f
′(t), t > 0

y1(0) = A1f(0) +A1A0u0.

As A1A0u0, A1f(0) ∈ V,A1f ∈W 2,∞(0, T ;H), Theorem A implies the estimate

|y1(t)| ≤ C(T, γ,A1A0u0, A1f).

Consequently,

|εA1w2ε(t)| = ε|A1S(t, ε)v1(t)| ≤ εγ1|A1v1(t)| = εγ1|y1(t)| ≤ εC.

Using the last three inequalities from (15) follows the estimate

|R1ε(t)| ≤ C
√
ε, 0 ≤ t ≤ T. (16)

From property (vii) from Lemma 1 and (4) it follows:

|S(t, ε)zε(t) − w1ε(t)| = |S(t, ε)zε(t) −
∫

∞

0
K(t, τ, ε)zε(τ)dτ | ≤

≤ γ1C(1 +
√
t) ‖ z′ ‖L∞(0,T :H)≤

√
εC. (17)

Finally, using condition (3) and estimates (16), (17) we get

|u′ε(t) − v′(t) − he−
t

ε | = |zε(t) − v1(t)| ≤
1

δ
|S(t, ε)zε(t) − S(t, ε)v1(t)| ≤

≤ 1

δ

[
|S(t, ε)zε(t) − w1ε(t)| + |w1ε(t) − S(t, ε)v1(t)|

]
≤

√
εC(u0, u1, f, γ, γ1, δ).

Theorem 3 is proved.
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