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1 Introduction

In the paper the quasilinear total differential equations [3] of the form

y′h = a(t)hy + (b(t) + λg(t, y))h (h ∈ E) (1)

with a real parameter λ by the nonlinearity and with a regular homogeneous part
are investigated. Here: a ∈ C(P,L(E,L(T, T ))), b ∈ C(P,L(E,T )), g ∈ C(P ×
T,L(E,T )), y ∈ C(P, T ) is an unknown map; E is a normed real space; T is a Banach
space (real or complex); P ⊂ E is an open set; the prime ′ means the operation of
taking a bounded derivative (derivative Frechet). By C(X,Y ) we designate the
space of all continuous maps of the space X in the space Y endowed with the
uniform structure of compact convergence (compact open topology); by L(X,Y )
we designate the space of all linear continuous maps of the normed space X in the
normed space Y with the natural operator norm.

For such equations some sufficient conditions of the existence of bounded, com-
pact, Lagrange stable, concordant and uniformly concordant solutions are estab-
lished. Earlier similar problems for ordinary differential equations (E = P = R)
and multidimensional differential equations, for E = P = Rn and T = Rm, were
considered in [1,4,8]. The Lagrange stability, concordance and uniform concordance
are considertd relative to some semigroup S ⊂ P , in contrast to [1, 4, 8], where
S = E. The peculiarity of our researches is that dynamical systems (transformation
groups or semigroups) are not used.

We propose also some general approach to the research of quasilinear equa-
tions, based on the concept of a regular, generally speaking, many-valued map. We
consider regular maps in the first section of this paper. In the second section we
indicate some applications of results obtained in the first section to the quasilinear
equations (1).

c© Anatolie I. Gherco, 2008

176



REGULAR MAPS AND QUASILINEAR TOTAL DIFFERENTIAL EQUATIONS 177

2 Regular maps

The concept of a regular map naturally arises when abstracting from the concrete
type of the regular equation. Under a regular ordinary differential equation we
understand such an ordinary differential equation y′ = a(t)y that for an arbitrary
bounded function f : R → Rn there exists a unique bounded solution ϕ : R → Rn

of the equation y′ = a(t)y + f(t). It is known [7] (Theorem 51. A) that for the
regular equation y′ = a(x)y there is a constant r > 0 such that supt∈R ‖ϕ(t)‖ ≤
r supt∈R ‖f(t)‖, where ϕ is a bounded solution of the equation y′ = a(t)y+f(t) with
the bounded function f . Close connection between a regular and an exponential
dichotomy is known, too [2, 7].

By the research of quasilinear equations y′ = a(t)y + b(t) + f(t, y) sometimes
one of crucial is the following property of linear equations: if ϕi is a solution of
the equation y′ = a(t)y + bi(t) (i = 1, 2), then ϕ1 − ϕ2 is a solution of the equation
y′ = a(t)y+(b1−b2)(t). Besides with homogeneous equations of the form y′ = a(t)y,
generally speaking, a many-valued map naturally associates that to each function b
puts in correspondence the set of solutions of the equation y′ = a(t)y + b(t). The
last two facts in combination with definition of a regular homogeneous equation will
be taken as a basis in the definition of a regular map.

Definition 1. Let X, Y be normed real spaces, 2Y be a family of all subsets of Y ,

r > 0. A map q : X → 2Y is called weakly r-regular if:

1) ∀x ∈ X q(x) 6= ∅;

2) ∀x, y ∈ X q(x) − q(y) ⊂ q(x− y);

3) ∀x ∈ X ∀y ∈ q(x) ‖y‖ ≤ r · ‖x‖.

A weakly r-regular map is called r-regular if it is a one-valued map.

Let’s give some examples of regular maps.

Example 1. Let X = Y be the space of bounded maps from C(R, Rm) with
the norm sup and the map a ∈ C(R, L(Rm, Rm)) be such that the differential
equation y′ = a(t)y is regular. Then there is a positive number r such that the map
q : X → 2Y defined by the rule

ϕ ∈ q(f) ⇐⇒ ϕ′(t) = a(t)ϕ(t) + f(t) (t ∈ R)

is r-regular.

Example 2. Let E and T be Banach spaces, a ∈ L(E,L(T, T )) be a permutable
operator (i.e. ahak = akah for ∀h, k ∈ E) such that (Sp a)e does not intersect with
the imaginary axis of the complex plane for some vector e ∈ E of the unit norm; X
be the space of all continuously differentiable bounded maps f : E → L(E,T ) with
the norm sup which satisfy the condition ∧{ahf(t)k− f ′(t)kh} = 0 for ∀h, k, t ∈ E;
Y be the space of all continuous bounded maps E → T with the norm sup. And let
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r = 2c/α, where c > 0 and α > 0 are constants for which ‖Ge(t)‖ ≤ c · exp(−α|t|)
(t ∈ R); Ge be the main Green function of the operator ae [3]. Then, as it follows
from the theorem 12.2 of [3], the map q : X → 2Y defined by the rule

ϕ ∈ q(f) ⇐⇒ ϕ′(t)h = a(t)hϕ(t) + f(t)h (t, h ∈ E)

is r-regular (by the symbol ∧ everywhere in the paper we designate the operation of
taking the skew-symmetric part of bilinear operator: ∧{Chk} = 1/2(Chk − Ckh)
(C ∈ L2(E,F ))).

Example 3. Let 1 ≤ p, q < ∞, 1/p + 1/q = 1; D ⊂ Rn be a bounded closed set,

M0 = (mesD)
1
p ; X = Y = Lp(D); K : D ×D → R be a measurable function such

that for some number M > 0 and for almost all t ∈ D,

(

∫

D

|K(t, s)|q ds
)

1
q
≤M ;

the number λ is such that |λ| < 1/(MM0); r = 1/(1 − |λ|MM0). Then the map
q : X → 2Y defined by the rule

ϕ ∈ q(f) ⇐⇒ ϕ(t) = f(t) + λ

∫

D

K(t, s)ϕ(s)ds (t ∈ D)

is r-regular.

Theorem 1. Let Y be a complete space; q : X → 2Y be a weakly r-regular map;

b ∈ X and the map B : Y → X satisfies the Lipschitz condition with the constant L.

Then for ∀λ, |λ| < 1/(rL), in Y there is an element xλ for which xλ ∈ q(b+λB(xλ));
in addition ‖xλ‖ ≤ r · ‖b+ λB(xλ)‖. The element xλ is determined uniquely if q is

an r-regular map. In the last case xλ may be found as the limit of the sequence

y1, y2, · · · , yn, · · · (2)

for ∀y1 ∈ Y and for any n > 1 yn = q(b+ λB(yn−1)).

Proof. Let λ be such that |λ| < 1/(rL). Let’s designate by Hλ : Y → Y the
choice function for the composition fλ ◦ q where fλ : Y → X is defined by the rule:
fλ(x) = b + λB(x). We shall prove that Hλ is a contraction map. Let x1, x2 ∈ Y .
Then

Hλ(x1) −Hλ(x2) ∈ q(b+ λB(x1)) − q(b+ λB(x2)) ⊂ q(λ(B(x1) −B(x2))),

i.e. Hλ(x1) −Hλ(x2) ∈ q(λB(x1) −B(x2)). Then

‖Hλ(x1) −Hλ(x2)‖ ≤ r‖λ(B(x1) −B(x2))‖ ≤ r|λ|L‖x1 − x2‖,

i.e. ‖Hλ(x1) − Hλ(x2)‖ ≤ r|λ|L‖x1 − x2‖. Since r|λ|L < 1, then the map Hλ is
contracting. By virtue of the completeness of the space Y , according to the Banach
contracting principle, there exists a unique xλ such that Hλ(xλ) = xλ. Therefore
xλ ∈ q(b+ λB(xλ)). It is clear that xλ does not depend on the choice function Hλ,
hence, it is determined uniquely as the limit of the sequence (2) if q is a r-regular
map.
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Theorem 2. Let Y be a complete space; q : X → 2Y be a weakly r-regular map;

b ∈ X; x ∈ q(b); δ > 0; V δ
x be a closed δ-neighbourhood of x and the map B :

Y → X satisfies the Lipschitz condition on V δ
x with the constant L. Then for

∀λ, |λ| < λ0 = δ/(rLδ + rl1), where l1 = ‖B(x)‖, in V δ
x there is an element xλ for

which xλ ∈ q(b+ λB(xλ)); in addition ‖xλ‖ ≤ r · ‖b+ λB(xλ)‖. The element xλ is

determined uniquely if q is an r-regular map. In the last case xλ may be found as

the limit of the sequence (2) which begins at an arbitrary point y1 ∈ V δ
x .

Proof. Let λ ∈] − λ0, λ0[, z ∈ V δ
x and y ∈ q(b + λB(z)). Since x ∈ q(b), then

y − x ∈ q(λB(z)). Hence

‖y − x‖ ≤ r|λ|‖B(z)‖ ≤ r|λ|(‖B(z) −B(x)‖ + ‖B(x)‖) ≤

≤ r|λ|(L‖z − x‖ + l1) ≤ r|λ|(Lδ + l1) < δ,

i.e. ‖y−x‖ < δ, therefore y ∈ V δ
x . We have proved that for ∀z ∈ V δ

x , q(b+λB(z)) ⊂
V δ

x . Therefore the composition fλ ◦ q, where fλ : V δ
x → X is defined by the rule:

fλ(x) = b+λB(x), is a map V δ
x → 2V δ

x . Let’s designate by Hλ : V δ
x → V δ

x the choice
function for the composition fλ ◦ q. We shall also prove that Hλ is a contraction
map. Let x1, x2 ∈ V δ

x . Then

Hλ(x1) −Hλ(x2) ∈ q(b+ λB(x1)) − q(b+ λB(x2)) ⊂ q(λ(B(x1) −B(x2))),

i.e. Hλ(x1) −Hλ(x2) ∈ q(λ(B(x1) −B(x2))). Then

‖Hλ(x1) −Hλ(x2)‖ ≤ r‖λ(B(x1) −B(x2))‖ ≤ r|λ|L‖x1 − x2‖,

i.e. ‖Hλ(x1) − Hλ(x2)‖ ≤ r|λ|L‖x1 − x2‖. Since r|λ|L < 1, then the map Hλ

is contracting. According to the Banach contracting principle there is a unique
xλ ∈ V δ

x such that Hλ(xλ) = xλ. It is clear that xλ is the required element.

Definition 2. Let X ⊂ ZP and F : Y ×P →W be a map. The map f : P×W → Z
is called F -admissible if for ∀x ∈ Y , the map fx, where fx(t) = f(t, F (x, t)) (t ∈ P ),
belongs to X.

From Theorems 1 and 2 for X ⊂ ZP and B(y) = fy (y ∈ Y ) as a corollary we
obtain the following two theorems.

Theorem 3. Let X ⊂ ZP , q : X → 2Y be a weakly r-regular map, b ∈ X,

f : P × W → Z be a F -admissible map, L ∈ R and the following conditions be

satisfied:

1) Y is a complete space;

2) ∀y, z ∈ Y ‖fy − f z‖ ≤ L · ‖y − z‖.

Then for ∀λ, |λ| < 1/(rL), in Y there is an element xλ such that xλ ∈ q(b+λfxλ);
in addition ‖xλ‖ ≤ r · ‖b + λfxλ‖. The element xλ is determined uniquely if q is

a r-regular map. In the last case xλ may be found as the limit of the sequence

y1, y2, · · · , yn, · · · , where y1 is an arbitrary element from Y and for any n > 1,
yn = q(b+ λf yn−1)).



180 ANATOLIE I. GHERCO

Theorem 4. Let X ⊂ ZP , q : X → 2Y be a weakly r-regular map, b ∈ X,

f : P ×W → Z be an F -admissible map, L ∈ R, δ > 0 and the following conditions

are satisfied:

1) Y is a complete space;

2) V δ
x is a closed δ-neighbourhood of x ∈ q(b);

3) ∀y, z ∈ V δ
x ‖fy − f z‖ ≤ L · ‖y − z‖.

Then for ∀λ, |λ| < δ/(r(Lδ + l1)), where l1 = ‖fx‖, in V δ
x there is an element

xλ for which xλ ∈ q(b + λfxλ); in addition ‖xλ‖ ≤ r · ‖b + λfxλ‖. The element xλ

is determined uniquely if q is an r-regular map. In the last case xλ may be found

as the limit of the sequence y1, y2, · · · , yn, · · · , where y1 is an arbitrary element from

V δ
x and for any n > 1, yn = q(b+ λf yn−1)).

Theorem 5. Let Z, W be normed spaces, X ⊂ ZP , q : X → 2Y be a weakly

r-regular map, f : P ×W → Z be an F -admissible map, b ∈ X, x ∈ q(b), V δ
F (x,P )

be a closed δ-neighbourhood of F (x, P ); Aδ
x = {y | y ∈ Y and F (y, P ) ⊂ V δ

F (x,P )}. If

the following conditions are valid:

1) Aδ
x is a complete subset of the space Y ;

2) ∀g ∈ X ‖g‖ ≤ supt∈P ‖g(t)‖;

3) f satisfies the Lipschitz condition in the second argument with the constant L1

on the set V δ
F (x,P ) and F satisfies the Lipschitz condition in the first argument

with the constant L2;

4) sup(t,s)∈P×P ‖f(t, F (x, s))‖ ≤ l1 ∈ R,

then for ∀λ, |λ| < λ0 = δ/(rL2(L1δ + l1)), in the set Aδ
x there is an element xλ

for which xλ ∈ q(b + λfxλ); in addition ‖xλ‖ ≤ r · ‖b + λfxλ‖. The element xλ is

determined uniquely if q is an r-regular map. In the last case xλ may be found as

the limit of the sequence y1, y2, · · · , yn, · · · , where y1 is an arbitrary element from

Aδ
x and for any n > 1, yn = q(b+ λf yn−1)).

Proof. Let z ∈ Aδ
x, |λ| < λ0 and y ∈ q(b + λf z). Then y − x ∈ q(λf z). Therefore

‖y − x‖ ≤ r|λ|‖f z‖. Since z ∈ Aδ
x, for arbitrary t ∈ P there exists pt ∈ P such that

‖F (z, t) − F (x, pt)‖ ≤ δ. Then for ∀s ∈ P

‖F (y, s) − F (x, s)‖ ≤ L2‖y − x‖ ≤ r|λ|L2‖f
z‖ ≤ rL2|λ| sup

t∈P

‖f(t, F (z, t))‖ ≤

≤ rL2|λ| sup
t∈P

(‖f(t, F (z, t)) − f(t, F (x, pt))‖ + ‖f(t, F (x, pt))‖) ≤

≤ rL2|λ|(L1 sup
t∈P

‖F (z, t) − F (x, pt)‖ + l1) ≤ rL2|λ|(L1δ + l1) < δ,

i.e. ‖F (y, s) − F (x, s)‖ ≤ δ. Hence y ∈ Aδ
x. We have proved that q(b + λf z) ⊂ Aδ

x

for ∀z ∈ Aδ
x. Therefore the composition fλ ◦ q, where fλ : Aδ

x → X is defined by



REGULAR MAPS AND QUASILINEAR TOTAL DIFFERENTIAL EQUATIONS 181

the rule: fλ(z) = b + λf z, is a map Aδ
x → 2Aδ

x . Let’s designate by Hλ : Aδ
x → Aδ

x

choice function of this map. We shall also prove that Hλ is a map of contraction.
Let x1, x2 ∈ Aδ

x. Then

Hλ(x1) −Hλ(x2) ∈ q(b+ λfx1) − q(b+ λfx2) ⊂ q(λ(fx1 − fx2)),

i.e. Hλ(x1) −Hλ(x2) ∈ q(λ(fx1 − fx2)). Therefore

‖Hλ(x1) −Hλ(x2)‖ ≤ r‖λ(fx1 − fx2)‖ ≤

≤ r|λ| sup
t∈P

‖f(t, F (x1, t)) − f(t, F (x2, t))‖ ≤

≤ r|λ|L1 sup
t∈P

‖F (x1, t) − F (x2, t‖ ≤ r|λ|L1L2‖x1 − x2‖,

i.e. ‖Hλ(x1) − Hλ(x2)‖ ≤ rL1L2|λ|‖x1 − x2‖. Since rL1L2|λ| < 1 then the map
Hλ is contracting. By virtue of the completeness of the set Aδ

x there exists unique
xλ ∈ Aδ

x for which Hλ(xλ) = xλ. It is clear that xλ is the required element.

3 Quasilinear equations

Lemma 1. Let the space E be quasicomplete; P be a connected convex set if the

space E is finite-dimensional and P = E if the space E is infinite-dimensional; K be

a compact set from T ; λ ∈ R; I be a directional set and for ∀i ∈ I, ϕi is a solution

of the total differential equation

y′h = ai(X)hy + (bi(x) + λgi(x, y))h (h ∈ E), (3)

and ϕi(P ) ⊂ K and limi(ai, bi, gi) = (a, b, g) in C(P,L(E,L(T, T )))×C(P,L(E,T ))
×C(P × T,L(E,T )). Then:

1) the set {ϕi | i ∈ I} is compact;

2) the limit ϕ of an arbitrary subnet of the net {ϕi} is a solution of the total

differential equation

y′h = a(X)hy + (b(x) + λg(x, y))h (h ∈ E) (4)

and ϕ(P ) ⊂ K.

Proof. We shall define for ∀i ∈ I the maps fi : P × T → L(E,T ) and f : P × T →
L(E,T ) by the rules: for ∀(x, y) ∈ P × T , ∀h ∈ E, fi(x, y)h = ai(x)hy + (bi(x) +
λgi(x, y))h and f(x, y)h = a(x)hy + (b(x) + λg(x, y))h. It is clear that for ∀i ∈ I,
the equation (3) is equivalent to the equation

y′ = fi(x, y) (5)

and the equation (4) is equivalent to the equation

y′ = f(x, y). (6)
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Let’s prove that limi fi = f in C(P ×T,L(E,T )). Let ε be an arbitrary positive
number, Q × M be an arbitrary compact set from P × T , m∗ = supm∈M ‖m‖,
ε1 = ε/(m∗ + |λ| + 1). Since limi(ai, bi, gi) = (a, b, g) then there exists i0 ∈ I such
that for arbitrary i > i0, (t,m) ∈ Q×M and h ∈ E, ‖h‖ ≤ 1, the following relations
are fulfilled

‖(ai(t) − a(t))h‖ < ε1, ‖(bi(t) − b(t))h‖ < ε1 and ‖(gi(t,m) − g(t,m))h‖ < ε1.

From these relations for i > i0, (t,m) ∈ Q×M and h ∈ E, ‖h‖ ≤ 1, we shall receive

‖(fi(t,m) − f(t,m))h‖ =

= ‖ai(t)hm+ (bi(t) + λgi(t,m))h − a(t)hm− (b(t) + λg(t,m))h‖ ≤

≤ ‖(ai(t) − a(t))hm‖ + ‖(bi(t) − b(t))h‖ + |λ|‖(gi(t,m) − g(t,m))h‖ <

< ε1m
∗ + ε1 + |λ|ε1 = ε,

i.e. ‖(fi(t,m) − f(t,m))h‖ < ε. The proof also means that limi fi = f . At this
point, since the equations (3) is equivalent to the equation (5) and the equation (4)
is equivalent to the equation (6), then our lemma follows from Lemma 2 [5].

Further by S we designate a subsemigroup of the group E, 0 ∈ S ⊂ P and
S+P ⊂ P . To each map f from the spaces of maps under consideration and to every
s ∈ S with the help of the shift σ in the argument from P we put in correspondence
some map fs which is defined as follows. If f : P → Y then fs(p) = f(s+p) (p ∈ P ).
If f : P × T → Y then fs(p, t) = f(s+ p, t) (p ∈ P, t ∈ T ). By fS we designate the
set {fs | s ∈ S}.

Definition 3. The solution ϕ of the equation (1) is called to compact if the set ϕ(P )
is compact.

If X is the set of maps on which the operation of a semigroup S is defined with

the help of the shift σ, then the map f ∈ X is called Lagrange S-stable if the set fS
is compact.

The following proposition contains some sufficient conditions of Lagrange
S-stable solutions of the equation (1).

Proposition 1. Let the map f be defined by the rule: f(x, y)h = a(x)hy + (b(x) +
λg(x, y))h ((x, y) ∈ P × T, h ∈ E). A compact solution ϕ of the equation (1) is

Lagrange S-stable if one of the conditions is valid:

1) the map ϕ is uniformly continuous.

2) the set f(P,ϕ(P )) is bounded.

3) f is Lagrange S-stable, the space E is quasicomplete, P is a connected convex

set if the space E is finite-dimensional and P = E if the space E is infinite-

dimensional.
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Lemma 2. Let K ⊂ T be a compact set, g : P × T → L(E,T ). If for ∀k ∈ K the

set g(P, k) is compact and the map g satisfies the Lipschitz condition in the second

argument on K, then the set g(P,K) is compact. The set G(P,K) for ∀G ∈ gS is

compact, too.

Proof. Let L be the Lipschitz constant of g. For the proof of the compactness of
the set g(P,K) it is sufficient to prove that from every sequence {g(ti, ki)}, where
(ti, ki) ∈ P ×K, it is possible to single out a subsequence of Cauchy. Let ε > 0 be
an arbitrary number, {(ti, ki)} ⊂ P ×K. By virtue of the compactness of K there
is a subsequence {kil} ⊂ K such that liml kil = k ∈ K. Then for number ε/4L there
is a number l1 ∈ N such that for ∀l > l1,

‖kil − k‖ < ε/4L. (7)

By virtue of the compactness of the set g(P, k) we consider that ∃ liml g(til , k) = g0.
Then for the number ε/4 there is l2 ∈ N such that for ∀l > l2,

‖g(til , k) − g0‖ < ε/4. (8)

Let l0 = max(l1, l2) and l > l0 p > l0. With the account of relations (7) and (8) we
obtain

‖g(til , kil) − g(tip , kip)‖ ≤ ‖g(til , kil) − g(til , k)‖ +

+‖g(til , k) − g0‖ + ‖g(tip , k) − g0‖ + ‖g(tip , k) − g(tip , kip)‖ <

< L · ‖kil − k‖ + ε/4 + ε/4 + L · ‖kip − k‖ < ε,

i.e. ‖g(til , kil)− g(tip , kip)‖ < ε for ∀l, p > l0. The proof means that {g(til , kil)} is a

Cauchy sequence. So, the set g(P,K) is compact. If G ∈ gS, then G = lim gti for
some net {ti} ⊂ S. Therefore for ∀(t, k) ∈ P ×K, G(t, k) = lim gti(t, k) ∈ g(P,K),
hence, the set G(P,K) is compact.

Lemma 3. Let W ⊂ T and g|W be the contraction of the map g : P ×T → L(E,T )
on the set P ×W . If:

1) for ∀y ∈W , the map g is uniformly continuous on P ×{y} and the set g(P, y)
is compact;

2) g satisfies the Lipschitz condition in the second argument on W ,

then the map g|W is Lagrange S-stable.

Proof. By virtue of Ascoli theorem it is sufficient to prove equicontinuity of the
family of maps {gt|W | t ∈ S} on each compact set from P ×W . Beforehand we shall
prove that for an arbitrary compact set K ⊂W the map g is uniformly continuous
on the set P ×K. Let K ⊂ W be a compact set and the map g be non-uniformly
continuous on the set P × K. Then there is an ε0 > 0 such that for an arbitrary
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natural i there are elements (ti1, k
i
1) and (ti2, k

i
2) in P × K for which the following

relations are fulfilled

‖(ti1, k
i
1) − (ti2, k

i
2)‖ < 1/i (9)

and

‖g(ti1, k
i
1) − g(ti2, k

i
2)‖ ≥ ε0. (10)

Let L be a Lipschitz constant of g. From the relation (9) the relation ‖ki
1−k

i
2‖ < 1/i

follows. Therefore by virtue of the compactness of K we may consider that limi k
i
1 =

limi k
i
2 = k ∈ K. In that case for number ε0/(3L) there will be a natural number i1

such that for arbitrary i > i1 the following relations are fulfilled

‖ki
1 − k‖ < ε0/(3L), ‖ki

2 − k‖ < ε0/(3L). (11)

From the relation (9) also follows the relation

‖ti1 − ti2‖ < 1/i. (12)

Since the map g is uniformly continuous on P ×{k}, then for ε0/3 there is a number
δ > 0 such that for ∀(t1, k), (t2, k) ∈ P ×{k} from the relation ‖(t1, k)− (t2, k)‖ < δ
the following relation follows

‖g(t1, k) − g(t2, k)‖ < ε0/3. (13)

Let a natural number i2 be such that 1/i2 < δ. Then for an arbitrary i > i2, by
virtue of the relations (12) and (13), the following relation is fulfilled

‖g(ti1, k) − g(ti2, k)‖ < ε0/3. (14)

Let i0 = max(i1, i2). For i > i0, the relations (11) and (14) are simultaneously
fulfilled. Therefore for i > i0

‖g(ti1, k
i
1) − g(ti2, k

i
2)‖ ≤ ‖g(ti1, k

i
1) − g(ti1, k)‖ + ‖g(ti1, k) − g(ti2, k)‖ +

+‖g(ti2, k) − g(ti2, k
i
2)‖ < L‖ki

1 − k‖ + ε0/3 + L‖ki
2 − k‖ <

< Lε0/(3L) + ε0/3 + Lε0/(3L) = ε0,

i.e. ‖g(ti1, k
i
1) − g(ti2, k

i
2)‖ < ε0. The obtained relation contradicts the relation (10).

So, the map g is uniformly continuous on the set P × K for an arbitrary compact
set K ⊂ W . Let D be an arbitrary compact set from P ×W and the compact set
M×K ⊂ P ×W is such that D ⊂M×K. And let ε > 0, t ∈ S, (m,k) ∈ D and δ be
a number corresponding to the number ε by virtue of an uniform continuity of g on
the set P×K. We shall assume that (m1, k1) ∈ D and ‖(m1, k1)−(m,k)‖ < δ. Then
‖(t + m1, k1) − (t + m,k)‖ < δ. Therefore ‖gt(m1, k1) − gt(m,k)‖ < ε. The proof
means equicontinuity of the family of maps {gt|W | t ∈ S} at the point (m,k) ∈ D.
In that case the family of maps {gt|W | t ∈ S} is equicontinuous on D.
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Lemma 4. If the map g : P × T → L(E,T ) satisfies the Lipschitz condition on the

second argument in a set W from T with the Lipschitz constant L, then any map

from g|WS satisfies the Lipschitz condition in the second argument on W with the

Lipschitz constant L.

Proof. The proof is obvious.

Let’s introduce the concept of concordance of maps and we shall describe shortly
its purpose.

Let X and Y be some spaces of maps on which the operation of the semigroup
S is defined with the help of shift σ, U [X] and U [Y ] be uniform structures of spaces
X and Y respectively; ϕ ∈ X, f ∈ Y .

Definition 4. We say that ϕ is S-concordant with f if for every index α ∈ U [X]
there is an index γ ∈ U [Y ] such that s ∈ S and (f, fs) ∈ γ implies (ϕ,ϕs) ∈ α. We

say that ϕ is uniformly S-concordant with f if for every index α ∈ U [X] there is an

index γ ∈ U [Y ] such that s, t ∈ S and (ft, fs) ∈ γ imply (ϕt, ϕs) ∈ α.

The essence of the concept of S-concordance is that if ϕ is S-concordant with
f and f has certain property of the recursiveness, then ϕ has this property of the
recursiveness, too. Let’s explain this in more details.

Let [S] be some class of subsets from S, f ∈ X (or f ∈ Y ).

The map f is called [S]-recursive if for an arbitrary index α ∈ U [X] there is a

set A ∈ [S] for which (f, fa) ∈ α, for all a ∈ A. The set fS is called [S]-recursive if

for an arbitrary index α ∈ U [X] there is a set A ∈ [S] for which (fs, fs+a) ∈ α, for

all s ∈ S and a ∈ A.

And let ϕ ∈ X, f ∈ Y . Then: 1) If ϕ is S-concordant with f and the map f is
[S]-recursive, then the map ϕ is [S]-recursive, too. 2) If ϕ is uniformly S-concordant
with f and the set fS is [S]-recursive, then the set ϕS is [S]-recursive, too.

The last definitions and proposition are well concordant with the facts known
for dynamic systems [1].

As concrete definitions of [S]-recursivenesses various types of Poisson stability of
maps, in particular, Poisson SQ-stability, Poisson SP-stability, SQ-recurrentness in
sense of Birkhoff, SQ-almost periodicity in sense of Bohr (here Q is a subset from
S, P is some family of subset of S). We shall give corresponding definitions, for
ϕ ∈ C(P, T ) (for more details see [1, 6]).

A map ϕ is Poisson SQ-stable if for arbitrary ε > 0, a compact set A from P
and arbitrary q ∈ Q there is p ∈ Q for which ‖ϕ(a)−ϕ(a+q+p)‖ < ε, for all a ∈ A.

If a map is Poisson SQ-stable for arbitrary Q ∈ P, then it is called as Poisson

SP-stable.

A map ϕ is SQ-recurrent in sense of Birkhoff if for arbitrary ε > 0 and a compact

set A from P there is a compact set K ⊂ Q such that for ∀q ∈ Q ∃k ∈ K for which

‖ϕ(a) − ϕ(a+ q + k)‖ < ε, for all a ∈ A.
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A map ϕ is SQ-almost periodic in sense of Bohr if for arbitrary ε > 0 and a

compact set A from P there is a compact set K ⊂ Q such that for ∀q ∈ Q ∃k ∈ K
for which ‖ϕ(s + a) − ϕ(s+ a+ q + k)‖ < ε, for all s ∈ S and a ∈ A.

Thus, if it is established that some solution ϕ of the equations is S-concordant
(uniformly S-concordant) with the right-hand side f of this equation and the map
f is Poisson SQ-stable, or Poisson SP-stable, or SQ-recurrent in sense of Birkhoff
(SQ-almost periodic in sense of Bohr), then the solution ϕ is respectively Poisson
SQ-stable, or Poisson SP-stable, or SQ-recurrent in sense of Birkhoff (SQ-almost
periodic in sense of Bohr), too.

Definition 5. Let a ∈ C(P,L(E,L(T, T ))). The total differential equation

y′h = a(t)hy (h ∈ E) (15)

is called weakly regular (regular) of type 1 with the constant r > 0 if for an arbitrary

bounded map b ∈ C(P,L(E,T )) the equation

y′h = a(t)hy + b(t)h (h ∈ E) (16)

has a compact (unique compact) solution x ∈ C(P, T ). In addition, for an arbitrary

compact solution x of the equation (16) is valid the estimation

sup
t∈P

‖x(t)‖ ≤ r · sup
t∈P

‖b(t)‖. (17)

Theorem 6. Let for the equation (1) the following conditions be fulfilled:

1) the equation (15) is weakly regularly of type 1 with the constant r;

2) the map b is bounded;

3) there is t0 ∈ T for which the set g(P, t0) is bounded;

4) the map g satisfies the Lipschitz condition in the second argument with the

Lipschitz constant L.

Then for an arbitrary λ, |λ| < 1/(rL), the equation (1) has a compact solution

xλ ∈ C(P, T ) and for it the estimation is valid

sup
t∈P

‖xλ(t)‖ ≤ r · sup
t∈P

‖b(t) + λg(t, xλ(t))‖. (18)

If in addition to the conditions 1) – 4) of our theorem the following condition is

fulfilled:

5) the map a is bounded and the set g(P, y) is compact for ∀y ∈ T ,

then the solution xλ is Lagrange S-stable.

If in addition to conditions 1) – 4) of our theorem the following conditions are

fulfilled:
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6) the equation (15) is regular of type of 1 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is

finite-dimensional and P = E if the space E is infinite-dimensional,

then the solution xλ is S-concordant with (a, b, g).

Proof. Let the conditions 1) – 4) of our theorem be fulfilled. We shall use Theorem
3 for: X is the space of bounded maps from C(P,L(E,T )) with the norm sup, Y is
the space of compact maps from C(P, T ) with the norm sup, q is the map that to
every p ∈ X puts in correspondence the set of all solutions of the equation

y′h = a(t)hy + p(t)h (h ∈ E)

contained in Y . As F we shall take the map Y × P → T according to the rule
F (ϕ, t) = ϕ(t), and as f we shall take the map g. Since the equation (15) is weakly
regular of type 1 with the constant r, then the map q is weakly r-regular. It is
directly checked that Y is a complete space.

Since for ∀x ∈ Y and ∀t ∈ P

‖g(t, x(t))‖ ≤ ‖g(t, x(t)) − g(t, t0)‖ + ‖g(t, t0)‖ ≤

≤ L(sup
s∈P

‖x(s)‖ + ‖t0‖) + sup
s∈P

‖g(s, t0)‖ ≡ l ∈ R,

i.e. ‖g(t, x(t))‖ ≤ l, then the map gx is bounded. Therefore the map g is F -
admissible.

From the condition 4) of our theorem the condition 2) of Theorem 3 follows.
According to Theorem 3 for an arbitrary λ, |λ| < 1/(rL), there is an xλ ∈

q(b + λgxλ). By the definition of the maps q and gxλ the map xλ is compact and
satisfies the equality x′λ(t)h = a(t)hxλ(t) + (b(t) + λg(t, xλ(t))h for an arbitrary
t ∈ P, h ∈ E. It also means that xλ is a compact solution of the equation (1). The
estimation (18) follows from the estimation for xλ from Theorem 3.

Let’s assume that the condition 5) of our theorem is also fulfilled, and we shall
prove the Lagrange S-stability of the solution xλ. Let’s designate by g∗ the map
P × T → L(E,T ) according to the rule: g∗(t, y)h = a(t)hy + (b(t) + λg(t, y))h
((t, y) ∈ P × T, h ∈ E). And let K ⊂ T be a compact set. By Lemma 2 the set
g(P,K) is compact. Since for ∀(t, y) ∈ P ×K

‖g∗(t, y)‖ = sup
‖h‖=1

‖g∗(t, y)h‖ ≤ ‖a(t)‖‖y‖ + ‖b(t)‖ + |λ|‖g(t, y)‖,

then the map g∗ is bounded on the set P × K. In that case the solution xλ is
Lagrange S-stable by Proposition 1.

Let’s assume that the conditions 1) – 4) and 6) – 7) of our theorem are fulfilled.
Then xλ is a unique compact solution of the equation (1). Suppose that xλ is not
S-concordant with (a, b, g). Then there is an index α of the uniform structure of
the space C(P, T ) such that for an arbitrary index γ of the uniform structure of the
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space C(P,L(E,L(T, T ))) ×C(P,L(E,T ))×C(P × T,L(E,T )) there is an element
sγ ∈ S such that

((a, b, g), (asγ , bsγ , gsγ )) ∈ γ (19)

and
(xλ, (xλ)sγ ) 6∈ α. (20)

From the relation (19) it follows that limγ(asγ , bsγ , gsγ ) = (a, b, g). By virtue of
Lemma 1 from the net {(xλ)sγ} it is possible to single out a subnet {(xλ)sβ

} con-
verging to some compact solution ψ of the equation (1). According to the proved
above ψ = xλ, therefore limβ(xλ)sβ

= xλ. The obtained relation contradicts (20).
The contradiction says that the solution xλ is S-concordant with (a, b, g).

Theorem 7. Let E be a Banach space, P = E and for the equation (1) the following

conditions are fulfilled:

1) for ∀t ∈ E, a(t) = a is a permutable operator such that (Sp a)e does not

intersect the imaginary axis of the complex plane for some vector e ∈ E of the

unit norm;

2) the map b is bounded, continuously differentiable and ∧{ahb(t)k −b′(t)kh} = 0
for ∀h, k, t ∈ E;

3) for an arbitrary bounded map y ∈ C(E,T ) the map gy is continuously dif-

ferentiable and ∧{ahgy(t)k−(gy)′(t)kh} = 0 for ∀h, k, t ∈ E (here and further,

gy is the map according to the rule gy(t) = g(t, y(t)) for ∀t ∈ E);

4) the map g satisfies the Lipschitz condition in the second argument with the

Lipschitz constant L;

5) there is t0 ∈ T for which the set g(E, t0) is bounded.

Then for an arbitrary λ, |λ| < 1/(rL), where r is the constant from the Example

2 of regular maps, the equation (1) has a unique bounded solution xλ ∈ C(E,T ) and

the estimation also is valid

sup
t∈E

‖xλ(t)‖ ≤ r · sup
t∈E

‖b(t) + λg(t, xλ(t))‖. (21)

If in addition to the conditions 1) – 5) of our theorem the set g(E, y) is compact

for ∀y ∈ T , then the solution xλ is Lagrange E-stable.

If in addition to the conditions 1) – 5) of our theorem T = Rm, then the solution

xλ is E-concordant with (a, b, g).

Proof. We relate the equation (1) to the r-regular map from the Example 2 of
regular maps, and the proof of the theorem is done by the proof scheme of Theorem
6 taking into account that for T = Rm, the solution xλ is compact.
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Theorem 8. Let for the equation (1) the following conditions be fulfilled:

1) the equation (15) is weakly regular of type 1 with the constant r;

2) the map b is bounded;

3) x is a compact solution of the equation (16) and V δ
x(P ) is a closed δ-neighbour-

hood of the set x(P ) (δ > 0);

4) the map g satisfies the Lipschitz condition in the second argument on V δ
x(P )

with the Lipschitz constant L;

5) for some t0 ∈ P , supt∈P ‖g(t, x(t0))‖ = l ∈ R.

Then for an arbitrary λ, |λ| < λ0 = δ/(r(L(d+ δ) + l)), where d is the diameter

of the set x(P ), the equation (1) has a compact solution xλ : P → V δ
x(P ) and for

it the estimation (18) is valid. In addition, if limi→∞ λi = 0, then limi→∞ xλi
= x

uniformly on P .

If in addition to the conditions 1) – 5) of our theorem the map a is bounded,

then the solution xλ is Lagrange S-stable.

If in addition to the conditions 1) – 5) of our theorem the following conditions

are fulfilled:

6) the equation (15) is regular of type 1 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is

finite-dimensional and P = E if the space E is infinite-dimensional.

Then the solution xλ is S-concordant with (a, b, g).

Proof. Let the conditions 1) – 5) of our theorem be fulfilled. We shall use Theorem
5 for: X is the space of bounded maps from C(P,L(E,T )) with the norm sup, Y is
the space of compact maps from C(P, T ) with the norm sup, q is the map that to
every p ∈ X puts in correspondence the set of all solutions of the equation

y′h = a(t)hy + p(t)h (h ∈ E)

contained in Y . As F we shall take the map Y × P → T according to the rule
F (ϕ, t) = ϕ(t) and as f the map g. Since the equation (15) is weakly regular of type
1 with the constant r, then the map q is weakly r-regular. Since for ∀y ∈ Y

sup
t∈P

‖g(t, y(t))‖ ≤ sup
t∈P

‖g(t, y(t)) − g(t, x(t0))‖ + sup
t∈P

‖g(t, x(t0))‖ ≤

≤ L(sup
t∈P

‖y(t)‖ + ‖x(t0)‖) + sup
t∈P

‖g(t, x(t0))‖ ∈ R,

i.s. supt∈P ‖g(t, y(t))‖ ∈ R, then the map gy is bounded. Therefore the map g is
F -admissible.
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Let Aδ
x = {y | y ∈ Y and y(P ) ⊂ V δ

x(P )}. It is clear that the set Aδ
x is closed,

hence, it is complete, as closed subset of a complete space Y . Since

sup
(t,s)∈P×P

‖g(t, x(s))‖ ≤ sup
(t,s)∈P×P

‖g(t, x(s)) − g(t, x(t0))‖ +

+ sup
t∈P

‖g(t, x(t0))‖ ≤ L sup
t∈P

‖x(t) − x(t0)‖ + l ≤ Ld+ l,

i.e. supt∈P ‖g(t, x(t))‖ ≤ Ld + l, then taking as l1 in the condition 4) of Theorem
5 the number Ld + l, we shall receive that our number λ0 coincides with λ0 from
Theorem 5. According to Theorem 5 for an arbitrary λ, |λ| < λ0, there exists
xλ ∈ q(b + λgxλ) ∩ Aδ

x. By the definition of maps q, gxλ and of set Aδ
x the map

xλ : P → V δ
x(P ) is compact and satisfies the equality x′λ(t)h = a(t)hxλ(t) + (b(t) +

λg(t, xλ(t))h for an arbitrary t ∈ P, h ∈ E. It also means that xλ : P → V δ
x(P )

is a compact solution of the equation (1). The estimation (18) follows from the
estimation of xλ from Theorem 5.

Let’s prove that if limi→∞ λi = 0, then limi→∞ xλi
= x is uniform on P . Let

ε > 0 be an arbitrary number. Since limi→∞ λi = 0, then there is a number i0 such
that for all i > i0 |λi| < ε/(r(Ld + l)). Let i > i0. Because xλi

− x is a compact
solution of the equation

y′h = a(t)hy + λig(t, xλi
(t))h (h ∈ E)

with a bounded map λig(t, xλi
(t)) (t ∈ P ), then using the conditions 1) and 5) of

our theorem, we have

sup
t∈P

‖xλi
(t) − x(t)‖ ≤ r|λi| sup

t∈P

‖g(t, xλi
(t))‖ ≤ r|λi|(Ld+ l) < ε,

i.e. supt∈P ‖xλi
(t)−x(t)‖ < ε. The proof also means that limi→∞ xλi

= x is uniform
on P .

Let’s assume that the map a is bounded and we shall prove that xλ is Lagrange
S-stable. Let’s designate by g∗ the map P × T → L(E,T ) by the rule: g∗(t, y)h =
a(t)hy + (b(t) + λg(t, y))h ((t, y) ∈ P × T, h ∈ E). Since xλ(P ) ⊂ V δ

x(P ) and for

∀y ∈ xλ(P )

sup
t∈P

‖g∗(t, y)‖ = sup
t∈P

sup
‖h‖=1

‖g∗(t, y)h‖ ≤ sup
t∈P

(‖a(t)‖‖y‖ + ‖b(t)‖ +

+|λ|‖g(t, y)‖) ≤ sup
t∈P

(‖a(t)‖‖y‖ + ‖b(t)‖) + |λ|(Ld+ l) = m ∈ R,

i.e. supt∈P ‖g∗(t, y)‖ ≤ m ∈ R, then the map g∗ is bounded on the set P × xλ(P ).
In that case the solution xλ is Lagrange S-stable according to Proposition 1.

If the conditions 1) – 7) of our theorem are fulfilled, then the S-concordance of
xλ with (a, b, g) is proved as in Theorem 6.

Theorem 9. Let E be a Banach space, P = E and for the equation (1) the following

conditions are fulfilled:
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1) for ∀t ∈ E a(t) = a is an operator such that (Sp a)e does not intersect the

imaginary axis of the complex plane for some vector e ∈ E of the unit norm;

2) the map b is bounded, continuously differentiable and ∧{ahb(t)k −b′(t)kh} = 0
for arbitrary h, k, t ∈ E;

3) for an arbitrary bounded map y ∈ C(E,T ), the map gy is continuously dif-

ferentiable and ∧{ahgy(t)k − (gy)′(t)kh} = 0 for arbitrary h, k, t ∈ E;

4) x is a bounded solution of the equation (16) and V δ
x(E) is a closed δ-neighbour-

hood of the set x(E) (δ > 0);

5) the map g satisfies the Lipschitz condition in the second argument on V δ
x(E)

with the Lipschitz constant L;

6) for some t0 ∈ E supt∈E ‖g(t, x(t0))‖ = l ∈ R;

7) λ0 = δ/(r(L(d+ δ)+ l)), where r is the constant from the Example 2 of regular

maps and d is the diameter of the set x(E).

Then for an arbitrary λ, |λ| < λ0, the equation (1) has a unique bounded solution

xλ : E → V δ
x(E). This solution is Lagrange E-stable and for it the estimation (21) is

valid. Besides, if limi→∞ λi = 0, then limi→∞ xλi
= x is uniform on E.

If in addition to the conditions 1) – 7) of our theorem T = Rm, then the solution

xλ is E-concordant with (a, b, g).

Proof. We connect with the equation (1) the r-regular map from the Example 2 of
regular maps, and the proof of the theorem is done by the proof scheme of Theorem
8 taking into account that for T = Rm the solution xλ is compact.

Alongside with the equation (1) we also consider the limiting equations

y′h = A(t)hy + (B(t) + λG(t, y))h (h ∈ E), (22)

where A ∈ aS, B ∈ bS, G ∈ gS.

Definition 6. The equation (15) is called weakly regular (regular) of type 2 with

the constant r > 0 if for an arbitrary A ∈ aS and an arbitrary bounded map

b ∈ C(P,L(E,T )) the equation

y′h = A(t)hy + b(t)h (h ∈ E). (23)

has a compact (unique compact ) solution x ∈ C(P, T ). In addition, for an arbitrary

compact solution x of the equation (23) the estimation (17) takes place.

Theorem 10. Let for the equation (1) the following conditions be fulfilled:

1) the equation (15) is weakly regular of type 2 with the constant r;

2) the map b is bounded;
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3) there exists t0 ∈ T for which the set g(P, t0) is bounded;

4) the map g satisfies the Lipschitz condition in the second argument with the

Lipschitz constant L.

Then for an arbitrary λ, |λ| < 1/(rL), and an arbitrary triple (A,B,G) ∈
(a, b, g)S, the equation (22) has a compact solution xλ and for it the estimation is

valid

sup
t∈P

‖xλ(t)‖ ≤ r · sup
t∈P

‖B(t) + λG(t, xλ(t))‖. (24)

If in addition to the conditions 1) – 4) of our theorem the following condition is

fulfilled:

5) the map a is bounded and the set g(P, y) is compact for ∀y ∈ T ,

then the solution xλ is Lagrange S-stable.

If in addition to the conditions 1) – 4) of our theorem the following conditions

are fulfilled:

6) the equation (15) is regular of type 2 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is

finite-dimensional and P = E if the space E is infinite-dimensional,

then the solution xλ is S-concordant with (A,B,G).
If in addition to the conditions 1) – 4) and 6) – 7) of our theorem the following

conditions are fulfilled:

8) the map (a, b) is Lagrange S-stable;

9) for ∀y ∈ T , the map g is uniformly continuous on the set P × {y} and the set

g(P, y) is compact,

then the solution xλ is uniformly S-concordant with (A,B,G).

Proof. Let the conditions 1) – 4) of theorem be fulfilled and (A,B,G) ∈ (a, b, g)S .
Since in the conditions of our theorem the map B is bounded, then the set G(P, t0)
is bounded and the map G satisfies, according to Lemma 4, the Lipschitz condition
in the second argument with the constant L, then the conclusion of our theorem
follows from Theorem 6. If the conditions 1) – 5) of the theorem are valid, then the
conclusion of our theorem follows from Theorem 6, so in our case A is a bounded
map and the set G(P, y) is compact for an arbitrary y ∈ T .

If the conditions 1) – 4) and 6) – 7) of our theorem are fulfilled, then the con-
clusion of our theorem follows from Theorem 6.

Let the conditions 1) – 4) and 6) – 9) of our theorem be fulfilled. According
to Lemma 3 the map g is Lagrange S-stable. Therefore the maps (a, b, g) and
(A,B,G) ∈ (a, b, g)S are Lagrange S-stable, too. If the equation (15) is regular
of type 2 with the constant r, then each equation (22) for an arbitrary λ, |λ| <
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1/(rL), has a unique compact solution xλ. Suppose that xλ is not uniformly S-
concordant with (A,B,G). Then there exists an index α of the uniform structure
of the space C(P, T ) such that for an arbitrary index β the uniform structure of the
space C(P,L(E,L(T, T ))) × C(P,L(E,T )) × C(P × T,L(E,T )) there are elements
sβ, tβ ∈ S such that

((Atβ , Btβ , Gtβ ), (Asβ
, Bsβ

, Gsβ
)) ∈ β (25)

and
((xλ)tβ , (xλ)sβ

) 6∈ α. (26)

By virtue of the compactness of the set (A,B,G)S we may consider that

lim
β

(Atβ , Btβ , Gtβ ) = (A1, B1, G1)

and
lim
β

(Asβ
, Bsβ

, Gsβ
) = (A2, B2, G2).

In this case from the relation (25) we obtain that (A1, B1, G1) = (A2, B2, G2) =
(A0, B0, G0). By virtue of Lemma 1 we suppose that limβ(xλ)tβ = ψ1 and
limβ(xλ)sβ

= ψ2, in addition, ψ1 and ψ2 are solutions of the equation

y′h = A0(t)hy + (B0(t) + λG0(t, y))h (h ∈ E).

Since this equation has a unique compact solution then ψ1 = ψ2, that contradicts
(26). The contradiction indicates that the solution xλ is uniformly S-concordant
with (A,B,G).

Theorem 11. Let for the equation (1) the following conditions be fulfilled:

1) the equation (15) is weakly regular of type 2 with the constant r;

2) the map b is bounded;

3) x is a compact solution of the equation (16) and V δ
x(P ) is a closed δ-neighbour-

hood of x(P ) (δ > 0);

4) the map g satisfies the Lipschitz condition in the second argument from V δ
x(P )

with the Lipschitz constant L;

5) for some t0 ∈ P , supt∈P ‖g(t, x(t0))‖ = l ∈ R.

Then for an arbitrary λ, |λ| < λ0 = δ/r(L(d + δ) + l), where d is the diameter

of the set x(P ), and for ∀(A,B,G) ∈ (a, b, g|V δ
x(P )

)S, where g|V δ
x(P )

is the contraction

of the map g on the set P × V δ
x(P ), the equation (22) has a compact solution xλ :

P → V δ
x(P ) and for it the estimation (24) is valid. Besides if limi→∞ λi = 0, then

limi→∞ xλi
= z is uniform on P for some compact solution z of the equation

y′h = A(t)hy +B(t)h (h ∈ E)
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(z exists by virtue of the condition 1) of our theorem).
If in addition to the conditions 1) – 5) of our theorem the map a is bounded,

then the solution xλ is Lagrange S-stable.

If in addition to the conditions 1) – 5) of our theorem the following conditions

are fulfilled:

6) the equation (15) is regular of type 2 with the constant r;

7) the space E is quasicomplete, P is a connected convex set if the space E is

finite-dimensional and P = E if the space E is infinite-dimensional,

then the solution xλ is S-concordant with (A,B,G).
If in addition to the conditions 1) – 7) of our theorem the map (a, b) is Lagrange

S-stable, for an arbitrary y ∈ V δ
x(P ) the map g is uniformly continuous on the set

P×{y} and the set g(P, y) is compact, then the solution xλ is uniformly S-concordant

with (A,B,G).

Proof. The proof is similar to the proof of Theorem 10 using Theorem 8 instead of
Theorem 6.
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