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On theory of surfaces defined

by the first order systems of equations

Valery Dryuma

Abstract. The properties of surfaces defined by spatial systems of differential equa-
tions are studied. The Monge equations connected with the first order nonlinear p.d.e.
are investigated. The properties of Riemannian metrics defined by the systems of dif-
ferential equations having applications in theory of nonlinear dynamical systems with
regular and chaotic behaviour are considered.
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1 Introduction

An investigation of the properties of spatial systems of differential equations
having three degrees of freedom represented by the dynamical variables x, y and z

dx

ds
= P (x, y, z),

dy

ds
= Q(x, y, z),

dz

ds
= R(x, y, z) (1)

is an important task of modern mathematics.
The Lorenz

dx

ds
= σ(y − x),

dy

ds
= rx − y − xz,

dz

ds
= xy − bz, (2)

and the Rössler

dx

ds
= −(y + z),

dy

ds
= x + ay,

dz

ds
= b + xz − cz (3)

are the most famous examples of the systems of equations having regular and chaotic
behavior of trajectories at some values of parameters.

To study the properties of the systems (1) we propose geometrical approach
founded on consideration of the surfaces of the form z = z(x, y), x = x(y, z) or
y = y(x, z) in R3-space which are connected naturally with such type of systems.

In result we get from the system (1) a set of nonlinear of the first order partial
differential equation for every pair of variables.

As example, in the case z = z(x, y) we can write the equation

∂z(x, y)

∂x
P (x, y, z(x, y)) +

∂z(x, y)

∂x
Q(x, y, z(x, y)) − R(x, y, z(x, y)) = 0. (4)
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Its solutions the surfaces in the R3-space are locally presented.
A studies of surfaces defined by spatial systems of equations like (1) can be useful

for understanding of their properties.

2 The examples of surfaces corresponding to the Lorenz system

For the system (2) we consider the variable z as a function of variables x and y
i.e. z = z(x, y).

As result we get the partial first order differential equation

σ(y − x)
∂z(x, y)

∂x
+ (rx − y − xz(x, y))

∂z(x, y)

∂x
− xy + bz(x, y) = 0 (5)

determines the surface z = z(x, y, σ, b, r) depending on parameters.
To the integration of this equation we present it in the equivalent form

σ y

(

∂

∂x
z(x, y)

)

+ ((r − 1) x − (σ + 1) y − xz(x, y))

(

∂

∂y
z(x, y)

)

−

−yx − x2 + bz(x, y) = 0

(6)

which is connected with the previous form by the change of variable

y = Y + x.

In fact after such a substitution the Lorenz system looks as

dx

ds
= σY,

dY

ds
= rx − Y − x − σY − xz,

dz

ds
= x2 + xY − bz (7)

and the corresponding equation for the function z = z(x, Y ) takes the form (6),
where we conserve old name of variable Y = y.

2.1 Simplest solutions

1. The substitution
z(x, y) = A(x)

into the equation (6) leads to the conditions

A(x) =
x2

2σ
, b = 2σ.

From the system (7) in the case z = z(x) we get the equation

y(x)
d

dx
y(x) +

(σ + 1)

σ
y(x) − (r − 1)

σ
x +

1

2σ2
x3 = 0.

2. The substitution of more general form

z(x, y) = A(x)(1 + B(x)y + C(x)y2)
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gives rise to the expression

z(x, y) = A(x)

(

1 +
(

2
σ

x
− 2x−1

)

y (A(x))−1 − σ y2

x2A(x)

)

, r = 2σ − 1,

b = 6σ − 2,

where

A(x) = −1/4
4 − x2 + 4σ2 − 8σ

σ
.

In an explicit form we have

z(x, y) = −σ y2

x2
+ 2

(σ − 1) y

x
+ 1/4

x2

σ
− (σ − 1)2

σ
. (8)

Returning to the system (6) we get from the system (7) the Abel equation

d

dx
y(x) − 1/4

x4 +
(

−12σ2 − 4 + 12σ
)

x2 +
(

−4σ + 8σ2
)

y(x)x − 4σ2 (y(x))2

x (−y(x) + x)σ2
= 0

(9)
for the function y = y(x).

3. The next example is the solution of equation (6) in the form

z(x, y) = 1/4
x4 + 4x2 − 4 rx2 − 4 y2

x2 + 4 − 4 r
,

where
σ = 1, b = 4, r is arbitrary.

Remark 1. To integrate the partial nonlinear first order differential equation

F (x, y, z(x, y), zx, zy) = 0 (10)

a following method can be applied.
We use the change of variables

z(x, y) → u(x, t), y → v(x, t), zx → ux − vx

vt
ut, vy → ut

vt
. (11)

In result instead of the equation (10) one gets the relation between the new
variables u(x, t) and v(x, t) and their partial derivatives

Φ(u, v, ux, ut, vx, vt) = 0. (12)

In some cases to solve the last equation is more simple problem than to solve the
equation (10).

To illustrate this method let us consider an example.
The equation

∂

∂x
z(x, y) −

(

∂

∂y
z(x, y)

)2

= 0 (13)
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is transformed into the following form

∂

∂x
u(x, t) −

(

∂
∂tu(x, t)

)

∂
∂xv(x, t)

∂
∂tv(x, t)

−
(

∂
∂tu(x, t)

)2

(

∂
∂tv(x, t)

)2
= 0.

Using the substitution

u(x, t) = t
∂

∂t
ω(x, t) − ω(x, t), v(x, t) =

∂

∂t
ω(x, t)

we find the equation for ω(x, t)

∂

∂x
ω(x, t) + t2 = 0.

Its integration leads to

ω(x, t) = −t2x + F1(t)

where F1(t) is an arbitrary function.
Now with the help of ω(x, t) we find the functions u(x, t) and v(x, t)

u(x, t) = −t2x + t
d

dt
F1(t) − F1(t), v(x, t) = −2 tx +

d

dt
F1(t)

or

u(x, t) = ty + t2x − F1(t), y = −2 tx +
d

dt
F1(t).

After the choice of arbitrary function F1(t) and the elimination of the parameter
t from these relations we get the function z(x, y), satisfying the equation (13).

We apply this method for the study of the surfaces connected with the Lorenz
model (7) in the case y = y(x, z).

The corresponding partial differential equation is

(

∂

∂x
y(x, z)

)

σ y(x, z) +

(

∂

∂z
y(x, z)

)

(

xy(x, z) + x2 − bz
)

+

+σ y(x, z) − rx + y(x, z) + x + xz = 0.

(14)

In new variables it looks as
(

∂

∂x
u(x, t) −

(

∂
∂tu(x, t)

)

∂
∂xv(x, t)

∂
∂tv(x, t)

)

σ u(x, t) +

(

∂
∂tu(x, t)

) (

xu(x, t) + x2 − bv(x, t)
)

∂
∂tv(x, t)

+

+σ u(x, t) − rx + u(x, t) + x + xv(x, t) = 0.
(15)

After the substitution

u(x, t) = t
∂

∂t
ω(x, t) − ω(x, t), v(x, t) =

∂

∂t
ω(x, t)
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we get the equation for the function ω(x, t)

−
(

∂

∂x
ω(x, t)

)

σ t
∂

∂t
ω(x, t)+

(

∂

∂x
ω(x, t)

)

σ ω(x, t)+xt2
∂

∂t
ω(x, t)−txω(x, t)−tb

∂

∂t
ω(x, t)+

+tx2 + σ t
∂

∂t
ω(x, t) − σ ω(x, t) − rx + t

∂

∂t
ω(x, t) − ω(x, t) + x + x

∂

∂t
ω(x, t) = 0.

The simplest solution of this equation has the form

ω(x, t) = A(t)x,

where
A(t) = 1 +

√

t2 + 1C1, b = 1, σ = 1, r = C2

1 .

With the help of this solution we find the functions u(x, t) and v(x, t)

u(x, t) = − x
√

r√
t2 + 1

− x, v(x, t) =

√
rtx√

t2 + 1
.

Elimination the parameter t from these relations we find the corresponding so-
lution of the equation (14)

y(x, z) = −
√

−z2 + x2r − x,

with
b = 1, σ = 1, and r is arbitrary.

For the surfaces in the form
x = x(y, z)

we get the equation

(

∂

∂y
x(y, z)

)

(−σ y + rx(y, z) − y − x(y, z) − x(y, z)z) +

+

(

∂

∂z
x(y, z)

)

(

(x(y, z))2 − bz + x(y, z)y
)

− σ y = 0.

(16)

The simplest solution of this equation is

x(y, z) =
√

2 rz − z2 − y, b = 1, r = 0, σ is arbitrary.

Another type of solution is

x(y, z) = −1/2
z2

y
− 1/2 y, b = 1, σ = 1, r = 1.

More general solutions in the case x = x(y, z) can be obtained with the help of
transformation like (11).
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On the first step with the help of relations

∂

∂z
x(y, z) =

∂
∂tu(y, t)
∂
∂tv(y, t)

,
∂

∂y
x(y, z) =

∂

∂y
u(y, t) −

(

∂
∂tu(y, t)

)

∂
∂yv(y, t)

∂
∂tv(y, t)

,

x(y, z) = u(y, t), z = v(y, t)

we get the equation
(

∂

∂y
u(y, t) −

(

∂
∂tu(y, t)

)

∂
∂y v(y, t)

∂
∂tv(y, t)

)

(−σ y + ru(y, t) − y − u(y, t) − u(y, t)v(y, t)) +

+

(

∂
∂tu(y, t)

)

(

(u(y, t))2 − bv(y, t) + u(y, t)y
)

∂
∂tv(y, t)

− σ y = 0

and then with the help of substitutions

u(y, t) = t
∂

∂t
ω(y, t) − ω(y, t), v(y, t) =

∂

∂t
ω(y, t)

we find the equation for the function ω(y, t)

(

∂

∂y
ω(y, t)

)

σ y−
(

∂

∂y
ω(y, t)

)

rt
∂

∂t
ω(y, t)+

(

∂

∂y
ω(y, t)

)

rω(y, t)+

(

∂

∂y
ω(y, t)

)

y+

+

(

∂

∂y
ω(y, t)

)

t
∂

∂t
ω(y, t) −

(

∂

∂y
ω(y, t)

)

ω(y, t) +

(

∂

∂y
ω(y, t)

)

t

(

∂

∂t
ω(y, t)

)2

−

−
(

∂

∂y
ω(y, t)

)(

∂

∂t
ω(y, t)

)

ω(y, t) + t3
(

∂

∂t
ω(y, t)

)2

− 2 t2
(

∂

∂t
ω(y, t)

)

ω(y, t)+

+t (ω(y, t))2 − tb
∂

∂t
ω(y, t) + yt2

∂

∂t
ω(y, t) − tyω(y, t) − σ y = 0.

The separation of variables in this equation leads to the solution

ω(y, t) = 1/4
y
(

2 + 4C1 + 2
√

1 + 2C1 + 2 t2C1

)

C1

,

where
r = (1 + 2C1)

−1 , b = 1, σ = 1.

Using this solution we get the functions u(y, t) and v(y, t) and then after the
elimination of the parameter t from the relations

x = u(y, t), z = v(y, t)

obtain the family of solutions x(y, z) of equation (16)

x(y, z) = 1/4
−4 yC − 2 y + 2

√

2 y2C + y2 − 2C z2 − 4 z2C2

C
,
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r = (1 + 2C)−1 , b = 1, σ = 1.

The next example.
With the help of substitution

v(x, t) = t
∂

∂t
ω(x, t) − ω(x, t), u(x, t) =

∂

∂t
ω(x, t)

into the relation

σ (y − x)
∂

∂x
z(x, y) + (rx − y − xz(x, y))

∂

∂y
z(x, y) − yx + bz(x, y) = 0

we get the equation

(

−σ
∂

∂x
ω(x, t) + tx + 1

)

ω(x, t) +

(

−xσ + σ t
∂

∂t
ω(x, t)

)

∂

∂x
ω(x, t)+

(

bt − x − xt2 − t
) ∂

∂t
ω(x, t) + rx = 0.

It has the solution

ω(x, t) = 1/2
x2
(

1 + t2
)

t

by the conditions
σ = 1/2, b = 1, r = 0.

From here we get the equation of the corresponding surface

z(x, y) = 1/2
x4 − y2

x2
.

3 Spatial homogeneous quadratic first order systems of equations

The system of equations

dx

ds
= a0 + a1x + a2y + a11x

2 + a12xy + a22y
2,

dy

ds
= b0 + b1x + b2y + b11x

2 + b12xy + b22y
2

(17)

where ai, aij and bi, bij are parameters after the extension on the projective plane
takes the form of Pfaff equation

(

xQ̃ − P̃ y
)

dz − dx zQ̃ + P̃dy z = 0 (18)

where the functions P̃ , Q̃ are homogeneous polinomials.
In the explicit form we get the expression

(

xb 0 z2 + b 1 x2z + xb 2 yz + b {11}x3 + b {12}x2y + xb {22} y2 − ya 0 z2
)

dz−
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−
(

ya 1 xz − a 2 y2z − ya {11}x2 − a {12}xy2 − a {22} y3
)

dz+

+
(

z2a 2 y + za {11}x2 + z3a 0 + z2a 1 x + za {12}xy + za {22} y2
)

dy+

+
(

−z3b 0 − z2b 1 x − zb {12}xy − zb {22} y2 − z2b 2 y − zb {11}x2
)

dx = 0.

The spatial first order system of equations

dx

ds
= P (x, y, z),

dy

ds
= Q(x, y, z),

dz

ds
= R(x, y, z), (19)

connected with a given Pfaff equation has the following form

dx

ds
= Qz − Ry,

dy

ds
= Rx − Pz,

dz

ds
= Py − Qx,

and in our case looks as

d

ds
x(s) = 4 a 0 z2 + (4 a 2 y + (3 a 1 − b 2 )x) z + 4 a {22} y2+

+ (3 a {12} − 2 b {22}) xy + (2 a {11} − b {12}) x2,

d

ds
y(s) = 4 b 0 z2 + ((3 b 2 − a 1 ) y + 4 b 1 x) z + (2 b {22} − a {12}) y2+

+ (−2 a {11} + 3 b {12}) xy + 4 b {11}x2,
(20)

d

ds
z(s) = (−b 2 − a 1 ) z2 + ((−2 b {22} − a {12}) y − b {12}x − 2 a {11}x) z.

For such a system of equations the condition

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= 0

is fulfilled.

The system of equations (20) is equivalent to the first order equation connected
with the system (17) in coordinates χ(s) and η(s)

ξ(s) =
x(s)

z(s)
, η(s) =

y(s)

z(s)

or
dξ

dη
=

a0 + a1ξ + a2η + a11ξ
2 + a12ξη + a22η

2

b0 + b1ξ + b2η + b11ξ2 + b12ξη + b22η2
.

The equation of the surfaces defined by the system (20) has the form

(

∂

∂x
z(x, y)

)

P (x, y, z) +

(

∂

∂y
z(x, y)

)

Q(x, y, z) − R(x, y, z) = 0.

Let us consider some examples.
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For the system of equations

d

dt
x(t)+4 z(t)y(t)− 3 z(t)lx(t)− 4 (y(t))2 − 3mx(t)y(t)+20 (x(t))2 +(x(t))2 n = 0,

d

dt
y(t)− 4 z(t)x(t) + z(t)ly(t)− 4 (x(t))2 − 3x(t)y(t)n− 20x(t)y(t) + m (y(t))2 = 0,

d

dt
z(t) + l (z(t))2 + z(t)my(t) + z(t)x(t)n − 20 z(t)x(t) = 0,

which is connected with the projective extension of the planar system that cab be
found in the theory of limit cycles

d

dt
x(t) − lx + y + 10x2 − mxy − y2 = 0,

d

dt
y(t) − x − x2 − nxy = 0,

the equation of surface z = z(x, y) takes the form

(

4 z(x, y)x − z(x, y)ly + 4x2 + 3xyn + 20xy − my2
) ∂

∂y
z(x, y)+

+
(

−4 yz(x, y) + 3 z(x, y)lx + 4 y2 + 3mxy − 20x2 − x2n
) ∂

∂x
z(x, y)+

+z(x, y)my + z(x, y)xn − 20 z(x, y)x + l (z(x, y))2 = 0.

A simplest solution of this equation can be obtained with the help of u, v-
transformation with the conditions

u(x, t) = t
∂

∂t
ω(x, t) − ω(x, t), v(x, t) =

∂

∂t
ω(x, t). (21)

As result we get the equation

(

(−3xlt−4ω(x, t)−3xm)
∂

∂t
ω(x, t)+(4 t−4)

(

∂

∂t
ω(x, t)

)2
)

∂

∂x
ω(x, t)+

+
(

3xlω(x, t)+(n+20)x2
) ∂

∂x
ω(x, t)+

+
(

−tlω(x, t) + 4xt2 − mω(x, t) + 4 txn
) ∂

∂t
ω(x, t)−

−xnω(x, t) − 4 txω(x, t) + l (ω(x, t))2 + 20xω(x, t) +4 tx2 = 0.

A simplest solution of this equation can be presented in the form

ω(x, t) = A(t) + kxt

with parameter k.



170 VALERY DRYUMA

After the substitution of this expression we find possible values of parameters

k = −1/9, m =
85

36
, n = −5/4, l = 0

and the expression for the function A(t)

A(t) = t
85
16 C1 (−1 + t)−

69
16 .

After the elimination of variable t from the relations (21) we get the expression
for the function z(x, y)

4477456 (x + 9 y − 9 z(x, y))5

(

−23
x + 9 y − 9 z(x, y)

23x + 207 y + 48 z(x, y)

)
5
16

−

−3234611728125 C1 255
5
16 (z(x, y))4

(

z(x, y)

23x + 207 y + 48 z(x, y)

)
5
16

= 0.

In general case the equation of the surfaces looks as

zx

(

4 a0z
2+(4 a2 y + (3 a1−b2) x) z+4 a22 y2+(3 a12−2 b22)xy+(2 a11−b12) x2

)

+

+zy

(

4 b0 z2+((3 b2−a1) y+4 b1 x) z+(2 b22−a12) y2+(−2 a11+3 b12) xy+4 b11 x2
)

+

+ (b2 + a1) (z)2 + ((2 b22 + a12) y + (2 a11 + b12)x) z = 0.

After the u, v-transformation (21) with the function ω(x, t) = A(t)x we find from
here the equation on the function A(t)

(

a0 t2A (t) + a2 tA (t) − b2 t2 − b22 t + a22 A (t) − t3b0

)

(

d

dt
A (t)

)2

+

+
(

−(2 a0 t + a2) (A (t))2 + (a12 − t2b1 + a1 t − b12 t + b2 tA + 2 t2b0)A (t)
) d

dt
A (t)−

−a1 (A (t))2 + a11 A (t) + a0 (A (t))3 + tb1 A (t) − tb11 − tb0 (A (t))2 .

A genus of this equation depends on the values of the parameters and can be
g = 1 or g = 0.

In the first case to integration of the equation on A(t) may be used parametriza-
tion by elliptic functions an by rational functions in the second case.

Another way of investigation of the properties of this equation follows from its
geometrical interpretation as equation of asymptotical lines on the some surface.
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4 Monge equations in the theory of the first order nonlinear p.d.e.’s

The Monge equations
Φ(x, y, z, dx, dy, dz) = 0 (22)

are equations homogeneous with respect to the differentials dx, dy, dz.
They are naturally connected with equations of the form

F (x, y, z, zx, zy) = F (x, y, z, p, q) = 0 (23)

and can be used for the study of their properties.
To construct the equation (22) for the equation (23) it is necessary to eliminate

the variables p and q from the system of equations

F (x, y, z, p, q) = 0,
dx

P
=

dy

Q
=

dz

pP + qQ
,

where

P =
∂F (x, y, z, p, q)

∂q
, Q =

∂F (x, y, z, p, q)

∂q
.

Let us consider some example.
For the equation

F (x, y, z, p, q) = p2 + qy2 − 1 (24)

the system
dx

P
=

dy

Q
=

dz

pP + qQ
,

leads to
dx y2 − 2 dy p = 0, 2 dy p2 + dy qy2 − dz y2 = 0. (25)

After the elimination of the variables p and q from the equations (24-25) we find
the corresponding Monge equation

−
(

d

ds
x(s)

)2

(y(s))4 + 4

(

d

ds
z(s)

)

(y(s))2
d

ds
y(s) − 4

(

d

ds
y(s)

)2

= 0. (26)

Its general solution has the form

z(s) = −s
d

ds
B(s) + 1/2 s2

d2

ds2
B(s) + 1/2

d2

ds2
B(s) + B(s),

y(s) = −2

(

d2

ds2
B(s)

)

−1

, x(s) = − d

ds
B(s) + s

d2

ds2
B(s)

where B(s) is an arbitrary function and it can be obtained with the help of complete
integral of equation (24)

z(x, y) = Ax +
(A2 − 1)

y
+ B,

where A and B are parameters.
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5 From Monge equations to the Riemann geometry

Riemann space with the metric

ds2 = gijdxidxj (27)

has geodesic satisfying the system of equations

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
= 0,

where Γi
jk are the Christoffel symbols of the metrics (27).

These equations have the first integral of the form

gij
dxj

ds

dxk

ds
= µ

or

gij
dxj

ds

dxk

ds
= 0

by the condition µ = 0.

In the three-dimensional case such integral has the form of the Monge equation

g11(x, y, z)

(

dx

ds

)2

+ 2g12(x, y, z)
dx

ds

dy

ds
+ g22(x, y, z)

(

dy

ds

)2

+ 2g13(x, y, z)
dx

ds

dz

ds
+

+2g23(x, y, z)
dy

ds

dz

ds
+ g33(x, y, z)

(

dz

ds

)2

= 0.

(28)
and can be considered as quadratic first integral of null-geodesic of some three-
dimensional space endowed with the metric

ds2 = g11(x, y, z)dx2 + 2g12(x, y, z)dxdy + g22(x, y, z)dy2 + 2g13(x, y, z)dxdz+

+2g23(x, y, z)dydz + g33(x, y, z)dz2.

From this point of view the methods of Riemann geometry can be used for the
investigation of the properties of Monge equations and the corresponding first order
nonlinear p.d.e.

In particular, scalar invariants and the theory of surfaces of such type of spaces
can be used with this aim.

We consider two-dimensional surfaces of the translation yν = [x(u, v), y(u, v),
z(u, v)] in a three-dimensional Riemann space which corresponds to the Monge equa-
tion of the form (26) as it was described above.

The equations for determination of translation surfaces have the form

∂yα

∂u∂v
+ Γα

βγ

∂yβ

∂u

∂yγ

∂v
= 0. (29)
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Let us consider some examples.
For the equation (24) the Monge equation is (26).
The metric of corresponding Riemann space is

ds2 = −y4dx 2 − 4 dy2 + 4 y2dy dz . (30)

The geodesic equations of this space are of the form
(

d2

ds2
x(s)

)

y(s) + 4

(

d

ds
y(s)

)

d

ds
x(s) = 0,

(

d2

ds2
y(s)

)

y(s) + 2

(

d

ds
y(s)

)2

= 0,

(

d2

ds2
z(s)

)

(y(s))3 + (y(s))4
(

d

ds
x(s)

)2

+ 4

(

d

ds
y(s)

)2

= 0.

Taking in consideration the equation (26) we get the solutions of geodesic equa-
tions

x(s) = C3 +
C4

3
√

3 C1 s + 3 C2
, y(s) = 3

√
3 C1 s + 3 C2 ,

and

z(s) = −1/4
4 + C4 2

3
√

3 C1 s + 3 C2
+ C6 .

The equations (29) for the surfaces of translation of the space with metric (30)
looks as
(

∂2

∂u∂v
x(u, v)

)

y(u, v) + 2

(

∂

∂u
x(u, v)

)

∂

∂v
y(u, v) + 2

(

∂

∂u
y(u, v)

)

∂

∂v
x(u, v) = 0,

(

∂2

∂u∂v
y(u, v)

)

y(u, v) + 2

(

∂

∂u
y(u, v)

)

∂

∂v
y(u, v) = 0,

(

∂2

∂u∂v
z(u, v)

)

(y(u, v))3 + (y(u, v))4

(

∂

∂u
x(u, v)

)

∂

∂v
x(u, v)+

+4

(

∂

∂u
y(u, v)

)

∂

∂v
y(u, v) = 0.

They can be integrated without problems.
The simplest solution is

x(u, v) = u − v, y(u, v) = 3
√

u + v,

z(u, v) = F2 (u) + F1 (v) +
9

28
(u + v)7/3 − 1

3
√

u + v
.

In particular case F2 (u) = u, F1 (v) = 0 with the help of relations

u = 1/2x + 1/2 y3, v = −1/2x + 1/2 y3

we get the surface with equation

z(x, y) =
9

28
y7 + 1/2 y3 + 1/2x − y−1.
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6 On the surfaces connected with the Rössler system

Let us consider examples of surfaces corresponding to the Rössler system of
equations (3)

One of them has the form
(

∂

∂y
x(y, z)

)

(x(y, z) + ay) +

(

∂

∂z
x(y, z)

)

(b + (x(y, z) − c) z) + y + z. (31)

In the case a = 0, b = 0, c = 0 we find the solution

x(y, z) =

√

−y2 − 2 z + F1 (
z

ey
).

where F1 ( z
ey ) is an arbitrary function.

To construct the Monge equation corresponding the equation (31) we present its
in a new notations as

(

∂

∂u
y(u, v)

)

(y(u, v) + au) +

(

∂

∂v
y(u, v)

)

(b + (y(u, v) − c) v) + u + v = 0.

After the change of variables

∂

∂u
y(u, v) =

∂
∂xω(x, v)
∂
∂xλ(x, v)

,
∂

∂v
y(u, v) =

∂

∂v
ω(x, v) −

(

∂
∂xω(x, v)

)

∂
∂vλ(x, v)

∂
∂xλ(x, v)

,

y(u, v) = ω(x, v), u = λ(x, v)

with conditions

λ(x, v) = x
∂

∂x
ρ(x, v) − ρ(x, v)ω(x, v) =

∂

∂x
ρ(x, v)

one gets the equation equivalent to (31)
(

1 + ax + x2 + v
∂

∂v
ρ(x, v)

)

∂

∂x
ρ(x, v) + (−cv + b)

∂

∂v
ρ(x, v) − xρ(x, v)+

+vx − aρ(x, v) = 0.

For this p.d.e. the Monge equation is defined by the condition

dz 2y2 +
((

2 yx2 + 2 yax + 2 y
)

dy +
(

2 by − 2 cy2
)

dx
)

dz+

+
(

2x2 + 2 ax + x4 + 1 + 2 ax3 + a2x2
)

dy2 + (cy − b)2 dx 2

+
(

2 axcy − 2 b − 2 axb + 4xy2 + 2x2cy − 2x2b − 4xzy − 4 azy + 2 cy
)

dx dy = 0

and it may be considered as the first integral of geodesic of the corresponding three-
dimensional Riemann space.

Another aproach to the study of the Rössler system gives us the investigation of
the integral manifolds of corresponding Pfaff equation

−(y + z)dx + (x + ay)dy + (b + (x − c)zdz = 0.

It is reduced to the form

−(y + z)dx + (x + ay)dy + (b + (x − c)zdz = dU + V dW

and so determines one-dimensional integral manifolds.
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