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Attractors in affine differential systems

with impulsive control ∗

Valeriu Guţu

Abstract. In this paper we prove that an asymptotic equilibrium of an affine system
of differential equations can become a strange attractor under affine impulsive control.
The linear oscillator is studied as example.
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1 Introduction

We are concerned with the system of affine differential equations

ẋ = Ax+ b (x ∈ R
m), (1)

where A is a nonsingular matrix.
Suppose that at the moments t = n ∈ N

∗ instantaneous control actions occur,
which change the state of system as follows:

∆x
∣

∣

t=n
:= x(n+ 0) − x(n − 0) = Cinx(n− 0) + din (n ∈ N

∗), (2)

where the matrices Cin and vectors din belong to given sets (finite or infinite).

Between any two consecutive kicks the motion of the system obeys (1). At the
moment t = n the elements Cin and din , which determine the jump by (2), are
chosen, say randomly. For convenience, we will consider that all solutions of system
(1)–(2) are right continuous at the moments t ∈ N.

Let F be the set of all affine maps {Fin : x 7→ Cinx+ din}n∈N∗ . For simplicity,
we assume that the set F is finite and contains only r distinct elements, say F =
{F1, F2, . . . , Fr}. Denote F̃n = E+Fn (1 ≤ n ≤ r), where E is the identity operator.

Assume that the spectra of the operators (E + Cn)eA (1 ≤ n ≤ r) are located
strictly inside of the unit circle. Sometimes, if necessary, it is required that all
operators E + Cn (1 ≤ n ≤ r) are invertible.

It is known (see, e.g., [1]) that if the sequence {Fin}n∈N∗ is periodic, then the
behavior of the system is quite simple: there exists a globally attracting periodic
cycle, corresponding to a periodic motion. This situation may, however, be changed
essentially in the general case.
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In what follows we show that there exists a global attractor in the extended
phase space and for ”typical” sequence {Fin}n∈N∗ this invariant set has a non-integer
Hausdorff dimension (see, e.g., [2]) and represents a fractal. Moreover, the motions
on the attractor are chaotic by Li-Yorke (in the meaning that every trajectory on
the attractor is dense) and, as a consequence, every solution of the impulsive system
(1)–(2) tends to a chaotic one.

This paper represents an application of general results from [3,4].

2 Invariant sets

If one denotes by x(n) the state of the system immediately after the n-th kick,
then by a straightforward calculation we end up with a sequence of affine maps
Φin : x(n) 7→ x(n + 1), n ∈ N

∗. More precisely,

Φin : x 7→ (E + Cin+1)e
Ax+ (E + Cin+1)(e

A − E)A−1b+ din+1 .

We call the sequence {Φin}n∈N the Poincaré system associated with the impulsive
system (1)–(2). Under the above assumptions, this Poincaré system is generated by
r affine maps {Φ1,Φ2, . . . ,Φr}.

Let Pcp(R
m) be the set of all nonempty compact subsets of R

m, endowed with
the Hausdorff-Pompeiu metrics (see, e.g.,[2]). Denote by Φ the Nadler-Hutchinson

operator [6] on the space Pcp(R
m), defined by Φ(M) :=

r
⋃

n=1
Φn[M ], M ∈ Pcp(R

m).

Let ψ(·, τ, x0) stand for the solution of the system (1)–(2) with the initial con-
dition x(τ) = x0. Since the system (1)–(2) is affine, there is a unique such solution,
defined on R (see, e.g., [1]).

Lemma 1. For every x ∈ R
m and t1, t2, t3 ∈ R one has

ψ(t1, t2, ψ(t2, t3, x)) = ψ(t1, t3, x). (3)

Proof. This follows immediately from the uniqueness of the solution of respective
Cauchy problem. 2

Lemma 2. Every solution of the system (1)–(2) can be written as follows:

ψ(t, τ, x) = e(t−τ)Ax, if [t] = [τ ], or

ψ(t, τ, x) = e(t−[t])AF̃i[t]e
([t]−τ)Ax, if [t] = [τ ] + 1, or

ψ(t, τ, x) = e(t−[t])A





[t]
∏

j=[τ ]+2

Φij



 F̃i[τ ]+1
e([τ ]+1−τ)Ax, if [t] > [τ ] + 1, or

ψ(t, τ, x) = e(t−[τ ])AF̃−1
i[τ ]
e([τ ]−τ)Ax, if [t] = [τ ] − 1, or

ψ(t, τ, x) = e(t−[t]−1)AF̃−1
i[t]+1





[t]+2
∏

j=[τ ]

Φ−1
ij



 e([τ ]−τ)Ax, if [t] < [τ ] − 1,

where [·] denotes the integral part.
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Proof. The proof is straightforward. 2

Remark 1. In fact, the impulsive system (1)–(2) is nonautonomous and we can
consider only its integral curves. Even in the case of periodic sequence {Fin}n∈N∗ we
cannot factorize the system to obtain a (autonomous) system on the direct product
S1 × R

m. However, since the impulse actions occur at the moments t ∈ N, we can
obtain a foliation on the cylinder S1 × R

m by factorization on time. This foliation
consists of pieces of integral curves of the system (1)–(2).

Project the system (1)-(2) to the cylinder S1 × R
m, using the projection π :

(t, y) 7→ (t (mod 1), y).
We will say that a set V ⊂ S1×R

m is positive invariant (invariant) with respect
to the system (1)-(2), if for every point (τ, x) ∈ V and every natural k one has

(t (mod 1), ψ(t, τ + k, x)) ∈ V for t ≥ τ + k (for t ∈ R). (4)

In other words, V consists of pieces of integral curves.
By definition, such a set V ⊂ S1 × R

m covers the whole base S1 by projection.
Denote by (t, Vt) := {(t, x) ∈ S1 ×R

m | (t, x) ∈ V } the fiber over the point t ∈ [0, 1).
For convenience, we will identify this fiber with Vt. Moreover, in the sequel the
notation Vt for t ∈ R will mean Vt (mod 1).

Theorem 3. The set V ⊂ S1 × R
m is positive invariant (invariant) with respect to

the system (1)-(2) if and only if it satisfies the following conditions:

1. e(t−τ)AVτ ⊂ Vt for 0 ≤ τ ≤ t < 1 (e(t−τ)AVτ = Vt for τ, t ∈ [0, 1));

2.
r
⋃

n=1
F̃ne

(1−τ)AVτ ⊂ V0 (
r
⋃

n=1
F̃ne

(1−τ)AVτ = V0) for 0 ≤ τ < 1.

Proof. Necessity. Assume that the set V ⊂ S1×R
m is positive invariant (invariant).

If x ∈ Vτ , then (τ, x) ∈ V , and by Lemma 2 one has for 0 ≤ τ ≤ t < 1

e(t−τ)Ax = ψ(t, τ, x) ∈ Vt. (5)

At the same time, for every natural n there is a natural kn such that

F̃ne
(1−τ)Ax = ψ([τ ] + kn + 1, τ + kn, x) ∈ V[t]+kn+1 = V0.

In the case of invariance the relation (5) holds for τ, t ∈ [0, 1). Moreover, for
every z ∈ Vt there is y = ψ(τ, t, z) ∈ Vτ which verifies e(t−τ)Ay = z.

Analogously, for every 0 ≤ τ < 1, z ∈ V0 and 1 ≤ n ≤ r there is a natural kn

such that F̃kn
= F̃n and there is y = ψ(τ + kn − 1, kn, z) ∈ Vτ+kn−1 = Vτ , verifying

F̃ne
(1−τ)Ay = ψ(kn, τ + kn − 1, y) = z ∈ V0.

Sufficiency. Assume that conditions 1)–2) hold. Let (τ, x) ∈ V . To proof (5)
take firstly t ≥ τ + k, k ∈ N

∗.
If [t] = [τ ] + k or [t] = [τ ] + k + 1, then (4) is a consequence of the conditions

1)–2) and Lemma 2.
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If [t] = q, [τ ] + k = p, q > p + 1, then by Lemmas 1 and 2 the conditions 1)–2)
imply for every x ∈ Vτ :

ψ(t, τ + k, x) = e(t−q)A
q

∏

j=p+2

Φij F̃ip+1e
(p+1−τ−k)Ax ∈ Vt,

ψ(t, τ + k, x) = ψ(t, q, ψ(q, p + 1, ψ(p + 1, τ + k, x))) ∈ Vt.

In the case of invariance we consider in addition t < [τ ] + k. In this case there
is y ∈ V0 such that x ∈ Vτ = Vτ+k may be represented as x = ψ(τ + k, [τ ] + k, y).
In turn, there is z ∈ V[t] = V0 such that y = ψ([τ ] + k, [t], z). By Lemma 1,
ψ(t, τ + k, x) = ψ(t, [τ ] + k, y) = ψ(t, [t], z) ∈ Vt. This completes the proof. 2

Corollary 4. If V ⊂ S1 × R
m is positive invariant (invariant), then V0 is positive

invariant (invariant) with respect to the Nadler-Hutchinson operator Φ, i.e. Φ(V0) =
r
⋃

n=1
Φn[V0] ⊂ V0 (Φ(V0) = V0).

3 IFS and attractors

Since the eigenvalues of all matrices (E +Cn)eA (1 ≤ n ≤ r) are located strictly
inside the unit circle, all operators Φn (1 ≤ n ≤ r) are contracting.

We associate to the system (1)-(2) a hyperbolic Iterated Function System (IFS)
{Rm; Φ1,Φ2, . . . ,Φr} (see, e.g., [2]), consisting of affine contractions. This IFS de-
termines in R

m a global compact attractor K, which is the unique fixed point of the
corresponding contractive Nadler-Hutchinson operator Φ.

Given the natural k we say that the sequence {Fin}n∈N∗ is k-universal if it
contains every word of the length k from the alphabet of F = {F1, F2, . . . , Fr}. We
say that the sequence {Fin}n∈N∗ is universal if it is k-universal for every natural k.

By Lemma Borel-Cantelli [5], if the sequence {Fin}n∈N∗ is chosen randomly with
a uniform distribution, then with probability 1 it is universal.

If the sequence {Fin}n∈N is universal, then the orbit of each point in K is dense
on K (is chaotic by Li-Yorke).

Recall some notions (see, e.g., [2]). A set is called totally disconnected if for
every its point the connected component, containing this point, is the point itself.
A set S is called perfect if it is closed and every point p ∈ S is the limit of points
qn ∈ S \ {p}. A set is called a Cantor set if it is totally disconnected, perfect and
compact.

Theorem 5. If the spectra of the operators (E + Cn)eA (1 ≤ n ≤ r) are located

strictly inside the disk of radius 1
r , then the attractor K is totally disconnected.

Proof. It is known [7] that if an IFS consists of r contractions, each of them with
the contraction coefficient s, and rs < 1, then the attractor K of this IFS is totally
disconnected. It is sufficient to say that in our case s = max

1≤n≤r
‖(E+Cn)eA‖ < 1

r . 2
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Remark 2. The hypotheses of Theorem 5 are far from being also necessary condi-
tions for the attractor K to be totally disconnected.

Denote the distance from the point x ∈ R
m to the compact M ⊂ R

m by
̺(x,M) := min{d(x, y) | y ∈M}.

A bounded subset V ⊂ S1 × R
m is called an attractor of the system (1)-(2) if it

is positive invariant and for every solution ψ(·, τ, x) one has ̺(ψ(t, τ, x), Vt) → 0 as
t→ +∞.

Theorem 6. There exists an attractor of the system (1)-(2)

K∗ =
{

(t, etAx+ (eA − E)A−1b) | t ∈ [0, 1), x ∈ K
}

⊂ S1 × R
m

with the Hausdorff dimension DH(K∗), verifying the inequalities:

1 < DH(K∗) ≤ 1 − ln r

ln s
, (6)

where s is the smallest radius of a disc centered at the origin of coordinates, which
contains the spectra of the operators (E + Cn)eA (1 ≤ n ≤ r).

Proof. By Theorem 3, the set K∗ is positive invariant. Since K is compact, every
fiber Kt = etAK + (eA − E)A−1b (0 ≤ t < 1) is compact as well. The compact
K attracts every compact M in the fiber 0 × R

m under the actions of the Nadler-
Hutchinson operator Φ. As a result every fiber Kt = eνAK + (eA − E)A−1b, where
ν = t (mod 1), attracts the image e(t−[t])AΦne([t]+1−t)AM as n→ +∞ uniformly on
t ∈ R.

It is known (see, e.g.,[2]) that the Hausdorff dimension ofK verifies the inequality

DH(K) ≤ − ln r
ln s

. This implies that DH(K∗) = 1 +DH(K) ≤ 1 − ln r
ln s

. 2

Theorem 7. Let the spectra of the operators (E + Cn)eA (1 ≤ n ≤ r) be lo-

cated strictly inside the disk of radius 1
r and let the sequence {Fin}n∈N be uni-

versal. Then the attractor K∗ is homeomorphic to the direct product of a half-
open interval and a Cantor set, its Hausdorff dimension verifying the inequalities:
1 < DH(K∗) < 2.

Proof. It is easily seen from Theorem 6 that the attractor K∗ is homeomorphic to
the direct product [0, 1)×K. Under the given hypothesis, the compact K is perfect
and by Theorem 5 is totally disconnected, and, as a consequence, it is a Cantor set.
In this case the inequalities (6) become: 1 < DH(K∗) < 2. 2

Lemma 8. There exist L > 0, γ > 0 such that for any y ∈ R
m there exists x ∈ K,

satisfying
‖ψ(t, 0, y) − ψ(t, 0, x)‖ ≤ Le−γt‖y − x‖ (t ≥ 0).

Proof. This follows immediately from Lemma 2 and Theorem 6. 2

Theorem 9. If the sequence {Fin}n∈N is universal, then every integral curve of the
system (1)–(2), starting in K∗, is chaotic by Li-Yorke, i.e. is dense in K∗.
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Proof. If the sequence {Fin}n∈N is universal, then for every solution ψ(·, τ, x) with
(τ, x) ∈ K∗, the sequence {ψ(j, τ, x)}j≥[τ ]+1 is the orbit of the point ψ([τ ]+1, τ, x) ∈
K under the IFS {Rm; Φ1, . . . ,Φr}. Since this orbit is dense on K, the integral curve
of the solution ψ(·, τ, x) is dense on K∗. 2

Corollary 10. If the sequence {Fin}n∈N is universal, then every integral curve of
the system (1)-(2) is chaotic by Li-Yorke or tends to a chaotic one.

Proof. This follows from Lemma 8 and Theorem 9. 2

Remark 3. If the impulses occur only in some integer moments, i.e.

∆x
∣

∣

t=τn
:= x(τn + 0) − x(τn − 0) = Cinx(τn − 0) + din (τn ∈ N

∗), (7)

then the system (1),(7) may be considered as a particular case of the system (1)-(2)
by supplementing the set F with the null operator F = 0 for other integer moments.

Remark 4. Analogously, if the spectra of all operators (E + Cn)eA (1 ≤ n ≤ r)
are located strictly outside the unit circle, we can say about the repeller of the
system (1)–(2).

Remark 5. Many classical fractals may be represented as attractors of affine IFS
on R

2. Fig. 1 shows some of them as attractors K of impulsive differential equations
on C, for example:

• the Sierpinski triangle in ż = −z · ln 2,∆z|t=n = i exp 2πni
3 (n ∈ N);

• the pentagasket in ż = −z · ln(3 +
√

5
2 ),∆z|t=n = i exp 2πni

5 (n ∈ N);

• the hexagasket in ż = −z · ln 3,∆z|t=n = exp πni3 (n ∈ N).

Figure 1. Fractals: the Sierpinski triangle, pentagasket and hexagasket as attractors K of
impulsive affine systems
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4 Linear oscillator

Let us consider, as an example, the linear oscillator with impulsive actions

ẍ+ cẋ+ kx = 0 (c > 0, k > 0), (8)

∆ẋ
∣

∣

t=n
:= ẋ(n+ 0) − ẋ(n− 0) = ξin (n ≥ 1). (9)

Assume that the range of the sequence {ξin}n≥1 contains only r distinct elements.
We can reduce the equations (8)–(9) to an affine system of impulsive differential

equations (1)–(2) in the phase space x1 = x, x2 = ẋ. In this case we obtain some
analogues of the previous theorems.

Theorem 11. [8] There exists an attractor K∗ ⊂ S1 × R
2
(x,ẋ) of the system (8)-(9)

with the Hausdorff dimension

DH(K∗) = 1 +
2
√

2 ln r√
2c−

√

c2 − 4k + |c2 − 4k|
.

Theorem 12. [8] If

2 ln r < c <
k

ln r
+ ln r

and the sequence {ξin}n∈N is universal, then the attractor K∗ is homeomorphic to
the direct product of a half-open interval and a Cantor set, its Hausdorff dimension
verifying the inequalities: 1 < DH(K∗) < 2.

Fig. 2 represents the respective attractors K ⊂ R
2
(x,ẋ) for distinct values of pa-

rameters for two impulsive differential equations (8)–(9): on the left for c = 5/2,
k = 2 and r = 3 (K is totally disconnected), on the right for c = 1, k = 5/4 and
r = 3 (K is connected).

Figure 2. Attractor K for: c = 5/2, k = 2, r = 3 (left) and c = 1, k = 5/4, r = 3 (right)

Remark 6. If the range of sequence {ξin}n≥1 is infinite but bounded, then the
system (8)–(9) admits an attractor as well.

Fig. 3 represents the attractor K (of an infinite IFS) for an impulsive differential
equation (8)–(9) with c = 2, k = 2, where the values {ξin}n≥1 are randomly chosen
from [0, 1].

All calculations and graphic objects have been done using the Computer Algebra
System Mathematica.
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Figure 3. Attractor K for c = 2, k = 2, ξ ∈ [0, 1]
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