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Abstract. A bijective correspondence between the classes of center-affinely equiva-
lent n-homogeneous equations (n ≥ 2) and the classes of isomorphic commutative
n-ary algebras is established. It generates a correspondence between the properties of
these equations and the structural properties of the associated n-ary algebras.
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1 Introduction

Let E(‖ · ‖) be a Banach space over the field K (here K is R or C). A n-ho-
mogeneous dynamical system comes from a n-homogeneous differential equation

(shortly, nHDE) of the form (S)
dX
dt

= F (X), where F : E → E is a continu-

ous n-monomial vector form. The polar form for F is a symmetric n-linear vector
form which allows us to define a n-ary algebra on E; this algebra is commutative
and nonassociative (more exactly, it is not necessarily an associative algebra).

The nHDE (S) is said to be center-affinely equivalent (CA-equivalent) with an-
other nHDE (S1) defined on a Banach space E′ if and only if there exists an
invertible continuous linear mapping h : E′ → E such that X = h(Y ) is a solution
for (S) as long as Y is a solution for (S1). Then, the following result holds: (S) is
CA-equivalent with (S1) if and only if their associated n-ary algebras are continu-
ously isomorphic. According to this result, one gets: there exists a bijection between
the set of all classes of CA-equivalent nHDEs and the set of all classes of isomorphic
commutative n-ary K-algebras. It means that a classification up to an isomorphism
of commutative n-ary K-algebras gives the classification up to a CA-equivalence of
all nHDEs.

Actually, the structure of the associated algebra allows us to determine some
features of the analyzed nHDE as well as of its space of solutions. As examples, we
quote the following results:

1. semisimple algebras give a decoupling of the initial equation into equations
occurring in simple algebras,

2. solvable algebras give solutions via a subset of linear differential equations,

3. the n-degree nilpotents N (i.e., with Nn = [N,N, ...,N ] = 0) are steady-state
points or equilibria, i.e., they are the constant solutions,
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4. the n-degree idempotents e (i.e., with en = [e, e, ..., e] = e) give the ray
solutions,

5. the origin is never asymptotically stable and the existence of an idempotent
implies that the origin is actually an instable steady state.

Recall that the automorphisms of the associated algebra keep invariant all equi-
libria, periodic orbits, and domains of attraction.

Some quantitative results can be obtained, too. Firstly, it must be remarked
that, F being an analytic function then the solution of every Cauchy problem for
(S) is an analytical one. Besides, if the n-ary algebra associated with the nHDE
(S) is power-associative, then there exists a formula giving the solution of every
Cauchy problem for (S).

Several new results can be obtained in the particular case of the nHDEs de-
fined on finite dimensional spaces. This time, any nHDE becomes really an n-
homogeneous differential system of equations (shortly, nHSDE).

NOTE. We have preferred to work in a Banach space not only to generalize
some known results but, mainly, because in this frame a good understanding of the
facts is necessary (facts which - in the finite dimensional case - are hidden behind
of some bushy computations).

2 Preliminaries

Polynomial mappings. Throughout this paper the following notations will
be used:

E – a Banach space,

Cn(E) – the space of all continuous n-homogeneous functions from E to E,

L(En, E) – the Banach space of all continuous n-multilinear forms from En to
E (endowed with the norm induced by the one of E),

Ls(E
n, E) ⊂ L(En, E) – the Banach space of all continuous n-multilinear sym-

metric forms from En to E,

∆ : E → En – the n-diagonal mapping on E (i.e., ∆(x) = (x, x, ..., x
︸ ︷︷ ︸

n times

), ∀x ∈ E).

The mapping P : Ls(E
n, E) → Cn(E) defined by

P(G) = G ◦ ∆, ∀G ∈ Ls(E
n, E)

is the so-called polynomial projection, while P(G) is called the n-homogeneous poly-
nomial associated with G (or a monomial of degreee n, or a n-monomial). Any
(finite) linear combination of monomials on E is called a polynomial ; the degree of
a polynomial is the maximum among the degrees of its monomial components.

Actually, the polynomial projection P is a bijection between Ls(E
n, E) and the

space Pn(E) of all n-monomials on E. Indeed, for any F ∈ Pn(E), the mapping



N-HOMOGENEOUS DYNAMICAL SYSTEMS AND N-ARY ALGEBRAS 141

G ∈ Ls(E
n, E) defined by

G(x1, x2, ..., xn) =
1
n!




F

(
n∑

i=1
xi

)

−
n∑

j=1
F






n∑

i=1
i6=j

xi




 +

+
n∑

j,k=1

j<k

F






n∑

i=1

i/∈{j,k}

xi




 + ... + (−1)n

n∑

i=1
F (xi)




 , ∀x1, x2, ..., xn ∈ E

satisfies F = G ◦ ∆; G is called the polar form of F .

n-ary Algebras. Let E be a K-vector space (finite dimensional or not).

Definition 1. A n-ary algebra is any K-vector space E endowed with a n-multilinear
vector mapping [., ..., .] : En → E

(x1, x2, ..., xn) → [x1, x2, ..., xn], ∀(x1, x2, ..., xn) ∈ En.

We denote it by E([., ..., .]).

In this case, the mapping G : En → E defined by

G(x1, x2, ..., xn) = [x1, x2, ..., xn], ∀x1, x2, ..., xn ∈ E

is a (1, n)-tensor, i.e., G ∈ E∗⊗n ⊗K E. Actually, the set of all n-ary K-algebras on
E is identifiable with the tensor product E∗⊗n ⊗K E.

Recall that, for any algebra E([., ..., .]) and any x1, x2, ..., xn−1 ∈ E we can define
the i-multiplication M i

x1,x2,...,xn−1
: E → E (i ∈ {1, 2, ..., n}) by

x → M i
x1,x2,...,xn−1

(x) = [x1, x2, ..., xi−1, x
i
, xi, ..., xn−1], ∀x ∈ E.

Lx1,x2,...,xn−1 = Mn
x1,x2,...,xn−1

is called the left multiplication by (x1, x2, ..., xn−1), and

Rx1,x2,...,xn−1 = M1
x1,x2,...,xn−1

is called the right multiplication by (x1, x2, ..., xn−1).
The algebra E([., ..., .]) is said to be associative if

[[x1, x2, ..., xn], y2, ..., yn] = [x1, [x2, ..., xn, y2], y3, ..., yn] = ... =
= [x1, x2, ..., xn−1, [xn, y2, ..., yn]], ∀x1, x2, ..., xn, y2, ..., yn ∈ E.

It results that E([., ..., .]) is associative if and only if the following equations hold

Lx1,x2,...,xn−1 ◦ Ly1,...,yn−1 = L[x1,x2,...,xn−1,y1],y2,y3,...,yn−1
=

= Lx1,[x2,...,xn−1,y1,y2],y3,...,yn−1
= ... = Lx1,x2,...,xn−2,[xn−1,y1,y2,...,yn−1],

∀x1, x2, ..., xn, y1, ..., yn−1 ∈ E.

The associativity of a n-ary algebra can be similarly characterized by means of the
right multiplications.
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The n-ary algebra E([., ..., .]) is said to be commutative or symmetric if

[x1, x2, ..., xn] = [xσ(1), xσ(2), ..., xσ(n)], ∀x1, x2, ..., xn ∈ E, ∀σ ∈ Sn

(here Sn denotes the symmetric group of n elements).

e ∈ E is said to be an identity element for E([., ..., .]) if

[e, e, ..., e, x] = [e, ..., e, x, e] = [e, x, e, ..., e] = [x, e, ..., e] = x, ∀x ∈ E.

An identity element for E([., ..., .]), if it exists, is not necessarily unique (in contrast
with the case of binary algebras).

Any n-ary algebra E([., ..., .]) having no identity element can be naturally em-
bedded into a n-ary algebra with identity element, namely E = E ⊕ K endowed
with n-ary composition

[x1 ⊕ λ1, x2 ⊕ λ2, ..., xn ⊕ λn] = ([x1, x2, ..., xn] + λ2...λnx1 + ...+

+λ1...λn−1xn, λ1λ2...λn), ∀x1 ⊕ λ1, x2 ⊕ λ2, ..., xn ⊕ λn ∈ E;

obviously, 0 ⊕ 1 is an identity element for E.

e ∈ E \ 0 is said to be an idempotent element for E([., ..., .]) if [e, e, ..., e] = e.

e ∈ E \ 0 is said to be a nilpotent element for E([., ..., .]) if [e, e, ..., e] = 0.

For any fixed x ∈ E one considers the left/right powers defined recurrently by:
left powers: xn = [x, x, ..., x], xn+k(n−1) = [xn+(k−1)(n−1), x, ..., x], n ≥ 2,
right powers: x[n] = [x, x, ..., x], x[n+k(n−1)] = [x, ..., x, x[n+(k−1)(n−1)]], n ≥ 2.

In a commutative algebra, left and right powers of any element are coincident.

E([., ..., .]) is named power-associative or mono-associative if

[xn+m1(n−1), xn+m2(n−1), ..., xn+mn(n−1)] = xn+(m1+m2+...+mn+n)(n−1),
∀m1,m2, ...,mn ∈ N

∗, ∀x ∈ E.

E([., ..., .]) is power-associative if and only if

Lk
x, x, ..., x
︸ ︷︷ ︸
n−1 times

(x) = Lxn+(k−2)(n−1),x,...,x(x) = Lx,xn+(k−2)(n−1),...,x(x) = ... =

= Lx,...,x,xn+(k−2)(n−1)(x), ∀x ∈ E, k ≥ 2.

In any power-associative n-ary algebra both left and right powers of any element are
coincident.

3 Polynomial equations

Definition 2. a) A n-polynomial differential equation (nPoDE) on E is every
differential equation of the form

dX

dt
= Pn(X) (1)
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where Pn is a polynomial of degree n and X : U → E, with U an interval of R, is
the unknown vector function.

b) A n-homogeneous differential equation (nHDE) on E is every differential equa-
tion of the form

dX

dt
= F (X) (2)

where F is a n-degree monomial on E.

Every polynomial Pn on E can be considered as the restriction on E(≡ E × 1)
of a n-homogeneous polynomial P h

n defined on E × K by

P h
n (X,Y ) = Y nPn(X/Y )

(here Y has nonzero values, only). Thus, (1) can be always transformed in a n-
homogeneous equation on E × K namely







dX
dt

= P h
n (X,Y ),

dY
dt

= 0,
(3)

for which the only solutions of interest will be the ones satisfying the condition
Y (t0) = 1. Consequently, the study of any nPoDEs can be reduced to that of
nHDEs, i.e. it is enough to study the nHDEs.

Let us consider the n-homogeneous equation

dY

dt
= F1(Y ) (4)

on the Banach space E′.

Definition 3. It is said that (2) is (center-) affinely equivalent (shortly, CA-
equivalent) with (4) if there exists a continuous invertible linear mapping h : E′ → E
such that X = h(Y) is a solution for (2) as long as Y is a solution for (4); h is called
a CA-equivalence. A CA-equivalence of (2) with itself is called an automorphism
for (2).

Theorem 1. The nHDE (2) is CA-equivalent with (4) if and only if there exists a
continuously invertible linear mapping h : E′ → E such that

h ◦ F1 = F ◦ h. (5)

Proof. Let yo ∈ E′ be an arbitrarily chosen (but fixed) element and Y (t) be the
solution of the Cauchy problem

dY

dt
= F1(Y ), Y (t0) = y0. (6)
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Since (2) is equivalent to (4) there exists an invertible continuous linear transfor-
mation h : E′ → E such that X(t) = h(Y (t)) is the solution of (2) with the initial
condition xo = h(yo). Consequently, the following equations hold:

dX(t)
dt

= F (X(t)) =

= F (h(Y (t))) = h

(

dY (t)
dt

)

= h(F1(Y (t)), ∀t ∈ I1,
(7)

i.e., (F ◦ h)(yo) = (h ◦ F1)(yo) (here I1 ⊂ R is the domain of Y (t)). As yo was
arbitrarily chosen in E it follows that (5) holds. Conversely, if Y (t) is a solution of
problem (4) and (5) holds, then the equations

dX(t)

dt
= h

(
dY (t)

dt

)

= (h ◦ F1)(Y (t)) = (F ◦ h)(Y (t))) = F (X(t)), (8)

also hold, i.e., X(t) is a solution of equation (2) with the same domain as Y (t).

As (5) is equivalent to F1 ◦ h−1 = h−1 ◦ F (and h−1 is continuous), it follows

Corollary 1. If (2) is equivalent to (4), then (4) is also equivalent to (2).

Obviously, E′ can be identified, via h, with E so that it is enough to analyze the
set of all nHDEs given on a fixed Banach space E, only. Thus, any CA-equivalence
is really an equivalence on the set of all nHDEs on a fixed Banach space (i.e. it is
a reflexive, symmetric and transitive binary relation).

4 The algebra associated with a nHDE

The polar form G : En → E for F in (2) is a continuous and symmetric n-linear
vector form on E. The n-ary algebra E([., ..., .]) defined by the n-ary operation

[x1, x2, ..., xn] = G(x1, x2, ..., xn), ∀x1, x2, ..., xn ∈ E

is a commutative (or, symmetric) n-ary algebra; it is a non-associative algebra, i.e.
it is not necessarily an associative one.

Recall that there exists ‖G‖1 such that ‖G(x1, x2, ..., xn)‖1 ≤ ‖G‖1‖x1‖1‖x2‖1...‖xn‖1.
Then, the norm ‖ · ‖ on E defined by ‖x‖ = n−1

√

‖G‖1 · ‖x‖1 has the property

‖[x1, x2, ..., xn]‖ ≤ ‖x1‖ · ‖x2‖...‖xn‖.

The n-ary algebra E([., ..., .]) endowed with norm ‖ · ‖ is called the B-algebra asso-
ciated with (2).

Theorem 2. The nHDE (2) is CA-equivalent with (4) if and only if the n-ary
algebras associated with them as before are continuously isomorphic.

Proof. If (2) and (4) are equivalent equations then there exists, according to The-
orem 1, an invertible continuous linear mapping h : E′ → E which satisfies (5). By
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passing to the polar forms for F and F1, it follows that h is an algebra isomorphism
between E′({·, ·, ..., ·}) and E([·, ·, ..., ·]). Conversely, if h : E′({·, ..., ·}) → E([·, ..., ·])
is a continuous algebra isomorphism, then (5) holds, i.e. h is an equivalence of the
nHDEs (2) and (4).

Remark 1. Theorem 2 ensures that there exists a bijection between the classes of
affinely equivalent nHDEs on E and the classes of isomorphic commutative n-ary
algebras on E. Consequently, there exists a correspondence between certain quali-
tative properties of a nHDE (2) and the invariant properties under an isomorphism
of its associated n-ary commutative algebra.

5 Solving nHDEs

Let us suppose that the n-ary algebra E([·, ..., ·]) associated with (2) has no iden-
tity element. Then, E([·, ..., ·]) can be embedded into the n-ary algebra E([·, ..., ·])
whose operation has the n-monomial form

F (x ⊕ λ) = (F (x) + nλn−1x) ⊕ λn, ∀x ⊕ λ ∈ E,

which suggests us to consider the following nHDE on E






dX
dt

= nλn−1X + F (X),

dλ
dt

= λn.
(9)

Then, with every Cauchy problem

dX

dt
= F (X), X(t0) = x0 (10)

we associate the following Cauchy problem






dX
dt

= nλn−1X + F (X),

dλ
dt

= λn,

{
X(t0) = x0,
λ(t0) = 0,

(11)

for (9). Consequently, there exists the 1-1 correspondence

X(t) ⇔ X(t) ⊕ {0}

between the sets of solutions for (2) and the set of solutions of (9) with λ ≡ 0,
respectively. That is why, in what follows, we shall study only nHDEqs for which
the associated (B-)algebra has at least an identity element.

In order to imply the n-ary algebra in the study of nHDE (2), it is suitable to
use the equality F (x) = xn, and then (2) becomes

dX

dt
= Xn. (12)
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Cauchy-Kowalewskaia Theorem assures us that there exists a unique analytic
solution for Cauchy problem (10).

Let X(t) be the saturated solution for (10). Then we get

X(t0) = x0,
dX(t0)

dt
= xn

0

Further, we get recurrently:
∥
∥
∥
∥

diX(t0)

dti

∥
∥
∥
∥
≤ ((i − 1)(n − 1) + 1) !...!

n−1 times
· ‖x0‖i(n−1)+1, ∀i ≥ 1,

where ((i−1)(n−1)+1) !...!
n−1 times

= 1·(1(n−1)+1)·(2(n−1)+1)·...·((i−1)(n−1)+1).

Consequently, the series

‖x0‖ +
|t − t0|

1!

∥
∥
∥
∥

dX(t0)

dt

∥
∥
∥
∥

+
|t − t0|2

2!

∥
∥
∥
∥

d2X(t0)

dt2

∥
∥
∥
∥

+ ... +
|t − t0|k

k!

∥
∥
∥
∥
∥

dkX(t0)

dtk

∥
∥
∥
∥
∥

+ ...

is upper bounded by the numerical series for

‖x0‖
n−1

√

1 − (n − 1)‖x0‖ · |t − t0|
.

Thus, the Taylor series for X(t), around t0, is absolutely and uniformly convergent
for (n − 1)‖x0‖ · |t − t0| < 1.

In the next section we shall use these computations to find a formula for solving
(10) in case when the associated algebra satisfies a ”weak” associativity axiom (e.g.,
the monoassociativity). Obviously, these computations allow also to prove again the
analyticity of the solution of (10).

6 The case of nHDEs with power-associative algebras

Let us consider the Cauchy problem (10). Suppose the corresponding n-ary
B-algebra is a power-associative algebra. Then, its solution X(t) satisfies the con-
ditions

dX(t0)
dt

= xn
0 = Lx0,...,x0(x0),

dkX(t0)

dtk
‖ = ((k − 1)(n − 1) + 1) !...!

n−1 times
· Lk

x0,...,x0
x0, k > 1

(here Lx0,...,x0 is instead of Lx0, ..., x0
︸ ︷︷ ︸
n−1 times

). Consequently, one gets

X(t) =

(

I +
t − t0

1! Lx0,...,x0 +
n!...!(t − t0)

2

2!
L2

x0,...,x0
+ ...+

+
((k − 1)(n − 1) + 1)!...!(t − t0)

k

k!
Lk

x0,...,x0
+ ...

)

(x0) =

= (I − (n − 1)(t − t0)Lx0,...,x0)
− 1

n−1 (x0)
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where I denotes the identity mapping on E and !...! is used instead of !...!
︸︷︷︸

n−1 times

. By

a direct checking one gets that the analytic mapping

Y (t) = (I − (n − 1)(t − t0)Lx0,...,x0)
− 1

n−1 (x0),

defined for all t such that (n − 1)−1(t − t0)
−1 does not belong to the spectrum of

Lx0,...,x0, satisfies the equation

dY (t)

dt
= Y n(t)(= G(Y (t), Y (t), ..., Y (t))).

Theorem 3. If the B-algebra E([.,...,.]) associated with (2) is power-associative,
then the saturated solution for (10) is

X(t) = (I − (n − 1)(t − t0)Lx0,...,x0)
− 1

n−1 (x0). (13)

Remark 2. The computations performed for proving that Y (t) is the solution of
(10) can be similarly performed in the case when x0 has associative powers, only.
Consequently, (13) is the solution for (10) as long as x0 has associative powers.

7 Properties of n-ary commutative algebras reflected in those

of nHDE

The correspondence between the classes of CA-equivalent nHDEs and the classes
of continuously isomorphic n-ary algebras induces the existence of a correspondence
between the qualitative properties of nHDEs and those of n-ary algebras.

We shall present below some results on this line.

1) x0 ∈ E is a critical point (or, a steady state point) for (2) if and only if
xn

0 = 0, i.e. if and only if it is a nilpotent for E([., ., .]). If x0 is a critical point for
(2), then λx0 is also a critical point for (2), for every λ ∈ K. 0 ∈ E is always a
critical point for (2); it is an isolated critical point if and only if E([., ., .]) has no
nilpotent element.

2) If e ∈ E is an idempotent element for E([., ., .]), then it has associative powers
and

X(t) = (1 − (n − 1)(t − t0))
− 1

n−1 · e (14)

is the unique solution of the Cauchy problem (10) with x0 = e. The idempotent
elements identify unbounded solutions of (2).

Let us consider the Cauchy problem (10) with x0 = P , where Pn = aP , a ∈ R.
Then P has associative powers and

X(t) = a(1 − (n − 1)(t − t0))
− 1

n−1 · P (15)

is the solution of (2)+(X(t0) = P ).

Following step by step the proof of Proposition 3.4 [2] and using (15) one gets
the result:
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Proposition 1. If E([.,...,.]) has an idempotent, then the origin 0 ∈ E is an unstable
critical point for (2). Consequently, if the origin is stable for (2) then E([.,...,.]) has
no idempotent and, in particular, no identity element.

As an immediate consequence of the fact that N0 6= 0 is a nilpotent element
(Nn

0 = 0) implies N = λN0 is also a nilpotent (for every λ ∈ K), we can readily
prove the following proposition.

Proposition 2. If E([.,...,.]) has a (nonzero) nilpotent, then the origin 0 ∈ E is not
asymptotically stable steady state point for (2).

Following the idea of proving Theorem 1 [1] it can be proved

Proposition 3. If E([.,...,.]) is a real commutative finite dimensional n-ary algebra,
with n an even number, it has a (nonzero) idempotent or a (nonzero) nilpotent.

Proof. Suppose E = R
m. Let us consider the mapping F : R

m → R
m defined

by F (x) = xn. If E([., ..., .]) has an idempotent e, then it is a fixed point for F
which still keeps invariant the axe {λe |λ ∈ R}. Moreover, if F (x0) = cx0 and c is

positive, then e =
1

n−1
√

c
· x0 is an idempotent (in case when c is negative and n is

even number, then e = − 1
n−1
√
−c

· x0 is also an idempotent), i.e. F has necessarily

a fixed point. Supposing that F has no fixed points and n is an even number, it
results

(1 − λ)F (x) 6= λx, ∀x 6= 0, ∀λ ∈ R.

If in addition E([., ..., .]) has no nilpotent, then F (x) 6= 0 for all x 6= 0, and it induces

a function g : Sm−1 → Sm−1 defined by g(x) =
F (x)
‖F (x)‖ for all x ∈ Sm−1. Let us

define also the uniparametric family of functions G(·, λ) : Sm−1 → Sm−1 by

G(x, λ) =
(1 − h)F (x) + λ(−x)

‖(1 − h)F (x) + λ(−x)‖ , 0 ≤ λ ≤ 1, ∀x ∈ Sm−1.

G is an homotopic mapping on Sm−1 of g with the antipodal mapping a : Sm−1 →
Sm−1 (defined by a(x) = −x). Consequently, these mappings must have the same
degree, what is not possible because the degree of g is an even number, while the
degree of a is 1.

Corollary 2. The origin 0 ∈ E is not asymptotically stable for (2) if n is an even
number.

Theorem 4. Let (2), given on a finite dimensional real vector space E, be such
that its associated algebra E([.,...,.]) has a symmetric positive definite bilinear form
H : E × E → R. If H satisfies

H(X,Xn) = 0, ∀X ∈ E,

(or H(X,Xn) ≤ 0) then the origin 0 ∈ E is a stable point.
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Proof. The function V : E → R defined by V (x) = H(x, x) is a Liapunov function.
Indeed, V is a positive definite quadratic form and its derivative V̇ (X(t)) vanishes
identically along any trajectory X(t) of (2).

Consequently, the existence of H implies the nonexistence of an idempotent.

Similar arguments as for Theorem 3.10 [2] allow us to prove the following result.

Theorem 5. Let (2) be a nHDE and E([·, ..., ·]) be its associated n-ary algebra.

(1) The trajectory through P ∈ E does not pass through aP for any a ≤ 0. If P
lies on a periodic trajectory, the trajectory through P does not pass through aP for
any a 6= 1.

(2) If γ ⊂ E is a periodic orbit with the least period τ , then aγ = {aP |P ∈ γ}
is a periodic trajectory with the least period τ/|a| for a 6= 0. Thus, scalar multiples
of periodic orbits are periodic, and solutions of any period exist, provided that one
periodic orbit exists.

(3) The periodic trajectories lie on cones.

Theorem 6. Let (2) be a nHDE and E([·, ..., ·]) be its associated n-ary algebra.
Then no periodic orbit is an attractor.

Proof. If γ(t), γ(t0) = P is a periodic solution and U is an open neighborhood of
it, then there exists a ∈ R such that aP ∈ U . Then aγ(t) is also a periodic solution
contained in U . Consequently, lim

n→∞
‖aγ − γ‖ 6= 0 and γ is not an attractor.

3) Let E0 be a closed ideal of E([·, ..., ·]) and E1 – a closed vector subspace which
is its complement in E, i.e. E = E0 ⊕ E1. We denote by pi : E → Ei (i = 0, 1)
the two projectors associated with the direct sum decomposition of E, Xi = pi(X),
i = 0, 1, then (2) becomes







dX0

dt
= F (X0) +

n−1∑

i=1

(
n
i

)

G(X0, ...,X0
︸ ︷︷ ︸

i times

,X1, ...,X1
︸ ︷︷ ︸

)

n−i times

+ (p0 ◦ F )(X1)

dX1

dt
= (p1 ◦ F )(X1).

In the particular case when E1 is also a closed ideal for E([., ., .]), then






dX0

dt
= F (X0)

dX1

dt
= F (X1).

Further, if E1 is only a subalgebra of E([·, ..., ·]), then






dX0

dt
= F (X0) +

n−1∑

i=1

(
n
i

)

G(X0, ...,X0
︸ ︷︷ ︸

i times

,X1, ...,X1
︸ ︷︷ ︸

)

n−i times

dX1

dt
= (p1 ◦ F )(X1).
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4) If only a finite number of the powers of x0 are linearly independent, then
the subalgebra K(x0) spanned by all these powers will be a finite-dimensional one.
Let (x0, x1, ..., xs) be the basis of K(x0) consisting of the first smallest independent
powers of x0. In this case, the solution of (2) gets the form

X(t) = f0(t)x0 + f1(t)x1 + ... + fs(t)xs

where the mappings fi(t), i = 0, 1, ..., s, satisfy an n-homogeneous differential system
of the form

dfi

dt
=

s∑

j1,j2,...,jn=0

Cij1j2...jnfj1fj2...fjn , i, j1, j2, ..., jn = 0, 1, ..., s

with the initial conditions f0(t0) = 1, f1(t0) = 0, ..., fs(t0) = 0; here, Cij1j2...jn are
the structure constants of the subalgebra K(x0) in basis (x0, x1, ..., xs) defined by

[xj1 , xj2, ..., xjn ] =

s∑

i=0

Cij1j2...jnxi, i, j1, j2, ..., jn = 0, 1, ..., s.

This situation is usually met in the case of n-homogeneous differential systems
on finite-dimensional spaces. It warns us of the necessity to pay a special attention
to the algebras with a single generator.

8 nHDEs on real finite dimensional spaces

If E = R
p, B = (e1, e2, ..., ep) ⊂ R

p is its natural basis and X = Xiei, then (2)
becomes

dXi

dt
= Ci

j1j2...jn
Xj1Xj2 ...Xjn , i, j1, j2, ..., jn = 1, ..., p (16)

where the Einstein’s convention on summation is used.
The associated n-ary algebra E([·, ..., ·]) has Ci

j1j2...jn
as its structure constants

in basis B. It is suitable to denote the left multiplication Lx0, ..., x0
︸ ︷︷ ︸
n−1 times

by Gx0 , for any

x0 ∈ E (i.e., Gx0 = Lx0, ..., x0
︸ ︷︷ ︸
n−1 times

). Gx0 is an endomorphism of E having, in basis B,

the matrix
[Gx0 ]B = [Ci

j1j2...jn−1jx
j1
0 xj2

0 ...x
jn−1

0 ].

The solution of the Cauchy problem (10) is an analytical function; more exactly,
there exists an analytical function f such that its solution has the form:

X(t) = f((t − t0) · Gx0)(x0).

For example, recall that in the case when E([·, ..., ·]) is a power-associative algebra
we have

f(λ) = (1 − (n − 1)λ)−
1

n−1
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and the solution of the Cauchy problem for (10) is

[X(t)]B = f((t − t0)[Gx0 ]B)[x0]B. (17)

For every analytical function h we can obtain h(Gx0) using the Jordan (e.g.,
upper) form for Gx0 . Indeed, there exists a basis BJ in E such that the matrix of
Gx0 is

[Gx0 ]J = diag (J1, J2, ..., Js, R1, R2, ..., Rq),

where Ji are superior Jordan cells corresponding to the real eigenvalues of Gx0 , while
Ri are the superior Jordan blocs corresponding to the complex eigenvalues of Gx0

(see, [3]). If S denotes the transformation matrix from B to BJ one gets

h([Gx0 ]B) = S · h([Gx0 ]J) · S−1,

where h([Gx0 ]J) = diag (h(J1), h(J2), ..., h(Js), h(R1), h(R2), ..., h(Rq)).

9 Example

Let us consider, in R
4 with the natural basis (e1, e2, e3, e4), the cubic homoge-

neous differential system







dx1

dt
= (x1)3 − 3x1(x2)2

dx2

dt
= 3(x1)2x2 − (x2)3

dx3

dt
= 3

[
(x1)2x3 − (x2)2x3 − 2x1x2x4

]

dx4

dt
= 3

[
(x1)2x4 − (x2)2x4 + 2x1x2x3

]
.

The left multiplication LX,X has the matrix

LX,X =







(x1)2 − (x2)2 −2x1x2 0 0
2x1x2 (x1)2 − (x2)2 0 0

2(x1x3 − x2x4) −2(x1x4 + x2x3) (x1)2 − (x2)2 −2x1x2

2(x1x4 + x2x3) 2(x1x3 − x2x4) 2x1x2 (x1)2 − (x2)2







.

The ternary algebra associated with this system is associative. If x0 = ae1 + be2 +
ce3 + de4, then Lx0,x0 has the eigenvalues λ1, λ2 = a2 − b2 ± 2iab = (a ± ib)2 with
multiplicity 2. Thus, the solution X(t) with X(t0) = x0 is

X(t) = (f(α + iβ)A1 + f(α − iβ)A2 + f ′(α + iβ)A3 + f ′(α − iβ)A4)(x0),

where λ1 = α + iβ, f(λ) = (1 − 2(t − t0)λ)−
1
2 and A1, A2, A3, A4 can be defined by

the identities
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A1 + A2 = I4,
2iβ(A3 − A4) = A2 − 2αA + (α2 + β2)I4,
iβ(A1 − A2) + (A3 + A4) = A − αI2,
iβ(3α2 − β2)(A1 − A2) + 3(α2 − β2)(A3 + A4) + 6iαβ(A3 − A4) =

= A3 − α(α2 − 3β2)I4,

where A denotes the matrix of the left multiplication Lx0,x0.
The solution of the Cauchy problem with X(t0) = x0 is







x1 = ℜe
ρ

√

cos 2α − isin 2α − 2ρ2(t − t0)
,

x2 = ℑm
ρ

√

cos 2α − isin 2α − 2ρ2(t − t0)
,

x3 = ℜe
κρ

√

cos 2α − isin 2α − 2ρ2(t − t0)
,

x4 = ℑm
κρ

√

cos 2α − isin 2α − 2ρ2(t − t0)
,

where a + ib = ρ(cos α + i sin α), κ =
c + id
a + ib

.
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