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Abstract. This work deals with the polynomial and formal (formal series) inte-
grability of the polynomial differential systems around a singular point, namely the
conditions which assure the start of the algorithmic process for computing the poly-
nomial or the formal first integrals. When the linear part of the differential system
is nonzero, we have established ([9]) the existence of the so called starting equations
whose (integer) solutions are exactly the partition of the lower degree of the eventual
formal first integrals.

In this work, we study some extensions of the starting equations to the case
when the linear part is zero and, particularly, to the bidimensionnal homogeneous
differential systems. The principal tool used here is the classical invariant theory.
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1 Introduction

Many works are devoted to the investigation of local (or global) formal first
integrals of the differential system
dz’

E:Pi(aj), i=1,2,...,n (1)

where P? are polynomials of degree m with coefficients in the field C.

Definition 1. A function F € C'(O) where O is an open set of C", is a first
integral of the differential system (1) if

Ve e O, Ap(F) = %(w)lw(aj) = 0. (2)

J=1

It is well known that around a regular point xg, there are exactly n—1 functionally
independent analytical first integrals. This result is just theoretic.

Around a singular point and for practical and computational reasons, many peo-
ple [1,3,5] have oriented their investigations to special classes of integrals like the
polynomial, rational, algebraic or exponential ones. It occurs that these different
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106 D. BOULARAS, A. CHOUIKRAT

types of first integrals need the knowledge of the polynomial ones and so, the knowl-
edge of the degree of the first terms.

The same problem interested other mathematicians ([6-8]) which studied the
local or analytical integrability. In these works, the question of the resonance of the
eigenvalues of the linear nonzero part plays a fundamental role.

In [9], when the lower degree of P is 1, was given a constructive method to get,
for any dimension n, a so called starting equation satisfied by the lower degree of an
eventual first integral F'.

This work consists in three parts. In the first one (Subsection 2.4), we give an
“extension” of the starting equation ([9]) to the general homogeneous polynomial
differential systems. In the second part (Section 3), we study the bidimensional
homogeneous systems : we explicitly calculated the matrices whose the kernel con-
tain the polynomial first integrals and we have reduced the integrability problem
(existence of a polynomial first integral) to the nullity of some determinant. Fi-
nally, in the third part, we use the classical invariant theory to present significiant
simplifications for computing the above determinant.

2 Notations and matricial writing of the integrability problem

2.1 The total-lexicographic order

Let Sym(n, k) be the linear space of the homogeneous algebraic forms of de-
gree k in n variables and S(n) the infinite dimensional space of the formal series
(expansions) :

S(n) = @ Sym(n, k),
k=1

where ([14, p. 21])

dim(Sym(n, k)) = nln+ Lin + 2])4;1. k) - (7(ln+—k1;!/i!)!'

We identify the set of the multi-degrees of the multivariate polynomials with N".
The total degree of the monomial (') (z2)" ... (2™)" is, by definition, equal to
il = i1 +dg + - + dn.

The n-fold cartesian set N is provided by the total-lexicographical order :
il > 3]
1> ] = or
|i| = |j| and the left-most nonzero entry of i —j is positive,

which induces a total order over the monomials

{@) (@)= - @) il = k).
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Any algebraic form of Sym(n, k), Z Firvimoin (@) (@?)2 - (2) ) can be writ-

li|=k
ten as follows :
—_ (xl k —
(xl)k—l(x2)1
1Nk—1(..3\1
[f5,0,0,...00 fk=1,1,0,...05 fk=1,0,1,...01 - - - » J0,0,0,....k] ()" (%) = F, X", (3)

(")
where Fj, and X* denote the corresponding row and column vectors. Using this

o0
notation, the formal series Z Z firiosin (xl)"1 (:E2)i2 -+ (™)™ and the right side

k=1 |i|=k
of (1) with vanishing linear part become respectively
AX'+BX*+ + B X+, BX'+Pa X4+ P, X, (4)
where, this time, P; (i = [,l + 1,...,m) denotes a matrix with n rows and
(n+i—1)!
————— columns.
(n—1)l!

2.2 The integrability conditions

The formal series F(z) = Fy X' + F, X2 + --- 4+ F, X* + .-+ is a first integral
of the system (1) if, by definition, Ap(F') = 0 i.e.

n

Za(Fle + X2 )
oz

|yl j +1 j —
[Pl]X + Pl X+ Png’”] = 0.
j=1
After collecting the terms w.r.t. the total degree, we obtain an infinite sequence of
conditions :

n 1 )
l: MP{XZ:O,
oz’
j=1
XY i i, OFRX?)
l+1 Z[WBJ+1X+ + TP;X} :Ou
j=1
O [OEXY) i e OBRXP) i OFBXE) o
142 : ;[TPHQX + S Bl X +Wplx]_o,
e [ORXY) o O XP) i O Fmin XY ]
. ;[WPmX e fm X 07 rx| =0
N [OFX?) i OFBXP) i O Fp—42X™2) ]
m—l—l.Z[WPmX + SR X T o Pix'| =0,

<.
Il
-
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Putting p = min(k, m), the equation corresponding to the total degree k in z is :

n 8(Fk+1_pXk+1_p) . 8(Fk+2_pXk+2_p) j 1
> D7 B X" + 9 FpaXit
j=1
INF._ Xk—l-i—l .
o 4 (£ lg;j )PZJXI} = 0. (5)

Since the equation (5) is homogeneous of degree k in the coordinates of z, there are
N = p — 1+ 1 matrices, denoted Mj; ) (i =k —p+1,...,k — 1+ 1), such that the
previous equation can be rewritten in the form :

[Fk—p+1M[k—p+l,k] + Fi—proMg—pyop + -+ Fk—l+1M[k—l+1,k]]Xk =0.  (6)
For the differential systems of lower degree I, k = [, [+ 1,1+ 2,..., we get :
(Fy My =0
Fi Mp, 1) + Fo Mg 1111 =0

Fy My ig) + F2 Mg 4] + F3 Mz i0) =0

\

—1)! kE—1)!
The matrix Mj; ;) has exactely % rows and % columns.
We give some examples of the matrices Mg; 41 when n = 2.

2

1= 2 Po) = T (§ a0, P = 2, (3 e )

1

ao 2&1 a9 ag 2&1 as 0
Mp 9 = [ ] ) Mps=2| by ap+2by 2a1+0by ag |,
bo  2b1 b 0 b W, by
ag 2 al as 0 0
M _ 3 bo 2by+2ap by +4day 2a9 0
[34] 0 2bp  4by+ag 2by+2a1 ay |’
0 0 bo 2b; by
ag 2 [25] as 0 0 0
bo 3ag+2b; by +6ay 3as 0 0
M[4’5] =4 0 3 by 6b1 +3ag 3by+6aq 3as 0
0 0 3 by 6b1 +ag 2a;+3by as
0 0 0 bo 2by by
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3

L= 3P0 = £, (a6 P = 5L, (3)ne e

1

ao 3 a 3 ay a3 ag 3CL1 3&2 as 0
M[173}:|: bo 3 bl 3 b2 b3 :| ,M[274}:2 b(] 3b1 + ap 3b2 + 3&1 b3 + 3(12 as s
0 by 3b; 3bo b3
ag 3 ai 3 as as 0 0
M _ 3 bo 2a9+3by 3by+6a; bg+6ao 2as 0
[3.5] 0 2bg 6b1 +ag 6by+3a; 3ag+2b3 as
0 0 by 3by 3by bs
ag 3 aq 3 a9 as 0 0 0
bo 3ag+3b1 9a1+3by b3+ 9as 3as 0 0
M[4,6} =4 0 3 by 9b1+3ag 9ba+9a; 3b3+9aq 3as 0
0 0 3 bg 9b1 +ag 3a1+9by 3as+3bs as
0 0 0 by 3b; 3bo bs

Proposition 1. If the differential system (1) has a formal first integral of lower

degree d, then :
(d+mn—1)!

rank (Mg 4q4-1) < (n—=1ld!

The existence of the formal first integral of lower degree d implies that the
linear system FyMg;44-1) = 0 admits a non-vanishing solution. If for any d,
(d+mn—1)!

m, the differential system (1) hasn’t a formal first

rank (M[d,l+d—1}) =

integral.

2.3 The case of the lower degree Il =1 ([9])

When [ = 1, the matrices Mg 1q4-1] = M]q,q are square.
Let A = (A;)lgingn be the matrix of the linear part of the differential system (1).

Proposition 2. [9] The matriz L = M|y 4 is defined by :

S
Lty lin =0 ifli—jl > 2,
i1... (g —1)...(ig+1)...4 q
122 ... .
Ly a1, T A
Liyiy. . in = (1Al + A3+ i AD).

Corollary 3. [9] The matriz L = Miq,q) is diagonal (respectively lower triangular,
upper triangular) for any d = 1,2,3,..., if and only if the matriz A is diagonal
(respectively lower triangular, upper triangular).
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Corollary 4. [9] If the eigenvalues of the matrix A are A1, Ao, ..., \n, then the
eigenvalues of the matriz L = Mg g have the form :

1AL + G922 + - +inAn,
where i1,49,... 1, € Nandiy + io + ... + i, = d.
From Corollary 2, it follows
det(Muq)=  [] (ml TIPS VT +mn) 9)

It is clear that the existence of a formal first integral (of lower degree d) of (1) with
A # 0, implies the existence of a non-negative integer d such that Fy Mg 4 = 0
has a nonzero solution Fy, i.e. det(Myyq) = 0.

The factors (il)\l +i9do + - - +in)\n) can be regrouped in orbits O(iy, g, ..., ip)

with respect to the action of the symmetric group over the multidegrees. These orbits
are represented by the partitions of d in not more than n parts:

det(Mjg,q)= I1 I1 (3120 + G+ + Guda )
Z‘l + 1‘2 4+ -+ Zn — d ‘1,j2,...,jn)€(9(i1,ig,...,in)
i >y > >y >0

As a symmetric function, the polynomial

R = H (jl/\l + Jodg + -+ +jn>\n)

(J1,525+-3n)EO (11,32, in)

belongs to the ring Z[oy, o9, ..., 0,] where 0; = Z Ajp e N,
1<ji1<j2<jn<n

The equation R = 0 is called the starting equation of the existence of the formal
first integrals. Its integer solutions give the lower degree of the eventual first integral.

Some generic examples
1. The partition (d,0,...,0) corresponds to the factor det(A).

2. When d = kn, the partition (k,k, ..., k) represents a one element orbit. So,
the factor that corresponds to this partition is k"trace(A).

3. When n = 2, the starting equation is
2
[dldg <trace(A)) + (di — do)?*det(A)| = 0.

In [9], the case of the dimension 3 is also detailed and for other dimensions, a
procedure for obtaining the starting equation is given.
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Remark 1. The above Diophantine equation (9) can be found under various aspects
in many works ([4,7,8]). For example, in [7], when the linear part A is not zero, the
author wrote : “If system (1) has nontrivial integrals analytic in a neighbourhood
of a trivial solution x = 0, then eigenvalues of the matrix A have to satisfy certain
resonant conditions’.

The starting equation gives namely an achieved form of these resonant conditions.

2.4 A consequence (strong condition) for the homogeneous
polynomial systems

Let’s return to the systems (1) which we suppose homogeneous of degree m :

dxt
dt

= P(z), i=1,2,...,n. (10)

Denote by Jac(z) the Jacobian matrix of P and by J(x) and T'(x) respectively the
determinant and the trace of the matrix Jac(x).
A polynomial first integral F;X? satisfies the relation

"O(Fy X = . i iyij— nyi
ZW [P]@«’)]:Z D iifi i (@) @) (@) =0, (1)
j=1 j=1|i|=k

Using the Euler’s formulae
; 1
Pi(g) = —
(@) = -
the relation (11) becomes :
FyLq(z)X? = 0

where the matrix Lg(z) has the same structure as the matrix L when [ = 1 (see
Proposition 2 ). This is due to the substitution Aj := [Jac(z)], which leads to the
matrix Mg g (x) and thus, to the starting equation R(x), depending on .

Proposition 5. Suppose that the starting equation R(x) = 0 admits an integer n-
tuple solution (dy,ds, ..., d,) and suppose that the linear equation Fy-Ly(x) = 0 has
a constant solution F' (not depending on x). Then, the system (10) has a polynomial
first integral of total degree d.

Corollary 6. When n = 2, the strong condition is given by the equation

[dldg <T(x)>2 + (dy — do)? J(a:)] = 0. (12)

There are two particular cases of the above Corollary 6.

First case: n = 2 and T'(z) = 0. Hence, d; = ds.
We see later that in this case, the polynomial z2P!(x) — 2! P%(z) is a first integral.



112 D. BOULARAS, A. CHOUIKRAT

This case can be extended to the 2n-dimensional differential systems

da’ i dy’ _ i .
dt - P(.’L’,y), % - Q(‘Tay)7 1_1727"'7n

satisfying the conditions

OP(zy) | 9Q'(z.y)
oxt oyt

=0, (i=12,...n).

n

The polynomial function Z <yiPi(3:,y) — :EZQZ(aj,y)) is a first integral. Among
i=1

these systems we find (of course) the homogeneous Hamiltonian ones

dz’ _ O0H(z,y) % OH (z,y)

dt oyt 7 dt oxt

Remark 2. In general (see Proposition 1.16 from [2]), the condition J(z) = 0
implies the algebraic dependence W (P!, P2 ... P") = 0 where W is a multivariate
polynomial with coefficients in C.

Furthemore, if the polynomials P!, P?,..., P" are homogeneous of the same
degree, the polynomial W is necessary homogeneous.

Second case: n = 2 and J(z) = 0.
From the above remark and the homogeneity of W, we have : W(z) = H(aixl +
Biz%) and so,
W(PY,P*) =0 = 3,6 € C; aP'(z) + BP*(z) = 0.

Thus, the linear form az!' + B2 is a first integral.

3 The bidimensional homogeneous systems

We have seen that the starting equations of (1) depend only on the homogeneous
part of lower degree of (1). Let’s consider the homogeneous differential systems of
(total) degree I.

dx

=0

l

i dy _ ! I—i, i
o =B =% (w03

=0

N\
. o~
N——
8
&N

d

where A(x,y), B(z,y) € Clz, y].
Because of the homogeneity of the polynomials A and B, a formal first integral is
necessarily a polynomial one which satisfies the equation FyMig 4.1 X H=1 — .
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By the proposition 1, a necessairy and sufficient condition for finding a nontrivial
solution Fj is :

rank(M[dJer_l}) < d+1.

In the following section we compute concretely the matrices M4 4 4 1), we establish
the equivalence between the rank condition and the nullity of some determinant and
finally, by using the classical theory, we reduce the computation of this determinant
to that of its leading term.

3.1 Some basic facts about the integrals of homogeneous planar
differential systems
The following results are wellknown.

Lemma 7. Let H(x,y) = Hi(z,y)Hz2(x,y) be a factorisation of the polynomial H
into two coprime polynomials Hy and Ho. The polynomial H is a partial integral of
(13) if and only if Hy and Hy are also partial integrals of (13).

Proof. [4] (Lemma 2.2, p. 8).
Proposition 8. Let K(x,y) be the polynomial yA(z,y) — xB(x,y). Then
K (z,y) K (z,y)
ox oy
where Div(A, B) is the divergence of the vector field (A, B).
Proof. Putting A, = %, Ay = %, B, = %—f, B, = %—jyg and using the Fuler’s
formulae, we get
0K (x,y) 0K (x,y)
ox oy
= (A; + By)K(z,y) + B(zA; + yAy) — A(xB, + yBy) = Div(A,B)K(z,y).
Remark 3. Each factor of K(x,y) is a partial integral.

A(z,y) + B(z,y) = Div(A, B) K(z,v)

A(z,y) + B(z,y) = (yAs — 2B — B)A + (yAy + A — 2By)B

Proposition 9. The line ax + By = 0 is an invariant curve for the system (13)
if and only if K(8,—a) = 0.
Proof. The sufficient condition follows immediately from the fact that

m+1

K(z.y) = [] (i + piy)

i=1
and the previous results.
Let az + By = 0 be the equation of the line. The point (3, —«) belongs to the line
and so, aA(B,—«a) + BB(B,—a) = 0.
Corollary 10. If Div(A, B) =0, then K(x,y) is a first integral,
Proposition 11. If K(xz,y) # 0, then
system (13).
Proof. Directly from the definition of the integrating factor.

1 . . .
Ry s an integrating factor for the
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3.2 Computation of the matrices M[q,;14—1)
Proposition 12. Let M{g;, 41 be the matriz defined in Section 2.2. With the
assumption a_1 = b1 = 0 and <;> = 0 for any j = 0,1,2,...d, r =

0,1,2,...,l+d—1 such that i < k, we have:

! = (45 o (1) (o 00

Proof. The polynomial F(z,y) = E?:o <;l> fjxd_jyj is a first integral if and only
if
OF (z,y)

FyMigpqn X1 = T Al y)+——

=0 7=0 =
l d—1 I+j . ;
ded—1 OZ< ) T Y +dea[Z< ><T_j>ar_jwl+d—r—lyr
r=0 r=j
I+j5—-1 d—1 ! l
- . l+d—r—1_r d—1 l—r r
+ Zl<j_1><r_j+1>br—J+lx y'| +dy fdzo<r>br$ y =0
r=J1— r=

J

The element [M[d,H—d—l}} is the coefficient of f;3" (j = 0,1,2,...d and r =
T

0,1,2,...,l+d—1) in the last expression. More precisely :

r 10

Mg 14a-1) . = d< >ar if0<r <l

_ L .

M[d,l+d—1] ) = d bpif 1<j<d—1,

- 4151 J-

[ 17 d— d—1 !
_M[d,l-l-d—l]_r = d[ j >< ]> ar—j + <j—1><1"—|—1—j>br+l j:|

if1<j<d-—-landj<r<Il+j-—1,

[M[dl-i-d—l]]j — a4t qifl<j<d-1
’ I+ J -7 - !

d I .
[M[d,l+d—1]]r = d , bpifd—-—1<r<l+d-1,

[M[d,l+d—1]} i = 0 elsewhere
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where j =0,1,2,...dandr =0,1,2,...,l4+d—1. These expressions can be rewritten
using the copact form given in the proposition.

Corollary 13. For alld € {1,2,...,}, i € {1,2,...,d}, and j € {1,2,...,1+
d — 1}, we have :

i

A [Marniva], = @D ([Maorsea] + Mania] ).

d+1
d+1
minors. The aim of the following subsection is to reduce the computation of these
minors to that of one and only one determinant of some matrix.

By Proposition 1, the condition on the rank requires the computation of

3.3 Reduction to a square matrix

Proposition 14. The polynomial FdM[CLH_d_HXHd_l € Clz,y] vanishes identically
if and only if the polynomial

-1 l—1 I+d—1
—1-k\O T FgM X
3 <z 1 k> d Ma14d-1] yl1E gk (15)

k I—1—k A,k
— ox oy

vanishes in Clz,y, u,v].
Proof. With the help of the Euler’s formulae,

0Q(z,y) 0Q(z,y)
or " * dy

where Q = FyMjg;1q-1 X H+d=1" e remark that the homogeneous polynomial Q
0Qw.y) _ 0Q(x.y)
ox oy

the polynomial ) vanishes if and only if all its derivatives of order [ — 1 vanish.

vanishes if and only if = 0. By the same way, we claim that

In the following, we denote by Sgj the (d+ 1) x (d + 1)-matrix such that

o1 (Fd Mgi+a-1) Xl+d_1)

FySqp X =
ddk Ol 1=F gy

and by Sig(u, v) the matrix 22;10 <l - z_ k> Sqpul=1 Rk,
Proposition 15. The differential system (13) has a polynomial first integral of
degree d if and only if

detS[d](u,v) =0
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Examples of matrices Sq(u,v).

1= 2:
2a0 2a1 2&1 2&2
Spy(u,v) = v
L 2b0 2b1 2b1 2b2
[ 3(10 4&1 as 2(11 2&2 0

5[2] (u,v) = | 3by 2ap+4by 2a1+by |u+ | ap+2b; 4a; +2b2 3ay | v,

0 2p 2, bo 4y 3by
5[3] (’LL, ’U) =
4ap 6aq 2a9 0 2a1 2ao 0 0
4bg 6b1 4+ 6ag 8aq + 2bs 2a9 2b1 + 2a¢  8aq + 2bs 6as 0
0 6bg 2ag + 8b1  2bsy + 2aq b 2bg 2ag + 8b1  6by + 6a;  4as
0 0 2bg 2by 0 2bg 601 4by
1= 3:
S[l](ujv)[?)ao 3(11 ]u2+[6a1 6&2]uv+[3a2 3&3]1)27
3by 30y 6b; 6b 3by 3b3
S (u,v) =
6CL() 9&1 3a2 9a1 12 as 3a3

V.

6byg 3ag+9b; 3by+3aq u2—|— 3ag+9by 12by+12a7 9ag + 3b3 | uv+

0 3 bo 3b1 3 b 12y 9by
3 a9 3 as 0

+ | 3bs+3a1 9as+3bs 6Gas v2.
3b; 9by 6 b3

3.4 Computation of the matrices Sq
Starting from the polynomial

I+d—1

Fg Miggyq-1 X071 = Z Z fz( [d,1+d— 1]) a1y,
=0 j=0

we get

al—le M[d l+d—1]Xl+d 1

d
al—l’—kxaky zz:

;LM+

(M[d I+d-1 ) id+k— (G — k)

d d .
i Utd—T1—k—p) (k+p) 4
- ZZfi(M[d,l+d—1]>k+ d—p) b p!p zPyP.

. (l +d—1-— j)'j' $d+k—jyj—k
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Proposition 16. The (d+1) x (d+ 1)-matriz Sqi(u, v) (fork €{0,1,2,...,0 —1})
s defined by :

i i (4d=1—k—p) (k+p)
(Sd,k)p = (M[d,l+d—1]>k+p =) o (16)

Proof. The coeflicient of f; yP corresponds to the coefficient (Sd,k);.

Consequently, by Proposition 15, the differential system (13) admits a polynomial
first integral if and only if there exists a positive integer d such that

det(Siq)(u, v))=sdul= DD L ody A=D(d+1) =1, —i—sfll_l)(dﬂ)v(l_l)(dﬂ) =0. (17)
For verifying the condition rank (M[d,l—i—d—l}) < d+ 1, we must compute N; =

<(Cll_—:__i> minors, but for verifying the condition det(S|q(u,v)) = 0, we need the

computation of Ny = (d 4 1)(l — 1) + 1 expressions. The next table shows how the
difference N1 — N increases w.r.t. the degrees [ and d.

1\d| 1 2 3 4 5 6 7 8 9 10
2 0 0 0 0 0 0 0 0 0 0
3 3 6 10 | 15 21 28 36 45 55 66
4 7116 | 30 | 50 7 112 | 156 210 275 352
5 121 31 | 65 | 120 | 203 | 322 | 486 705 990 1353
6 18 | 52 | 121 | 246 | 455 | 784 | 1278 | 1992 | 2992 | 4356
7 25 | 82 | 205 | 456 | 917 | 1708 | 2994 | 4995 | 7997 | 12364
8 33 | 116 | 325 | 786 | 1709 | 3424 | 6424 | 11430 | 19437 | 31812

Remark 4.

1. When [ = 2, the coefficients of the determinant (17) correspond to the mi-
nors of the matrix Mg 41 = [C1,Ca, ..., Cay2], rewritten with the columns
Ci;i=1,2,...,d+2:

s¢ = N det([C1,0%, ..., Car1-k> Cava ko, Cars—, - - Caial)

fork =0,...,d+1and \; € N.
Here, the symbol 7”7 means the removing of the corresponding column.

2. When [ > 2, we have :
Sg = )\0 det([C’l, 02, e ,Cd+1])
Scll = /\1d€7f([01, 02, e ,éd+1, Cd+2])

It is obvious that when the degree d increases, the computation of the determinant
det(S|q (u,v)) becomes more and more complicated. However, by using the classical
invariant theory, we will show that from the knowledge of the leading term sg, we

can deduce that of the other terms s‘li, sg, . ,sgﬂ.
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4 The computation of the determinant det(Siq(u,v)) by using
the classical invariant theory

4.1 Introduction to the classical invariant theory ([10,12,14])

Let (C™)* be the dual of the vector space C™. The linear space of the differential
systems (13) can be looked upon as the tensorial product S(n, m) ® (C™)* denoted
by S},. For example, S} is the linear differential systems. In tensorial language, S;,
is the space of tensors once contravariant and m times covariant which are symmet-
ric with respect to the lower indices.

Let G be the linear group acting rationally on a finite-dimensional vector space
W, GL(W) the group of automorphisms of W and

p :Gr+— GL(W)

the corresponding rational representation. Let C[)V] be the algebra of polynomials
whose indeterminates are the coordinates of a generic vector of W.

Definition 2. A polynomial function K € C[W) is said to be a G-invariant of W
if there exists a character of the group G, denoted X\, such that

Vge G, Kop(g)=Ag)K.

Here, the character of the group G is a rational (commutative) morphism of
group G into C,, where C,, is the multiplicative group of C.
If A(g) =1, the invariant is said absolute. Otherwise, it is relative.

Definition 3. A GL(n,C)-invariant of S}, is a GL(n,C)-invariant of the linear
space
W= S

A GL(n,C)-covariant of S is a GL(n,C)-invariant of the linear space
W= S x (C").

When G is a subgroup of GL(n,C), A(g) = (det g)™" with the so called weight
k € Z.
Remark 5. If G = SL(n,C), all the covariants are absolute.
Remark 6. A polynomial K € C[S}] is a GL(n,C) covariant if and only if it is a
SL(n,C) covariant.

Examples

1. Concerning the GL(n, C)-invariants, take for example the trace and the deter-
minant of the linear part of (1).

2. The divergence and the jacobian determinant of the vector field P are the
simplest GL(n, C)-covariants of the space of the differential systems (1).
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For more details, see [10-12,14, 15].
The following theorem gives a procedure for calculating the generators of the the
GL(n,C)-covariants, step by step increasing the degree.

Theorem 1 (Fundamental Theorem of the classical invariant theory). The expres-
sions obtained with the help of succesive alternations and complete contraction over
the tensorial products

(Sp)P @ (V)

form a system of generators of the algebra of GL(2,C)-covariants of S}, .
Such polynomials are called basic covariants.

From now on, we will be ineterested in the bidimensional case.
A GL(2,C)-covariant K of degree k (with respect to (x,y)) is a polynomial

k _ k i
Coz* + <1>C'1xk by + - + <z>01x’f b Oyt

where the coefficients C; are homogeneous polynomial functions of degree d depend-
ing on coefficients a; and b;. The integers k and d satisfy the relation

dim — 1) — k =2k

where k is the weight of the covariant K.
To apply previous Theorem 1, it is useful to introduce the tensorial writing of
the algebraic forms and the polynomial differential systems.

Putting z = 2!, y = 22 and using Einstein’s notation : ;6 = Z?:l 7;0" the
polynomials F', A and B, once symmetrised ([10]), become :

F($7y) = (10(‘/17) = Piria..ig xilxiQ Ilfid,

A(xay) = A1($) = Oél gjilgin xim’

i1ig..iq
B($7y) = A2(gj) = azzlig...id xi1$i2 $im7
where aly 199 o = @; and  a2] 199 5 = b; (with i “27) and 41,42, ... € {1,2}.
Consequently,
dp(x) 41 dp(x) \ o
DA,BF($7y) = Ozl A ($) + 2 A ($)

= ;g ; id i1 02 e Ld—1 1. J1 ]2 . Jm
= dcpuzz...zdajlhmjmx x x Tt T
is a GL(2,C)-covariant because it is a total contraction (see Theorem 1).

Proposition 17. The polynomial FySig) (u,v) X% is a GL(2,C)-covariant.
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Proof. It is wellknown ([14]) that for any covariant K(z,y), the polynomial
OK(r,y) . OK(5y),
Oz y

is a covariant. This is the polarization process. Repeating this process k times, we
obtain again a covariant :

Zk: k akK(33>y)uk—i,Ui
- i ) Drk-idy :

Consequently, since D4 gF' is a covariant, the polynomial

-1
1—-1\9"DapF ,_; o
FaSja (u,0) X" = Z( i >ﬁ -
=0

is also a covariant.
Corollary 18. The polynomial det(Sig(u,v)) is a GL(2,C)-covariant.

Proof. Let Sym(n,d)* be the dual of the linear space Sym(n, d) and GL(Sym(n,d))
(resp. GL(Sym(n,d))*) the group of the automorphisms of Sym(n,d) (resp.
GL(Sym(n,d))*). We denote the elements of Sym(n,d) by Fy and those of
Sym(n,d)* by X9

The change of coordinates (z,y)” < (Z,7) = [¢~ ' (z,y)]", where (z,y)T is the
transpose vector of (x,y), induces the linear representations :

® : GL(2,C) —» GL(Sym(n,d)) ¥ :GL(2,C) — GL((Sym(n,d))").
Since the polynomial F;X? is an absolute G'L(2, C)-covariant, we have :
Vg € GL(2,C), ®(g)¥(g9) = 1.
Hence, the matrix Sig(u,v) is transformed into Sjqq)(@,7) = ®(g)Siq(u,v)®(g)"".

Consequently,

det(Sa,q (W, 7)) = det(Sig(u,v)).

4.2 Differential operators

Let’s consider the connected component of the identity of the subgroups H;, Hy
and H, of the lower-triangular, upper-triangular, diagonal matrices parametrized by
TeC:

m={(1 ) rechm={(y 1) rectm={(5 % )rech

The family H;, H,, Hg generates the unimodular group SL(2,C). H; (resp Hy, Hy)
is homeomorphic to the additive group (C, 4) . Each element of H; (resp H,, Hy)
can be identified with 7 € C. These groups induce linear actions over the space (S})

O : H — Aut(Sp,), U : H, — Aut(Sp), I : Hy— Aut(Sn)
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defined by ®(t)(a,b)=(a(t),b(t)), ¥(t)(a,b)=(a(t), b(t)) and I(t)(a,b)=(a(t),b(t))

where

a(r) =3 (1) e = (1)

i=k
k
— k —1 7 k —q 18
CLk(T):Z<i>Tk (a; — T b;) bk(T):g?:O(Z_)T'f b; (18)
=0
dk(T) _ er(m—2k—1)ak l;k(T) — eT(m_2k+1)bk.

To each subgroup H;, H,, H;, we associate a differential operator acting over the
algebra of the polynomials Cla, 0]

= ;(m —k+ 1)(ak Dans + by abk—l) - kZ:Oak i (19)
m P 5 m 5
0, = J;(k) <ak—1 Jar + bp—1 a—bk) - kzzobk Ba (20)

and

Qd:i((m—2k—1)aki+(m—2k+l)bk 0 (21)

= Oay, G—Z)k) ’

They are obtained by derivating respectively the expressions ®(7)(a,b), ¥(7)(a,b)
and I'(7)(a, b) with respect to 7 and setting 7 = 0.

These operators play an important role in the description of the algebra of the
GL(2,C)-covariants. Indeed, the next result gives a relation between any covariant

U=AouP+A; <Zl)>up_1v+ oo A <Ii)>u”_"vi+ Ay <pf 1>uvp_1+Ap P (22)

and its leading term Ay.

Definition 4. The weight of the coefficient ay, (resp. by) is the number k (resp.
k—1). The weight of any monomial Aag’ - a,'b}’ - - - b]' is the number Zizo(kik +
(k—1)jx). A polynomial K € Clag,...,a;,bg...b] is isobaric if all its monomials
have the same weight.

Proposition 19. For any GL(2,C)-covariant (22), with coefficients Ay, Ay, ..., Ap,
homogeneous polynomial functions of ag, ay, ... ,am , by, b1, ... , by, we have :

1
<£>Ak - HQ} J(A4)) Vk=0,1,2,....p
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Corollary 20. If the homogeneous polynomial I depending on ag, a1, ... ,a, and
bo, b1, ... by, is a GL(2,C)-invariant , then Q(I) = 0.

Proposition 21. For any GL(2,C)-covariant (22), where coefficients Ag, A1, ..., Ap
are homogeneous polynomial functions, depending on ag, a1, ... ,am , bo, b1, ... ,bm,
we have :

Qu(Ag) =0

Theorem 2 ([15]). An algebraic form
U= Aoup—l—A1<11)>up_1v—|—---+Ap_1<k€1>uvp_1 + Ay P

with an isobaric polynomial Ay € Clag, a1, ... ,a;,bo, b1, ... b, is a GL(2,C)-
covariant if and only if Q,(Ag) =0 and

k=0
Let’s return to the determinant of the matrix Sjg(u, v) which is a covariant (18).

Corollary 22. The covariant (17) is determined by its leading term sg :
d L,
det S[d] U, ?} kz_: k_ d—k ?)k.

4.3 The computation of the leading term sg: an open question

Following the previous subsection, the computation of det(Sig ) can be reduced
to that of its leading term, sg. This is somewhat difficult.

Examples of sg: for any 4,5 € {0,1,2,...,l} such that i < j and k €
{0,1,2,...,1— 1}, we put

l l l l
5i,j = <Z> <j><aibj — ajbi>, Tk — <k>ak + <k+1>bk+1'

Then, with the help of Groebner basis [13], we get :

forl = 2:
56 == 0o1;
8(2) = —bpdo2 + 00,170

88 = 5071 (2 T02 + 5071) — 45050727'0 + 2 1)025172

Sg = 350717'0 (3 T02 + 45071) +9 (—5071a2 + 27’0(51,2 + 7'15072) 502
-3 50,2 (4 50,1 + 97’02) bo

8(5) = 45071 (5071 + 67’02) (9 5071 + 47’02) + 8 (—36 a250717'0 + 9(51,2(50,1 + 36 (50,27'07'1
+36 51,27'02 + 20 50,22)1302 — 96 (—a250,2 + 7’15172) b03 — 16 50727'0(24 T02
+29 5071)1)0.
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forl = 3:
5o == bo1;
8(2) = —50,2130 + 50,17'0;
88 = 2 ((50,3 + 5172)1)02 — 4(50,27'0[)0 + (50,1(2 T02 + (50,1)
S% = —18 5173503 +9 (3 (50,37'0 — 7'2(50,1 + 2 (51,27'() + (50,27'1)[)02 - 3(50,2(4 (50,1
+9 7'02)b0 + 350,17'0(3 T02 + 450’1);
8(5) = 192 52731)04 +96 (2 do,1a3 + T20p 2 — 371003 — T101,2 — 57'05173)1)03

+8 (9 50,151,2 + 72 50737'02 + 36 51727'02 — 36 50’17'27'0 + 36 7'150,27'0 + 9507150,3
+20 50,22)1302 — 167’05072(295071 + 247’02)bo + 45071(50,1 + 67’02)(950,1 + 47’02).

We remark that if by = 0 and for [ = 2,3,

Lty = s(l) = 00,1
Lty = 3(2) = 00,170
Ltz = s§ = 601(80.1 + 270°)
Lty = sé = 37000,1(3 0% + 460.1)
Lts = s§ = 460.1(801 +670%)(960,1 +4702).
It is easy to recognize the type of the factors that are present in these expressions.

Indeed, it coincides with the starting equation , when the linear part is nonzero. In
fact, this result is more general.

Proposition 23. When by = 0, the leading term of the polynomial det(S|q) (u,v) is
defined, up to a numeric constant, by :

Lt; = Cd(To)(d) H [d1d2 7’3 + (di — dp)? 50,1]7 (23)
di+dy = d
dy > do

where cq is a numerical coefficient, (d) = 0 if d is odd and (d) =1 if d is even.

Proof. It is obvious that s§ = det(Si4(1,0)). Since by = 0, from (16) and (14),
the matrix Sig(1,0) = Sg is upper triangular and so, its determinant is equal to
the product of the diagonal elements which are regrouped two by two (the 5% term
with the (d 4+ 1 — j)%* term, for j = 1,...,d + 1) :

1. when d; > do, we get (d1a0 + dalby)(daag + dylby) = (d% + d%)Tg + (dl — d2)2(50,1,
2. when dy = dy = g, the coefficient (Sd,O)Zi = Aag + b)) = A1p.

Remark 7. By analogy, when a,, = 0, the relation

Mty = can)® ] [ddarts + (1 - d)? 81
di+dy=d
d1 > d2

is verified.
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At this step, we arrive at the question: how to deduce the leading coefficient 88

from the above expression (23)? Does there exist some operator which transforms
Ltg to the leading term sg? Up to now, this question is open.
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