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Determinantal Analysis of the Polynomial Integrability
of Differential Systems
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Abstract. This work deals with the polynomial and formal (formal series) inte-
grability of the polynomial differential systems around a singular point, namely the
conditions which assure the start of the algorithmic process for computing the poly-
nomial or the formal first integrals. When the linear part of the differential system
is nonzero, we have established ([9]) the existence of the so called starting equations
whose (integer) solutions are exactly the partition of the lower degree of the eventual
formal first integrals.

In this work, we study some extensions of the starting equations to the case
when the linear part is zero and, particularly, to the bidimensionnal homogeneous
differential systems. The principal tool used here is the classical invariant theory.

Mathematics subject classification: 34C14.
Keywords and phrases: Nonlinear differential systems, first integrals, classical
invariant theory.

1 Introduction

Many works are devoted to the investigation of local (or global) formal first
integrals of the differential system

dxi

dt
= P i(x), i = 1, 2, . . . , n (1)

where P i are polynomials of degree m with coefficients in the field C.

Definition 1. A function F ∈ C1(O) where O is an open set of C
n, is a first

integral of the differential system (1) if

∀x ∈ O, ∆P (F ) =

n
∑

j=1

∂F

∂xj
(x)P j(x) = 0. (2)

It is well known that around a regular point x0, there are exactly n−1 functionally
independent analytical first integrals. This result is just theoretic.

Around a singular point and for practical and computational reasons, many peo-
ple [1, 3, 5] have oriented their investigations to special classes of integrals like the
polynomial, rational, algebraic or exponential ones. It occurs that these different
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types of first integrals need the knowledge of the polynomial ones and so, the knowl-
edge of the degree of the first terms.

The same problem interested other mathematicians ([6–8]) which studied the
local or analytical integrability. In these works, the question of the resonance of the
eigenvalues of the linear nonzero part plays a fundamental role.

In [9], when the lower degree of P is 1, was given a constructive method to get,
for any dimension n, a so called starting equation satisfied by the lower degree of an
eventual first integral F .

This work consists in three parts. In the first one (Subsection 2.4), we give an
“extension” of the starting equation ([9]) to the general homogeneous polynomial
differential systems. In the second part (Section 3), we study the bidimensional
homogeneous systems : we explicitly calculated the matrices whose the kernel con-
tain the polynomial first integrals and we have reduced the integrability problem
(existence of a polynomial first integral) to the nullity of some determinant. Fi-
nally, in the third part, we use the classical invariant theory to present significiant
simplifications for computing the above determinant.

2 Notations and matricial writing of the integrability problem

2.1 The total-lexicographic order

Let Sym(n , k) be the linear space of the homogeneous algebraic forms of de-
gree k in n variables and S(n) the infinite dimensional space of the formal series
(expansions) :

S(n) =

∞
⊕

k=1

Sym(n , k),

where ([14, p. 21])

dim(Sym(n , k)) =
n(n + 1)(n + 2) · · · (n + k − 1)

k!
=

(n + k − 1)!

(n − 1)!k!
.

We identify the set of the multi-degrees of the multivariate polynomials with N
n.

The total degree of the monomial (x1)i1(x2)in · · · (xn)in is, by definition, equal to
|i| = i1 + i2 + · · · + in.

The n-fold cartesian set N
n is provided by the total-lexicographical order :

i ≥ j ⇐⇒















|i| > |j|

or

|i| = |j| and the left-most nonzero entry of i − j is positive,

which induces a total order over the monomials

{(x1)i1(x2)i2 · · · (xn)in ; |i| = k}.
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Any algebraic form of Sym(n , k),
∑

|i|=k

fi1,i2,...,in (x1)i1(x2)i2 · · · (xn)in , can be writ-

ten as follows :

[fk,0,0,...,0, fk−1,1,0,...,0, fk−1,0,1,...,0, . . . , f0,0,0,...,k]





















(x1)k

(x1)k−1(x2)1

(x1)k−1(x3)1

...

(xn)k





















= Fk Xk, (3)

where Fk and Xk denote the corresponding row and column vectors. Using this

notation, the formal series
∞

∑

k=1

∑

|i|=k

fi1,i2,...,in (x1)i1(x2)i2 · · · (xn)in and the right side

of (1) with vanishing linear part become respectively

F1 X1 + F2 X2 + · · · + Fk Xk + · · · , Pl X
l + Pl+1 X l+1 + · · · + Pm Xm, (4)

where, this time, Pi (i = l, l + 1, . . . ,m) denotes a matrix with n rows and
(n + i − 1)!

(n − 1)!i!
columns.

2.2 The integrability conditions

The formal series F (x) = F1 X1 + F2 X2 + · · · + Fk Xk + · · · is a first integral
of the system (1) if, by definition, ∆P (F ) = 0 i.e.

n
∑

j=1

∂(F1 X1 + F2 X2 + · · · )

∂xj

[

P
j
l X l + P

j
l+1X

l+1 + · · · + P j
mXm

]

= 0.

After collecting the terms w.r.t. the total degree, we obtain an infinite sequence of
conditions :

l :

n
∑

j=1

∂(F1X
1)

∂xj
P

j
l X l = 0,

l+1 :

n
∑

j=1

[∂(F1X
1)

∂xj
P

j
l+1

X l+1 +
∂(F2X

2)

∂xj
P

j
l X l

]

= 0,

l+2 :
n

∑

j=1

[∂(F1X
1)

∂xj
P

j
l+2

X l+2 +
∂(F2X

2)

∂xj
P

j
l+1

X l+1 +
∂(F3X

3)

∂xj
P

j
l X l

]

= 0,

...
...

m :

n
∑

j=1

[∂(F1X
1)

∂xj
P j

mXm +
∂(F2X

2)

∂xj
P

j
m−1X

m−1 + · · · +
∂(Fm−l+1X

m−l+1)

∂xj
P

j
l X l

]

= 0,

m+1:

n
∑

j=1

[∂(F2X
2)

∂xj
P j

mXm +
∂(F3X

3)

∂xj
P

j
m−1X

m−1 + · · · +
∂(Fm−l+2X

m−l+2)

∂xj
P

j
l X l

]

= 0,

...
...
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Putting p = min(k,m), the equation corresponding to the total degree k in x is :

n
∑

j=1

[∂(Fk+1−pX
k+1−p)

∂xj
P j

p Xp +
∂(Fk+2−pX

k+2−p)

∂xj
P

j
p−1X

p−1+

+ · · · +
∂(Fk−l+1X

k−l+1)

∂xj
P

j
l X l

]

= 0. (5)

Since the equation (5) is homogeneous of degree k in the coordinates of x, there are
N = p − l + 1 matrices, denoted M[i,k] (i = k − p + 1, . . . , k − l + 1), such that the
previous equation can be rewritten in the form :

[

Fk−p+1M[k−p+1,k] + Fk−p+2M[k−p+2,k] + · · · + Fk−l+1M[k−l+1,k]

]

Xk = 0. (6)

For the differential systems of lower degree l, k = l, l + 1, l + 2, . . ., we get :


















































F1 M[1, l] = 0

F1 M[1, l+1] + F2 M[2, l+1] = 0

F1 M[1, l+2] + F2 M[2,l+2] + F3 M[3,l+2] = 0

...

...

(7)

The matrix M[i,k] has exactely
(n + i − 1)!

(n − 1)!i!
rows and

(n + k − 1)!

(n − 1)!k!
columns.

We give some examples of the matrices M[d,l + d− 1] when n = 2.

l = 2; P 1(x) =
∑2

i=0

(

2
i

)

ai(x
1)2−i(x2)i, P 2(x) =

∑2
i=0

(

2
i

)

bi(x
1)2−i(x2)i.

M[1,2] =

[

a0 2a1 a2

b0 2b1 b2

]

, M[2,3] = 2





a0 2a1 a2 0
b0 a0 + 2b1 2a1 + b2 a2

0 b0 2b1 b2



 ,

M[3,4] = 3









a0 2 a1 a2 0 0
b0 2 b1 + 2 a0 b2 + 4 a1 2 a2 0
0 2 b0 4 b1 + a0 2 b2 + 2 a1 a2

0 0 b0 2 b1 b2









,

M[4,5] = 4













a0 2 a1 a2 0 0 0
b0 3 a0 + 2 b1 b2 + 6 a1 3 a2 0 0
0 3 b0 6 b1 + 3 a0 3 b2 + 6 a1 3 a2 0
0 0 3 b0 6 b1 + a0 2 a1 + 3 b2 a2

0 0 0 b0 2 b1 b2













.
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l = 3; P 1(x) =
∑3

i=0

(

3
i

)

ai(x
1)3−i(x2)i, P 3(x) =

∑3
i=0

(

3
i

)

bi(x
1)3−i(x2)i.

M[1,3]=

[

a0 3 a1 3 a2 a3

b0 3 b1 3 b2 b3

]

,M[2,4]=2





a0 3a1 3a2 a3 0
b0 3b1 + a0 3b2 + 3a1 b3 + 3a2 a3

0 b0 3 b1 3b2 b3



 ,

M[3,5] = 3









a0 3 a1 3 a2 a3 0 0
b0 2 a0 + 3 b1 3 b2 + 6 a1 b3 + 6 a2 2 a3 0
0 2 b0 6 b1 + a0 6 b2 + 3 a1 3 a2 + 2 b3 a3

0 0 b0 3 b1 3 b2 b3









,

M[4,6] = 4













a0 3 a1 3 a2 a3 0 0 0
b0 3 a0 + 3 b1 9 a1 + 3 b2 b3 + 9 a2 3 a3 0 0
0 3 b0 9 b1 + 3 a0 9 b2 + 9 a1 3 b3 + 9 a2 3 a3 0
0 0 3 b0 9 b1 + a0 3 a1 + 9 b2 3 a2 + 3 b3 a3

0 0 0 b0 3 b1 3 b2 b3













.

Proposition 1. If the differential system (1) has a formal first integral of lower
degree d, then :

rank (M[d,l+d−1]) <
(d + n − 1)!

(n − 1)! d!
.

The existence of the formal first integral of lower degree d implies that the
linear system Fd M[d,l+d−1] = 0 admits a non-vanishing solution. If for any d,

rank (M[d,l+d−1]) =
(d + n − 1)!

(n − 1)! d!
, the differential system (1) hasn’t a formal first

integral.

2.3 The case of the lower degree l = 1 ([9])

When l = 1, the matrices M[d,l+d−1] = M[d,d] are square.
Let A = (Ai

j)1≤i,j≤n be the matrix of the linear part of the differential system (1).

Proposition 2. [9] The matrix L = M[d,d] is defined by :















































L
j1j2 . . . jn

i1i2 . . . in
= 0 if |i − j| > 2,

L
i1i2 . . . in
i1 . . . (il − 1) . . . (iq + 1) . . . in

= ilA
l
q ,

L
i1i2 . . . in
i1 . . . (il + 1) . . . (iq − 1) . . . in

= iqA
q
l ,

L
i1i2 . . . in
i1i2 . . . in

= (i1A
1
1 + i2A

2
2 + · · · + inAn

n).

(8)

Corollary 3. [9] The matrix L = M[d,d] is diagonal (respectively lower triangular,
upper triangular) for any d = 1, 2, 3, . . ., if and only if the matrix A is diagonal
(respectively lower triangular, upper triangular).
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Corollary 4. [9] If the eigenvalues of the matrix A are λ1, λ2, . . . , λn, then the
eigenvalues of the matrix L = M[d,d] have the form :

i1λ1 + i2λ2 + · · · + inλn,

where i1, i2, . . . in ∈ N and i1 + i2 + . . . + in = d.

From Corollary 2, it follows

det(M[d,d]) =
∏

i1+i2+···+in=d

(

i1λ1 + i2λ2 + · · · + inλn

)

(9)

It is clear that the existence of a formal first integral (of lower degree d) of (1) with
A 6= 0, implies the existence of a non-negative integer d such that Fd M[d,d] = 0
has a nonzero solution Fd, i.e. det(M[d,d]) = 0.

The factors
(

i1λ1 + i2λ2 + · · ·+inλn

)

can be regrouped in orbits O(i1, i2, . . . , in)

with respect to the action of the symmetric group over the multidegrees. These orbits
are represented by the partitions of d in not more than n parts:

det(M[d,d])=
∏

i1 + i2 + · · · + in = d

i1 ≥ i2 ≥ · · · ≥ in ≥ 0





∏

(j1,j2,...,jn)∈O(i1,i2,...,in)

(

j1λ1 + j2λ2 + · · · + jnλn

)



.

As a symmetric function, the polynomial

R =
∏

(j1,j2,...,jn)∈O(i1,i2,...,in)

(

j1λ1 + j2λ2 + · · · + jnλn

)

belongs to the ring Z[σ1, σ2, . . . , σn] where σi =
∑

1≤j1≤j2···≤jn≤n

λj1 . . . λji
.

The equation R = 0 is called the starting equation of the existence of the formal
first integrals. Its integer solutions give the lower degree of the eventual first integral.

Some generic examples

1. The partition (d, 0, . . . , 0) corresponds to the factor det(A).

2. When d = kn, the partition (k, k, . . . , k) represents a one element orbit. So,
the factor that corresponds to this partition is kntrace(A).

3. When n = 2, the starting equation is

[

d1d2

(

trace(A)
)2

+ (d1 − d2)
2 det(A)

]

= 0.

In [9], the case of the dimension 3 is also detailed and for other dimensions, a
procedure for obtaining the starting equation is given.
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Remark 1. The above Diophantine equation (9) can be found under various aspects
in many works ([4,7,8]). For example, in [7], when the linear part A is not zero, the
author wrote : “If system (1) has nontrivial integrals analytic in a neighbourhood
of a trivial solution x = 0, then eigenvalues of the matrix A have to satisfy certain
resonant conditions”.

The starting equation gives namely an achieved form of these resonant conditions.

2.4 A consequence (strong condition) for the homogeneous
polynomial systems

Let’s return to the systems (1) which we suppose homogeneous of degree m :

dxi

dt
= P i(x), i = 1, 2, . . . , n. (10)

Denote by Jac(x) the Jacobian matrix of P and by J(x) and T (x) respectively the
determinant and the trace of the matrix Jac(x).
A polynomial first integral FdX

d satisfies the relation

n
∑

j=1

∂(Fd Xd)

∂xj

[

P j(x)
]

=

n
∑

j=1

∑

|i|=k

ijfi1,...,in (x1)i1 · · · (xj)ij−1 . . . (xn)in=0. (11)

Using the Euler’s formulae

P j(x) =
1

m

n
∑

k=1

xk ∂(P j(x))

∂xk
=

1

m

n
∑

k=1

[Jac(x)]jk xk,

the relation (11) becomes :
FdLd(x)Xd = 0

where the matrix Ld(x) has the same structure as the matrix L when l = 1 (see
Proposition 2 ). This is due to the substitution A

j
k := [Jac(x)]jk which leads to the

matrix M[d,d](x) and thus, to the starting equation R(x), depending on x.

Proposition 5. Suppose that the starting equation R(x) = 0 admits an integer n-
tuple solution (d1, d2, . . . , dn) and suppose that the linear equation Fd ·Ld(x) = 0 has
a constant solution F (not depending on x). Then, the system (10) has a polynomial
first integral of total degree d.

Corollary 6. When n = 2, the strong condition is given by the equation

[

d1d2

(

T (x)
)2

+ (d1 − d2)
2 J(x)

]

= 0. (12)

There are two particular cases of the above Corollary 6.

First case: n = 2 and T (x) = 0. Hence, d1 = d2.
We see later that in this case, the polynomial x2P 1(x) − x1P 2(x) is a first integral.
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This case can be extended to the 2n-dimensional differential systems

dxi

dt
= P i(x, y),

dyi

dt
= Qi(x, y), i = 1, 2, . . . , n

satisfying the conditions

∂P i(x, y)

∂xi
+

∂Qi(x, y)

∂yi
= 0, (i = 1, 2, . . . n).

The polynomial function

n
∑

i=1

(

yiP i(x, y) − xiQi(x, y)
)

is a first integral. Among

these systems we find (of course) the homogeneous Hamiltonian ones

dxi

dt
= −

∂H(x, y)

∂yi
,

dyi

dt
=

∂H(x, y)

∂xi
.

Remark 2. In general (see Proposition 1.16 from [2]), the condition J(x) = 0
implies the algebraic dependence W (P 1, P 2, . . . , Pn) = 0 where W is a multivariate
polynomial with coefficients in C.

Furthemore, if the polynomials P 1, P 2, . . . , Pn are homogeneous of the same
degree, the polynomial W is necessary homogeneous.

Second case: n = 2 and J(x) = 0.

From the above remark and the homogeneity of W , we have : W (x) =

k
∏

i=1

(αix
1 +

βix
2) and so,

W (P 1, P 2) = 0 =⇒ ∃α, β ∈ C; αP 1(x) + βP 2(x) = 0.

Thus, the linear form αx1 + βx2 is a first integral.

3 The bidimensional homogeneous systems

We have seen that the starting equations of (1) depend only on the homogeneous
part of lower degree of (1). Let’s consider the homogeneous differential systems of
(total) degree l.

dx

dt
= A(x, y) =

l
∑

i=0

(

l

i

)

aix
l−iyi ,

dy

dt
= B(x, y) =

l
∑

i=0

(

l

i

)

bix
l−iyi, (13)

where A(x, y) , B(x, y) ∈ Cl[x , y].
Because of the homogeneity of the polynomials A and B, a formal first integral is
necessarily a polynomial one which satisfies the equation FdM[d,d+l−1]X

l+l−1 = 0.
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By the proposition 1, a necessairy and sufficient condition for finding a nontrivial
solution Fd is :

rank
(

M[d,l + d− 1]

)

< d + 1.

In the following section we compute concretely the matrices M[d,l + d− 1], we establish
the equivalence between the rank condition and the nullity of some determinant and
finally, by using the classical theory, we reduce the computation of this determinant
to that of its leading term.

3.1 Some basic facts about the integrals of homogeneous planar
differential systems

The following results are wellknown.

Lemma 7. Let H(x, y) = H1(x, y)H2(x, y) be a factorisation of the polynomial H

into two coprime polynomials H1 and H2. The polynomial H is a partial integral of
(13) if and only if H1 and H2 are also partial integrals of (13).

Proof. [4] (Lemma 2.2, p. 8).

Proposition 8. Let K(x, y) be the polynomial yA(x, y) − xB(x, y). Then

∂K(x, y)

∂x
A(x, y) +

∂K(x, y)

∂y
B(x, y) = Div(A,B)K(x, y)

where Div(A,B) is the divergence of the vector field (A,B).

Proof. Putting Ax = ∂A
∂x

, Ay = ∂A
∂y

, Bx = ∂B
∂x

, By = ∂B
∂y

and using the Euler’s
formulae, we get

∂K(x, y)

∂x
A(x, y) +

∂K(x, y)

∂y
B(x, y) = (yAx − xBx − B)A + (yAy + A − xBy)B

= (Ax + By)K(x, y) + B(xAx + yAy) − A(xBx + yBy) = Div(A,B)K(x, y).

Remark 3. Each factor of K(x, y) is a partial integral.

Proposition 9. The line αx + βy = 0 is an invariant curve for the system (13)
if and only if K(β,−α) = 0.

Proof. The sufficient condition follows immediately from the fact that

K(x, y) =

m+1
∏

i=1

(αix + βiy)

and the previous results.
Let α x + βy = 0 be the equation of the line. The point (β,−α) belongs to the line
and so, αA(β,−α) + βB(β,−α) = 0 .

Corollary 10. If Div(A,B) = 0 , then K(x, y) is a first integral,

Proposition 11. If K(x, y) 6= 0, then 1
K(x,y) is an integrating factor for the

system (13).

Proof. Directly from the definition of the integrating factor.
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3.2 Computation of the matrices M[d,l+d−1]

Proposition 12. Let M[d,l + d− 1] be the matrix defined in Section 2.2. With the

assumption a−1 = bl+1 = 0 and

(

i

k

)

= 0 for any j = 0, 1, 2, . . . d, r =

0, 1, 2, . . . , l + d − 1 such that i < k, we have:

[

M[d,l+d−1]

]j

r
= d

[

(

d − 1
j

)(

l

r − j

)

ar−j +

(

d − 1
j − 1

)(

l

r + 1 − j

)

br+1−j

]

. (14)

Proof. The polynomial F (x, y) =
∑d

j=0

(

d

j

)

fjx
d−jyj is a first integral if and only

if

FdM[d,l+d−1]X
l+d−1 =

∂F (x, y)

∂x
A(x, y)+

∂F (x, y)

∂y
B(x, y) =

= d

l
∑

i=0

(

l

i

)

[

ai

d−1
∑

j=0

(

d − 1
j

)

xl+d−i−j−1fj yj + bi

d
∑

j=1

(

d − 1
j − 1

)

xl+d−i−jfjy
j−1

]

yi =

= dxd−1f0

l
∑

r=0

(

l

r

)

arx
l−ryr + d

d−1
∑

j=1

fj

[

l+j
∑

r=j

(

d − 1
j

)(

l

r − j

)

ar−j xl+d−r−1yr

+

l+j−1
∑

r=j−1

(

d − 1
j − 1

)(

l

r − j + 1

)

br−j+1 xl+d−r−1yr
]

+ d yd−1 fd

l
∑

r=0

(

l

r

)

brx
l−ryr = 0.

The element
[

M[d,l+d−1]

]j

r
is the coefficient of fj yr (j = 0, 1, 2, . . . d and r =

0, 1, 2, . . . , l + d − 1) in the last expression. More precisely :

[

M[d,l+d−1]

]0

r
= d

(

l

r

)

ar if 0 ≤ r ≤ l,

[

M[d,l+d−1]

]j

j−1
= d

(

d − 1
j − 1

)

b0 if 1 ≤ j ≤ d − 1,

[

M[d,l+d−1]

]j

r
= d

[

(

d − 1
j

)(

l

r − j

)

ar−j +

(

d − 1
j − 1

)(

l

r + 1 − j

)

br+1−j

]

if 1 ≤ j ≤ d − 1 and j ≤ r ≤ l + j − 1,

[

M[d,l+d−1]

]j

l+j
= d

(

d − 1
j

)

al if 1 ≤ j ≤ d − 1,

[

M[d,l+d−1]

]d

r
= d

(

l

r

)

br if d − 1 ≤ r ≤ l + d − 1,

[

M[d,l+d−1]

]j

r
= 0 elsewhere
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where j = 0, 1, 2, . . . d and r = 0, 1, 2, . . . , l+d−1. These expressions can be rewritten
using the copact form given in the proposition.

Corollary 13. For all d ∈ {1, 2, . . . , }, i ∈ {1, 2, . . . , d}, and j ∈ {1, 2, . . . , l +
d − 1}, we have :

d
[

M[d+1,l+d]

]i

j
= (d + 1)

([

M[d+1,l+d]

]i

j
+

[

M[d+1,l+d]

]i−1

j−1

)

.

By Proposition 1, the condition on the rank requires the computation of

(

d + l

d + 1

)

minors. The aim of the following subsection is to reduce the computation of these
minors to that of one and only one determinant of some matrix.

3.3 Reduction to a square matrix

Proposition 14. The polynomial FdM[d,l+d−1]X
l+d−1 ∈ C[x, y] vanishes identically

if and only if the polynomial

l−1
∑

k=0

(

l − 1 − k

k

)

∂l−1Fd M[d,l+d−1] X
l+d−1

∂xl−1−k ∂yk
ul−1−kvk (15)

vanishes in C[x, y, u, v].

Proof. With the help of the Euler’s formulae,

∂Q(x, y)

∂x
x +

∂Q(x, y)

∂y
y = (l + d − 1)Q(x, y)

where Q = Fd M[d,l+d−1] X
l+d−1, we remark that the homogeneous polynomial Q

vanishes if and only if
∂Q(x, y)

∂x
=

∂Q(x, y)

∂y
= 0. By the same way, we claim that

the polynomial Q vanishes if and only if all its derivatives of order l − 1 vanish.

In the following, we denote by Sd,k the (d + 1) × (d + 1)-matrix such that

Fd Sd,k Xd =
∂l−1

(

Fd M[d,l+d−1] X
l+d−1

)

∂xl−1−k ∂yk

and by S[d](u , v) the matrix
∑l−1

k=0

(

l − 1 − k

k

)

Sd,k ul−1−kvk.

Proposition 15. The differential system (13) has a polynomial first integral of
degree d if and only if

detS[d](u, v) = 0
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Examples of matrices S[d](u, v).
l = 2 :

S[1](u, v) =

[

2a0 2a1

2b0 2b1

]

u +

[

2a1 2a2

2b1 2b2

]

v,

S[2](u, v) =









3a0 4a1 a2

3b0 2a0 + 4b1 2a1 + b2

0 2 b0 2b1









u +









2 a1 2a2 0

a0 + 2b1 4a1 + 2b2 3a2

b0 4b1 3b2









v,

S[3](u, v) =














4a0 6a1 2a2 0

4b0 6b1 + 6a0 8a1 + 2b2 2a2

0 6b0 2a0 + 8b1 2b2 + 2a1

0 0 2 b0 2b1















u+















2a1 2a2 0 0

2b1 + 2a0 8a1 + 2b2 6a2 0

2b0 2a0 + 8b1 6b2 + 6a1 4a2

0 2b0 6b1 4b2















v.

l = 3 :

S[1](u, v)

[

3 a0 3 a1

3 b0 3 b1

]

u2 +

[

6 a1 6 a2

6 b1 6 b2

]

uv +

[

3 a2 3 a3

3 b2 3 b3

]

v2,

S[2](u, v) =








6 a0 9 a1 3 a2

6 b0 3 a0 + 9 b1 3 b2 + 3 a1

0 3 b0 3 b1









u2+









9 a1 12 a2 3 a3

3 a0 + 9 b1 12 b2 + 12 a1 9 a2 + 3 b3

3 b0 12 b1 9 b2









uv+

+









3 a2 3 a3 0

3 b2 + 3 a1 9 a2 + 3 b3 6 a3

3 b1 9 b2 6 b3









v2.

3.4 Computation of the matrices Sd,k

Starting from the polynomial

Fd M[d,l+d−1] X l+d−1 =

d
∑

i=0

l+d−1
∑

j=0

fi

(

M[d,l+d−1]

)i

j
xl+d−1−jyj ,

we get

∂l−1Fd M[d,l+d−1]X
l+d−1

∂l−1−kx∂ky
=

d
∑

i=0

k+d
∑

j=k

fi

(

M[d,l+d−1]

)i

j

(l + d − 1 − j)!j!

(d + k − j)!(j − k)!
xd+k−jyj−k

=
d

∑

i=0

d
∑

p=0

fi

(

M[d,l+d−1]

)i

k+p

(l + d − 1 − k − p)!

(d − p)!

(k + p)!

p!
xd−pyp.
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Proposition 16. The (d + 1)× (d + 1)-matrix Sd,k(u , v) (for k ∈{0, 1, 2, ..., l − 1})
is defined by :

(

Sd,k

)i

p
=

(

M[d,l+d−1]

)i

k+p

(l + d − 1 − k − p)!

(d − p)!

(k + p)!

p!
. (16)

Proof. The coefficient of fi y
p corresponds to the coefficient (Sd,k)

i
p.

Consequently, by Proposition 15, the differential system (13) admits a polynomial
first integral if and only if there exists a positive integer d such that

det(S[d](u, v))=sd
0u

(l−1)(d+1)+sd
1u

(l−1)(d+1)−1v+ · · · +sd
(l−1)(d+1)v

(l−1)(d+1) = 0. (17)

For verifying the condition rank
(

M[d,l+d−1]

)

< d + 1, we must compute N1 =
(

d + l

d + 1

)

minors, but for verifying the condition det(S[d](u, v)) = 0, we need the

computation of N2 = (d + 1)(l − 1) + 1 expressions. The next table shows how the
difference N1 − N2 increases w.r.t. the degrees l and d.

l \ d 1 2 3 4 5 6 7 8 9 10

2 0 0 0 0 0 0 0 0 0 0

3 3 6 10 15 21 28 36 45 55 66

4 7 16 30 50 77 112 156 210 275 352

5 12 31 65 120 203 322 486 705 990 1353

6 18 52 121 246 455 784 1278 1992 2992 4356

7 25 82 205 456 917 1708 2994 4995 7997 12364

8 33 116 325 786 1709 3424 6424 11430 19437 31812

Remark 4.

1. When l = 2, the coefficients of the determinant (17) correspond to the mi-
nors of the matrix M[d,d+1] = [C1, C2, . . . , Cd+2], rewritten with the columns
Ci ; i = 1, 2, . . . , d + 2 :

sd
k = λi det([C1, C2, . . . , Cd+1−k, Čd+2−k, Cd+3−k, . . . , Cd+2])

for k = 0, . . . , d + 1 and λi ∈ N.
Here, the symbol ”̌ ” means the removing of the corresponding column.

2. When l > 2, we have :

sd
0 = λ0 det([C1, C2, . . . , Cd+1])

sd
1 = λ1det([C1, C2, . . . , Ĉd+1, Cd+2])

It is obvious that when the degree d increases, the computation of the determinant
det(S[d](u, v)) becomes more and more complicated. However, by using the classical

invariant theory, we will show that from the knowledge of the leading term sd
0, we

can deduce that of the other terms sd
1, sd

2, . . . , s
d
d+1.
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4 The computation of the determinant det(S[d](u, v)) by using
the classical invariant theory

4.1 Introduction to the classical invariant theory ([10, 12, 14])

Let (Cn)∗ be the dual of the vector space C
n. The linear space of the differential

systems (13) can be looked upon as the tensorial product S(n , m)⊗ (Cn)∗ denoted
by S1

m. For example, S1
1 is the linear differential systems. In tensorial language, S1

m

is the space of tensors once contravariant and m times covariant which are symmet-
ric with respect to the lower indices.

Let G be the linear group acting rationally on a finite-dimensional vector space
W, GL(W) the group of automorphisms of W and

ρ : G 7−→ GL(W)

the corresponding rational representation. Let C[W] be the algebra of polynomials
whose indeterminates are the coordinates of a generic vector of W.

Definition 2. A polynomial function K ∈ C[W] is said to be a G-invariant of W
if there exists a character of the group G, denoted λ, such that

∀g ∈ G, K ◦ ρ(g) = λ(g).K.

Here, the character of the group G is a rational (commutative) morphism of
group G into Cm where Cm is the multiplicative group of C.
If λ(g) ≡ 1, the invariant is said absolute. Otherwise, it is relative.

Definition 3. A GL(n, C)-invariant of S1
m is a GL(n, C)-invariant of the linear

space
W = S1

m.

A GL(n, C)-covariant of S1
m is a GL(n, C)-invariant of the linear space

W = S1
m × (Cn).

When G is a subgroup of GL(n, C), λ(g) = (det g)−κ with the so called weight
κ ∈ Z.

Remark 5. If G = SL(n, C), all the covariants are absolute.

Remark 6. A polynomial K ∈ C[S1
m] is a GL(n, C) covariant if and only if it is a

SL(n, C) covariant.

Examples

1. Concerning the GL(n, C)-invariants, take for example the trace and the deter-
minant of the linear part of (1).

2. The divergence and the jacobian determinant of the vector field P are the
simplest GL(n, C)-covariants of the space of the differential systems (1).
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For more details, see [10–12,14,15].

The following theorem gives a procedure for calculating the generators of the the
GL(n, C)-covariants, step by step increasing the degree.

Theorem 1 (Fundamental Theorem of the classical invariant theory). The expres-
sions obtained with the help of succesive alternations and complete contraction over
the tensorial products

(S1
m)⊗p ⊗ (V)⊗r

form a system of generators of the algebra of GL(2, C)-covariants of S1
m .

Such polynomials are called basic covariants.

From now on, we will be ineterested in the bidimensional case.
A GL(2, C)-covariant K of degree k (with respect to (x, y)) is a polynomial

C0x
k +

(

k

1

)

C1x
k−1y + · · · +

(

k

i

)

Cix
k−iyi + · · · + Cky

k

where the coefficients Ci are homogeneous polynomial functions of degree d depend-
ing on coefficients aj and bj . The integers k and d satisfy the relation

d(m − 1) − k = 2κ

where κ is the weight of the covariant K.

To apply previous Theorem 1, it is useful to introduce the tensorial writing of
the algebraic forms and the polynomial differential systems.

Putting x = x1, y = x2 and using Einstein’s notation : γiδ
i =

∑2
i=1 γiδ

i the
polynomials F , A and B, once symmetrised ([10]), become :

F (x, y) = ϕ(x) = ϕi1i2...id xi1xi2 · · · xid ,

A(x, y) = Λ1(x) = α1
i1i2...id

xi1xi2 · · · xim ,

B(x, y) = Λ2(x) = α2
i1i2...id

xi1xi2 · · · xim,

where α1
11..122..2 = ai and α2

11..122..2 = bi (with i “2”) and i1, i2, . . . ∈ {1, 2}.

Consequently,

DA,BF (x, y) =
∂ϕ(x)

∂x1
Λ1(x) +

∂ϕ(x)

∂x2
Λ2(x)

= dϕi1i2...idα
id
j1j2...jm

xi1xi2 · · · xid−1xj1xj2 · · · xjm

is a GL(2, C)-covariant because it is a total contraction (see Theorem 1).

Proposition 17. The polynomial FdS[d](u, v)Xd is a GL(2, C)-covariant.
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Proof. It is wellknown ([14]) that for any covariant K(x, y), the polynomial

∂K(x, y)

∂x
u +

∂K(x, y)

∂y
v

is a covariant. This is the polarization process. Repeating this process k times, we
obtain again a covariant :

k
∑

i=0

(

k

i

)

∂kK(x, y)

∂xk−i∂yi
uk−ivi.

Consequently, since DA,BF is a covariant, the polynomial

FdS[d](u, v)Xd =
l−1
∑

i=0

(

l − 1
i

)

∂kDA,BF

∂xk−i∂yi
uk−ivi

is also a covariant.

Corollary 18. The polynomial det(S[d](u, v)) is a GL(2, C)-covariant.

Proof. Let Sym(n, d)∗ be the dual of the linear space Sym(n, d) and GL(Sym(n, d))
(resp. GL(Sym(n,d))∗) the group of the automorphisms of Sym(n,d) (resp.
GL(Sym(n, d))∗). We denote the elements of Sym(n, d) by Fd and those of
Sym(n, d)∗ by Xd.

The change of coordinates (x, y)T ↔ (x, y) = [g−1(x, y)]T , where (x, y)T is the
transpose vector of (x, y), induces the linear representations :

Φ : GL(2, C) → GL(Sym(n, d)) Ψ : GL(2, C) → GL((Sym(n, d))∗).

Since the polynomial FdX
d is an absolute GL(2, C)-covariant, we have :

∀ g ∈ GL(2, C), Φ(g)Ψ(g) = 1.

Hence, the matrix S[d](u, v) is transformed into S[d,d](u, v) = Φ(g)S[d](u, v)Φ(g)−1.
Consequently,

det(S [d,d](u, v)) = det(S[d](u, v)).

4.2 Differential operators

Let’s consider the connected component of the identity of the subgroups Hl, Hu

and Hd of the lower-triangular, upper-triangular, diagonal matrices parametrized by
τ ∈ C :

Hl =
{

(

1 0
τ 1

)

, τ ∈ C

}

,Hu =
{

(

1 τ

0 1

)

, τ ∈ C

}

,Hd =
{

(

eτ 0
0 e−τ

)

, τ ∈ C

}

.

The family Hl, Hu, Hd generates the unimodular group SL(2, C). Hl (resp Hu, Hd)
is homeomorphic to the additive group (C , +) . Each element of Hl (resp Hu, Hd)
can be identified with τ ∈ C. These groups induce linear actions over the space (S1

m)

Φ : Hl → Aut(Sm), Ψ : Hu → Aut(Sm), Γ : Hd → Aut(Sm)



DETERMINANTAL ANALYSIS OF THE POLYNOMIAL INTEGRABILITY . . . 121

defined by Φ(t)(a, b)=(a(t), b(t)), Ψ(t)(a, b)=(a(t), b(t)) and Γ(t)(a, b)=(â(t), b̂(t))
where

ak(τ) =
m

∑

i=k

(

m − k

i − k

)

τ i−kai bk(τ) =
∑m

i=k

(

m − k

i − k

)

τ i−k(bi − τ ai)

ak(τ) =
k

∑

i=0

(

k

i

)

τk−i(ai − τ bi) bk(τ) =
∑k

i=0

(

k

i

)

τk−ibi

âk(τ) = eτ(m−2k−1)ak b̂k(τ) = eτ(m−2k+1)bk.

(18)

To each subgroup Hl, Hu, Hd, we associate a differential operator acting over the
algebra of the polynomials C[a , b]

Ωl =
m

∑

k=1

(m − k + 1)
(

ak
∂

∂ak−1
+ bk

∂

∂bk−1

)

−
m

∑

k=0

ak
∂

∂bk

, (19)

Ωu =
m

∑

k=1

(k)
(

ak−1
∂

∂ak

+ bk−1
∂

∂bk

)

−
m

∑

k=0

bk
∂

∂ak

, (20)

and

Ωd =

m
∑

k=0

(

(m − 2k − 1) ak

∂

∂ak

+ (m − 2k + 1) bk

∂

∂bk

)

. (21)

They are obtained by derivating respectively the expressions Φ(τ)(a, b) , Ψ(τ)(a, b)
and Γ(τ)(a, b) with respect to τ and setting τ = 0.

These operators play an important role in the description of the algebra of the
GL(2, C)-covariants. Indeed, the next result gives a relation between any covariant

U=A0u
p+A1

(

p

1

)

up−1v+ · · · +Ai

(

p

i

)

up−ivi+ · · · +Ap−1

(

p

p − 1

)

uvp−1+Ap vp. (22)

and its leading term A0.

Definition 4. The weight of the coefficient ak (resp. bk) is the number k (resp.
k− 1). The weight of any monomial λai0

0 · · · ail
l b

j0
0 · · · bjl

l is the number
∑l

k=0(kik +
(k − 1)jk). A polynomial K ∈ C[a0, . . . , al, b0 . . . bl] is isobaric if all its monomials
have the same weight.

Proposition 19. For any GL(2, C)-covariant (22), with coefficients A0 , A1, . . . , Ap,
homogeneous polynomial functions of a0, a1, . . . , am , b0, b1, . . . , bm, we have :

(

p

k

)

Ak =
1

k!
Ω

(k)
l (A0) ∀k = 0, 1, 2, . . . , p
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Corollary 20. If the homogeneous polynomial I depending on a0, a1, . . . , am and
b0, b1, . . . , bm, is a GL(2, C)-invariant , then Ωl(I) = 0.

Proposition 21. For any GL(2, C)-covariant (22), where coefficients A0, A1, . . . , Ap

are homogeneous polynomial functions, depending on a0, a1, . . . , am , b0, b1, . . . , bm,
we have :

Ωu(A0) = 0.

Theorem 2 ([15]). An algebraic form

U = A0u
p + A1

(

p

1

)

up−1v + · · · + Ap−1

(

p

k − 1

)

uvp−1 + Ap vp

with an isobaric polynomial A0 ∈ C[a0, a1, . . . , al, b0, b1, . . . , bl], is a GL(2, C)-
covariant if and only if Ωu(A0) = 0 and

U =
d

∑

k=0

1

k!
Ωk

l (A0)ud−k vk.

Let’s return to the determinant of the matrix S[d](u, v) which is a covariant (18).

Corollary 22. The covariant (17) is determined by its leading term sd
0 :

det(S[d](u, v) =

d
∑

k=0

1

k!
Ωk

l (s
d
0)ud−k vk.

4.3 The computation of the leading term sd
0: an open question

Following the previous subsection, the computation of det(S[d,d]) can be reduced

to that of its leading term, sd
0. This is somewhat difficult.

Examples of sd
0: for any i, j ∈ {0, 1, 2, . . . , l} such that i < j and k ∈

{0, 1, 2, . . . , l − 1}, we put

δi,j =

(

l

i

)(

l

j

)

(

aibj − ajbi

)

, τk =

(

l

k

)

ak +

(

l

k + 1

)

bk+1.

Then, with the help of Groebner basis [13], we get :

for l = 2 :

s1
0 := δ0,1;

s2
0 := −b0δ0,2 + δ0,1τ0

s3
0 := δ0,1

(

2 τ0
2 + δ0,1

)

− 4 b0δ0,2τ0 + 2 b0
2δ1,2

s4
0 := 3 δ0,1τ0

(

3 τ0
2 + 4 δ0,1

)

+ 9 (−δ0,1a2 + 2 τ0δ1,2 + τ1δ0,2) b0
2

−3 δ0,2

(

4 δ0,1 + 9 τ0
2
)

b0

s5
0 := 4 δ0,1

(

δ0,1 + 6 τ0
2
) (

9 δ0,1 + 4 τ0
2
)

+ 8 (−36 a2δ0,1τ0 + 9 δ1,2δ0,1 + 36 δ0,2τ0τ1

+36 δ1,2τ0
2 + 20 δ0,2

2)b0
2 − 96 (−a2δ0,2 + τ1δ1,2) b0

3 − 16 δ0,2τ0(24 τ0
2

+29 δ0,1)b0.
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for l = 3 :

s1
0 := δ0,1;

s2
0 := −δ0,2b0 + δ0,1τ0;

s3
0 := 2 (δ0,3 + δ1,2)b0

2 − 4 δ0,2τ0b0 + δ0,1(2 τ0
2 + δ0,1)

s4
0 := −18 δ1,3b0

3 + 9 (3 δ0,3τ0 − τ2δ0,1 + 2 δ1,2τ0 + δ0,2τ1)b0
2 − 3 δ0,2(4 δ0,1

+9 τ0
2)b0 + 3 δ0,1τ0(3 τ0

2 + 4 δ0,1);
s5
0 := 192 δ2,3b0

4 + 96 (2 δ0,1a3 + τ2δ0,2 − 3 τ1δ0,3 − τ1δ1,2 − 5 τ0δ1,3)b0
3

+8 (9 δ0,1δ1,2 + 72 δ0,3τ0
2 + 36 δ1,2τ0

2 − 36 δ0,1τ2τ0 + 36 τ1δ0,2τ0 + 9 δ0,1δ0,3

+20 δ0,2
2)b0

2 − 16τ0δ0,2(29δ0,1 + 24τ0
2)b0 + 4δ0,1(δ0,1 + 6 τ0

2)(9δ0,1 + 4τ0
2).

We remark that if b0 = 0 and for l = 2, 3,

Lt1 = s1
0 = δ0,1

Lt2 = s2
0 = δ0,1τ0

Lt3 = s3
0 = δ0,1(δ0,1 + 2τ0

2)

Lt4 = s4
0 = 3 τ0δ0,1(3 τ0

2 + 4 δ0,1)

Lt5 = s5
0 = 4 δ0,1(δ0,1 + 6 τ0

2)(9 δ0,1 + 4 τ0
2).

It is easy to recognize the type of the factors that are present in these expressions.
Indeed, it coincides with the starting equation , when the linear part is nonzero. In
fact, this result is more general.

Proposition 23. When b0 = 0, the leading term of the polynomial det(S[d](u, v) is
defined, up to a numeric constant, by :

Ltd = cd(τ0)
(d)

∏

d1 + d2 = d

d1 > d2

[

d1d2 τ2
0 + (d1 − d2)

2 δ0,1

]

, (23)

where cd is a numerical coefficient, (d) = 0 if d is odd and (d) = 1 if d is even.

Proof. It is obvious that sd
0 = det(S[d](1, 0)). Since b0 = 0, from (16) and (14),

the matrix S[d](1, 0) = Sd,0 is upper triangular and so, its determinant is equal to

the product of the diagonal elements which are regrouped two by two (the jth term
with the (d + 1 − j)th term, for j = 1, . . . , d + 1) :

1. when d1 > d2, we get (d1a0 + d2lb1)(d2a0 + d1lb1) = (d2
1 + d2

2)τ
2
0 + (d1 − d2)

2δ0,1,

2. when d1 = d2 = d
2 , the coefficient (Sd,0)

d1
d1

= λ(a0 + lb1) = λτ0.

Remark 7. By analogy, when am = 0, the relation

Mtd = cd(τl−1)
(d)

∏

d1 + d2 = d

d1 > d2

[

d1d2 τ2
l−1 + (d1 − d2)

2 δl−1,l

]

is verified.
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At this step, we arrive at the question: how to deduce the leading coefficient sd
0

from the above expression (23)? Does there exist some operator which transforms
Ltd to the leading term sd

0? Up to now, this question is open.

References

[1] Singer M.F. Liouvillian First Integral of Differential Equations. Transactions of the AMS,
333(2), October 1992, 673–688.

[2] Baider A., Churchill R.C., Rod D.L., Singer M.F. On the infinitesimal geometry of

Integrable systems. Mechanics day (Waterloo, ON, 1992), Fields Inst. Commun., 7, Amer.
Math. Soc., 1996, Providence, RI., 1996, 5–56.

[3] Moulin-Ollagnier J. Liouvillian Integration of the Lotka-Volterra System. Qualitative
Theory of Dynamical Systems, 2002, 3, 19–28.

[4] Moulin-Ollagnier J., Nowicki A., Strelcyn J.-M. On the non-existence of constants of

derivations: the proof of a theorem of Jouanolou and its development. Bull. Sci. math., 1995,
119, 195–233.

[5] Yoshida H. Necessary Conditions for the Existence of Algebraic First Integrals. Celestial
Mechanics, 1983, 31, 363–379.

[6] Liu C., Wu H., Yang J. The Kowalevskaya Exponents and Rational Integrability of Polyno-

mial Differential Systems. Bull. Sci. math., 2006, 130, 234–245.

[7] Furta S.D. On Non-integrability of General Systems of Differential Equations. Z. angew Math
Phys. (ZAMP), 1996, 47, 112–131.

[8] Zhang X. Local First Integrals for Systems of Differential Equations. J. Phys. A: Math.Gen,
2003, 36, 12243–12253.
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