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Parametrical Approach for Bilinear Programming

and its Application for solving Integer

and Combinatorial Optimization Problems

Dmitrii Lozovanu

Abstract. A parametrical approach for bilinear programming is proposed and new
algorithms on the basis of such approach for solving linear boolean and resource allo-
cation problems are developed. Computational complexity of the proposed algorithms
is discussed.
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1 Introduction and Problem Formulation

We consider the following bilinear programming problem (BPP) [1,10,11]:

to minimize

z = xCy + c′x + c′′y (1)

on subject

Ax ≤ a, x ≥ 0; (2)

By ≤ b, y ≥ 0, (3)

where C,A,B are matrices of size n × m, q × n, l × m, respectively, and c′, x ∈
Rn; c′′, y ∈ Rm; a ∈ Rq, b ∈ Rl. In order to simplify the notations we will omit
transposition sign for vectors.

This bilinear model generalizes a large class of integer and combinatorial opti-
mization problems [6, 10]. An important particular case of BPP (1)–(3) represents
the linear boolean programming problem:

to minimize

z =
n

∑

i=1

cixi (4)

on subject










n
∑

i=1

ajixi ≤ aj0, j = 1, q;

xi ∈ {0, 1}, i = 1, n.

(5)

In [10] it is shown that this problem can be replaced by the following BPP:
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to minimize

z =
n

∑

i=1

cixi + M
n

∑

i=1

(xiyi + (1 − xi)(1 − yi)) (6)

on subject










n
∑

i=1

ajixi ≤ aj0, j = 1, q;

0 ≤ xi ≤ 1, i = 1, n,

(7)

0 ≤ yi ≤ 1, i = 1, n, (8)

where M >

n
∑

i=1

|ci|. Another important case of BPP (1)–(3) represents the piecewise

linear concave programming problem:

to minimize

z =

l
∑

i=1

min{cikx + cik
0 , k = 1, ri} (9)

on subject determined by (2), where x ∈ Rn, cik ∈ Rn, cik
0 ∈ Rn. This problem

arises as an auxiliary one when solve a class of resource allocation problems [6,10].
In [10] it is shown that this problem can be replaced by the following BPP:

to minimize

z =

k
∑

i=1

ri
∑

k=1

(cikx + cik
0 )yik (10)

on subject

Ax ≤ a, x ≥ 0; (11)










ri
∑

k=1

yik = 1, i = 1, l,

yik ≥ 0, l = 1, ri, i = 1, l.

(12)

In this paper we propose an approach for solving BPP (1)–(3) which takes into
account the particularity of the mentioned above cases of problems, i.e. when the
matrix B is either identity one or step-diagonal one. The general scheme of the pro-
posed approach is based on parametric linear programming. Using duality principle
for the considered problem we show that it can be reduced in polynomial time to
a problem of determining the consistency of the system of linear inequalities with
right-hand members that depend on parameters, admissible values of which are de-
fined by another system of linear inequalities. Then a specification of the proposed
approach for the mentioned above linear boolean and resource allocation problems
are developed and new algorithms for solving these classes of problems are derived.
Computational complexity aspects of the proposed approach are discussed and a
class of problems for which polynomial-time algorithms exist is described.
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2 Parametrical programming approach for BPP

Let L be the size of BPP (1)–(3) with integer coefficients of the matrices C,A,B
and vectors a, b, c′, c′′, i.e. L is the length of the input dates of BPP (1)–(3) [4, 6].

If BPP (1)–(3) has solution then it can be solved by varying the parameter
h ∈ [−2L, 2L] in the problem of determining the consistency of the system















Ax ≤ a;
xCy + c′x + c′′y ≤ h;
By ≤ b;
x ≥ 0, y ≥ 0.

(13)

In the following we will reduce the consistency problem for system (13) to the
consistency problem for the system of linear inequalities with a right-hand member
depending on parameters.

Theorem 1. Let solution sets X and Y of systems (2) and (3) be nonempty. Then
system (13) has no solution if and only if the following system of linear inequalities







−AT u ≤ Cy + c′;
au < c′′y − h;
u ≥ 0

(14)

is consistent with respect to u for every y satisfying (3).

Proof. ⇒ Let us assume that system (13) has no solution. This means that for
every y ∈ Y the following system of linear inequalities







Ax ≤ a,
x(Cy + c′) ≤ h − c′′y,
x ≥ 0

(15)

has no solution with respect to x. Then according to Theorem 2.14 from [2] the
inconsistency of system (15) involves the solvability with respect to u and t of the
following system of linear inequalities







AT u + (Cy + c′)t ≥ 0;
au + (h − c′′y)t < 0;
u ≥ 0, t ≥ 0,

(16)

for every y ∈ Y . Note that for every fixed y ∈ Y of system (16) for an arbitrary
solution (u∗, t∗) the condition t∗ > 0 holds. Indeed, if t∗ = 0, then it means that the
system

{

AT u ≥ 0;
au < 0, u ≥ 0,

has solution, what, according to Theorem 2.14 from [2], involves the inconsistency
of system (2) that is contrary to the initial assumption. Consequently, t∗ > 0. Since
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t > 0 in (16) for every y ∈ Y , then, dividing each of inequalities of this system by t
and denoting z = (1/t)u, we obtain the following system:







−AT z ≤ Cy + c′;
az < c′′y − h;
z ≥ 0,

which has solution with respect to z for every y ∈ Y .

⇐ Let system (14) have solution with respect to u for every y ∈ Y . Then the
following system of linear inequalities







AT u + (Cy + c′)t ≥ 0;
au + (h − c′′y)t < 0;
u ≥ 0, t > 0,

is consistent with respect to u and t for every y ∈ Y . However this system is
equivalent to system (16) as it was shown that for every solution (u, t) of system
(16) the condition t > 0 holds. Again using Theorem 2.14 from [2], we obtain from
the solvability of system (16) with respect to u and t for every y ∈ Y that system
(15) is inconsistent with respect to x for every y ∈ Y . This means that system (13)
has no solution. 2

Theorem 2. The minimal value of the object function in BPP (1)–(3) is equal to
the maximal value h∗ of the parameter h in the system







−AT u ≤ Cy + c′;
au ≤ c′′y − h;
u ≥ 0

(17)

for which it is consistent with respect to u for every y ∈ Y . An arbitrary point
y∗ ∈ Y , for which system (14) with h = h∗ and y = y∗ has no solution with respect
to u, corresponds to one of the optimal points for BPP (1)–(3).

Proof. Let h∗ be a maximal value of parameter h, for which system (17) with
h = h∗ has solution with respect to u for every y ∈ Y . Then system (14) with
h = h∗ has solution with respect to u not for every y ∈ Y . From this on the basis
of Theorem 1 it results that system (13) with h = h∗ is consistent. Using Theorem
1 we can see that if for every fixed h < h∗ system (14) has solution with respect to
u for every y ∈ Y , then system (13) with h < h∗ has no solution. Consequently, the
maximal value h∗ of parameter h, for which system (17) has solution with respect
to u for every y ∈ Y , is equal to the minimum value of the object function of BPP
(1)–(3).

Now let us prove the second part of the theorem. Let y∗ ∈ Rm be an arbitrary
point for which system (14) with h = h∗ and y = y∗ has no solution with respect to
u. Then on the basis of the duality principle the following system







Ax ≤ a;
x(Cy∗ + c′) ≤ h∗ − c′′y;
x ≥ 0
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has solution with respect to x. So, system (13) with h = h∗ is consistent and point
y∗ ∈ Y together with certain x∗ ∈ X represents the solution of BPP. 2

Corollary 3. Let Y h = {y ∈ Rm |Uh(y) 6= 0}, where Uh(y) is the set of solutions
of system (17) with respect to u for given y ∈ Rm and fixed h. Assume that y0 is an
arbitrary basic solution of system (3) such that

Z0 = min
x∈X

(xCy0 + c′x + c′′y0) > h∗.

Then

i) y0 ∈ int Y h∗, i.e. y0 is an interior point of set Y h∗;

ii) Y ⊂ int Y h if h < h∗.

Note that in an analogous way the same mathematical tool for system (13) can
be applied considering x as a vector of parameters. This allows us to replace the
main problem by the problem of determining the consistency of the system

{

−BT v ≤ CT x + c′′;
bv ≤ c′x − h; v ≥ 0

(18)

with respect to v for every x satisfying (2). This means that for the linear parametric
system the following duality principle holds (see [9]).

Theorem 4. The system of linear inequalities (17) is consistent with respect to
u for every y satisfying (3) if and only if the system of linear inequalities (18) is
consistent with respect to v for every x satisfying (2).

It is easy to observe that if Y is a bounded set then the consistency property in
our auxiliary problem can be verified by checking the consistency of system (17) for
every basic solution of system (3). This fact follows from the geometrical interpre-
tation of the problem. Indeed, let UY ⊆ Rn+k be a solution set of system (17) with
respect to u and y. Then Y h for given h represents the orthogonal projection on Rk

of the set UY ⊆ Rn+k. Therefore Y ⊆ Y h if and only if system (17) is consistent
for every basic solution of (3). Of course such an approach for solving the auxiliary
problem cannot be used for systems with big number of variables. The approach
we propose allows us to avoid exhaustive search. Moreover, we can see that in the
case of problems (4)–(8) and (9)–(12) our approach efficiently solves the auxiliary
problem.

The results described above show that BPP (1)–(3) can be solved efficiently if
there exists an efficient algorithm for solving the following problem: to determine
the maximal value h∗ of parameter h such that a basic solution y∗ of system (3)
belongs to bd Y h∗ .

In the following we show how to verify the condition Y ⊂ intY h and propose an
algorithm for solving BPP (1)–(3) in the case when (3) is determined by (8) or (12).
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3 Some auxiliary results

In order to explain the main results we need some auxiliary results related to
dependent inequalities of linear systems. An inequality

m
∑

j=1

sjyj ≤ s0 (19)

is called dependent [2] on the consistent system of linear inequalities

m
∑

j=1

dijyj ≤ di0, i = 1, p, (20)

if for an arbitrary solution of system (20) condition (19) holds.

The well-known Minkowski-Farkas theorem [2, 3] gives the necessary and suffi-
cient condition of dependency (19) on (20) in the case of consistent system (20). We
will extend this theorem for inconsistent systems and will use it in general form. In
order to formulate this result we need the following definition.

Definition 1. Assume that system (20) is inconsistent. Inequality (19) is called
dependent on system (20) if there exists a consistent subsystem

m
∑

j=1

dikjyj ≤ dik0, i = 1, r, (21)

of system (20) such that inequality (19) is dependent on (21).

Theorem 5. Let be given system (20) with rank r ≤ m (m < p). Inequality (19)
is dependent on system of linear inequalities (20) if and only if there exist numbers
λ0, λ1, λ2, . . . , λp such that







sj =
∑p

i=1
dijλi, j = 1,m;

s0 =
∑p

i=1
di0λi + λ0;

λj ≥ 0, j = 1,m,
(22)

where no more than r components among λ1, λ2, . . . , λp are nonzero.

Proof (Sketch). Necessary condition follows from [2] (Theorem 2.2). Indeed, if
(19) is dependent on (20) then there exists nodal solution (21) such that (19) is
dependent on (21) and necessary condition holds. Sufficient condition in the case of
inconsistent system (21) can be proved in the following way. Assume that system
(22) has solution λ0, λi1 , λi2 , . . . , λir , 0, 0, . . . , 0, where r ≤ m. Then system (21),
corresponding to λik > 0, k = 1, r, has a solution. This means that inequality (19)
is dependent on consistent subsystem of linear inequalities (21). 2
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4 The main results

We consider the problem from Section 2 and describe an algorithm for checking
if Y ⊂ intY h in the case when Y is determined by system (20), which satisfies the
following conditions:

a) system (20) has rank m (m < p) and Y is a bounded set with intY 6= ∅;
b) system (20) does not contain dependent inequalities;
c) if an arbitrary subsystem

m
∑

j=1

dikjyj ≤ dik0, k = 1,m; (23)

of system (20) has rank m then the solution of the system of linear inequalities

m
∑

j=1

dikjyj = dik0, k = 1,m; (24)

is a solution of system (20), i.e. system (20) contains all possible nodal solutions.
It is easy to observe that system (3) when B is an identity matrix and B is

a step-diagonal matrix represents a particular case of system (20) with properties
a)–c). Therefore the results we describe below can be referred to problems (6)–(8)
and (9)–(12).

In order to guarantee intY h 6= ∅ we will fix h ∈ [−2L, N), where N = min[h0, 2L],
h0 is the optimal value of the object function in the linear programming problem:
to maximize h on subject (17), i.e. to maximize h on the set of solutions of the
following system































−

q
∑

j=1

ajiuj −
m

∑

j=1

cijyj ≤ c′i, i = 1, n;

q
∑

j=1

aj0uj −
m

∑

j=1

c′′j yj ≤ −h;

uj ≥ 0, j = 1, q.

(25)

Theorem 6. Let be given set Y determined by system of linear inequalities (20)
satisfying conditions a)–c). In addition assume that h ∈ [−2L, N) and set X of
solutions of system (2) is bounded with intX 6= ∅. Then Y 6⊂ intY h if and only if
the following system of linear inequalities



















































n
∑

i=1

ajiλi ≤ aj0, j = 1, q;

p
∑

i=1

dijµi +

n
∑

i=1

cijλi = −c′′j , j = 1,m;

−

p
∑

i=1

di0µi +

n
∑

i=1

c′iλi ≤ h;

µi ≥ 0, i = 1, p; λi ≥ 0, i = 1, n.

(26)
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has such a solution that
∑p

i=1
dijµi 6= 0 at least for an index j ∈ {1, 2, . . . ,m} and

no more than m components among µ1, µ2, . . . , µp are nonzero.

Proof. ⇒ Assume that system (20) satisfies conditions a)–c) and Y 6⊂ intY h

for given h ∈ [−2L, N). Then intY h 6= ∅ and there exists a nodal solution
y0 = (y0

1 , y
0
2 , . . . , y

0
m) of system (20) for which y0 /∈ intY h, i.e. there exists subsystem

(23) of system (20) such that for y = y0 condition (24) holds and y0 /∈ intY h. Note
that an arbitrary nodal solution y0 of system (20) can be regarded as a common
vertex of two symmetrical cones one of which Y 0 is determined by system (23) and

another one Y
0

is determined by the following symmetric system

m
∑

j=1

dikjyj ≥ dik0, k = 1,m, (27)

which is a subsystem of the following inconsistent system

m
∑

j=1

dijyj ≥ di0, i = 1, p. (28)

Based on properties a)-c) of system (20) we can show that there exists a nodal

solution y0 which determines the cone Y
0

such that Y
0
∩ intY h = ∅.

This means that there exists a separating hyperplane
∑m

j=1
sjyj = s0 [5] such

that
∑n

j=1
sjyj < s0 for (y1, y2, . . . , yn) ∈ intY h and

−
m

∑

j=1

sjyj ≤ −s0 (29)

for (y1, y2, . . . , yn) ∈ Y
0
. So, the inequality

n
∑

j=1

sjyj ≤ s0 (30)

is dependent on system (25) with respect to variables µ1, µ2, . . . , µp, y1, y2, . . . , yp

and inequality (29) is dependent on system (27). If (29) is dependent on (27) then
(29) is dependent on inconsistent system (28). Thus on the basis of Theorem 5, we
obtain that the following systems



















































0 = −
n

∑

i=1

ajiλi + aj0λ0 − λn+j, j = 1, q;

sj = −
n

∑

i=1

cijλi − c′′j λ0, j = 1, q;

s0 =

n
∑

i=1

c′iλi − hλ0 + λn+q+1;

λi ≥ 0, i = 0, n + q + 1;

(31)
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−sj = −

p
∑

i=1

dijµi;

−s0 = −
n

∑

i=1

di0µi + µ0;

µi ≥ 0, i = 0, p;

(32)

have solutions and no more than m components among µ1, µ2, . . . , µp are nonzero.

Taking into account that we are seeking for a basic solution where sj 6= 0 at least
for an index j ∈ {1, 2, . . . ,m} we obtain that λ0 6= 0. Therefore if we consider λ = 1
and introduce (32) in (31) then system (26) has a solution for which

∑p
i=1

dijµi 6= 0
at least for an index j ∈ {1, 2, . . . ,m} and no more than m components among
µ1, µ2, . . . , µp are nonzero.

⇐ Assume that problem (26) has solution with the properties mentioned in
the theorem. This involves that systems (31), (32) have such a solution that
sj 6= 0 at least for an index j ∈ {1, 2, . . . ,m} and there exist inequalities (29),
(30) that (29) is dependent on (28) and (30) is dependent on a consistent subsys-
tem (27) of inconsistent system (28). This means that there exists a nodal solution
y0 = (y0

1 , y
0
2 , . . . , y

0
n) of system (20) for which y0 /∈ intY h. 2

Theorem 7. Let h∗ be the minimal value of parameter h for which system (26)
has solution µ∗

1, µ
∗

2, . . . , µ
∗

p, λ
∗

1, λ
∗

2, . . . , λ
∗

n such that
∑p

i=1
dijµ

∗

i 6= 0 at least for an
index j ∈ {1, 2, . . . ,m} and no more than m components among µ∗

1, µ
∗

2, . . . , µ
∗

p are
nonzero. Then h∗ is equal to the optimal value of the object function in the following
BPP: to minimize (1) on subject (2) and (20) with properties a)-c). An arbitrary
solution y∗ = (y∗1 , y

∗

2, . . . , y
∗

m) of the system of linear inequalities























m
∑

j=1

dijyj ≤ di0; i = 1, p;

m
∑

j=1

s∗jyj = s∗0,

(33)

with s∗j =
∑p

i=1
dijµ

∗

i , j = 0,m, corresponds to a solution of BPP (1), (2), (20).

Proof. Let h∗ be the quantity which satisfies the condition of the theorem. Then for
an arbitrary h < h∗ system (26) has no solution with the properties from Theorem
6. This means that Y ⊂ intY h for every h < h∗. So, h∗ is the maximal value of
parameter h for which system (17) is consistent with respect to u for every y ∈ Y .
According to Theorems 1 and 2, the point y∗ is a point for which system (14) with
h = h∗ has no solution. Therefore y∗ corresponds to a solution of BPP (1), (2), (20).
Taking into account that equation

∑m
j=1

s∗jyj = s∗0 determines a supporting plane
for Y then a solution of system (32) is a solution of BPP (1), (2), (20). 2

Now let us show how to find the solution of system (26) with the properties from
Theorem 6.
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Theorem 8. Let be given system of linear inequalities (26) with fixed h ∈ [−2L, N)
and consider the following 2m linear programming problems:

to maximize fj =

p
∑

i=1

dijµi on subject (26), j = 1,m; (34)

to minimize fj =

p
∑

i=1

dijµi on subject (26), j = 1,m. (35)

Assume that f1, f2, . . . , fm represent the corresponding optimal values of object func-

tions of problems (34) and f1, f2, . . . , fm represent the corresponding optimal values
of object functions of problems (35). Then system (26) has a solution with the
property from Theorem 6 if and only if

1) at least for an index j ∈ {1, 2, . . . ,m} either f j 6= 0 or f j 6= 0;
2) the corresponding basic solution for which 1) holds satisfies the condition that

no more than m components among µ∗

1, µ
∗

2, . . . , µ
∗

p are nonzero.

Proof. The sufficient condition of the theorem is evident. Let us prove the necessary
one. Assume that system (26) has solution µ∗

1,µ
∗

2,. . . ,µ
∗

p,λ
∗

1,λ
∗

2,. . . ,λ
∗

n which satisfies
conditions of Theorem 6. Then it is easy to observe that

f j0
≥

p
∑

i=1

dij0µ
∗

i if

p
∑

i=1

dij0µ
∗

i > 0

and

f j0
≤

p
∑

i=1

dij0µ
∗

i if

p
∑

i=1

dij0µ
∗

i < 0.

2

Corollary 9. For given h ∈ [−2L, N) a solution of system (25) with the properties
from Theorem 6 can be found in polynomial time.

Based on results described above we can propose the following algorithm.

Algorithm for solving BPP (1), (2), (20) with conditions a)–c)

We replace BPP (1), (2), (20) by system (25), where h ∈ [−2L, N). Then
using the method of interval bisection after 2L + 2 steps we find [hk−1, hk] with
ε = hk − hk−1 < 2−2L−2 (see [7, 8]), where for h = hk system (25) has a solution
with the property from Theorem 6 and for h = hk−1 system (25) does not have
such a solution. Based on results from [7, 8] we can find the exact solution h∗ in
polynomial time by using a special approximate procedure. Note that for problem
(6)–(8) it is sufficient to find hk with precision ε ∈ [0, 1/2), because h∗ is integer and
therefore it can be found from hk by simple roundoff procedure.

If h∗ and a solution µ∗

1, µ
∗

2, . . . , µ
∗

p, λ
∗

1, λ
∗

2, . . . , λ
∗

n of system (26) which satisfies
conditions of Theorem 6 are known, then find s∗j =

∑p
i=1

dijµi, j = 0,m. After that



PARAMETRICAL APPROACH FOR BILINEAR PROGRAMMING 101

solve system (33) and find the solution y∗ ∈ Y . Then fix y = y∗ in (1) and solve the
linear programming problem: to minimize z = xCy∗ + c′x + c′′y∗ on subject (2). In
such a way we find (x∗, y∗).

The proposed algorithm can be used for a large class of integer programming
problems and some new results related to computational complexity of the consid-
ered problem can be obtained on the basis of such approach.
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