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On mixed LCA groups with commutative rings

of continuous endomorphisms
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Abstract. Let L be the class of locally compact abelian (LCA) groups. For X ∈ L,

let E(X) denote the ring of continuous endomorphisms of X. In this paper, we deter-
mine for certain subclasses S of L the groups X ∈ S such that E(X) is commutative.
The main results concern the case of mixed LCA groups.
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1 Introduction

This paper is in continuation to the papers [14, 15] and [16] relating to LCA
groups with commutative rings of continuous endomorphisms. We shall be mainly
concerned with the case of mixed groups. The motivation for our work comes from a
result of T. Szele and J. Szendrei. In [17], they have given among others a complete
description of discrete mixed abelian groups without nonzero elements of infinite
p-height for all relevant primes p, which have commutative endomorphism rings.

The main objective of the paper is to extend this result to the more general
framework of all LCA groups. We also derive information about bounded order-by-
discrete LCA groups with commutative rings of continuous endomorphisms.

2 Notation

In what follows we use the notation and terminology of [14, 15] and [16]. In
addition, if p ∈ P, n ∈ N0, and V is a closed subgroup of a group X ∈ L, we let

p−nV = {x ∈ X|pnx ∈ V }.

For a subset S of P, let

wS(X) =
⋂

p∈S

⋂

n∈N

pnX.

Further, let (Xi)i∈I be a collection of topological groups. For i ∈ I, let Ui be
an open subgroup of Xi. We denote by

∏loc
i∈I(Xi;Ui) the local product of (Xi)i∈I
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with respect to (Ui)i∈I . Recall that, by definition,
∏loc

i∈I(Xi;Ui) is the cartesian
product of the family (Xi)i∈I , topologized by declaring all neighborhoods of zero
in the topological group

∏

i∈I Ui to be a fundamental system of neighborhoods of

zero in
∏loc

i∈I(Xi;Ui) [3, Ch. III, §2, Exercice 26]. Clearly, the local direct product
∏

i∈I(Xi;Ui) is open in
∏loc

i∈I(Xi;Ui). It is also clear that if each Ui is compact, then
∏loc

i∈I(Xi;Ui) is locally compact.

3 Groups with no elements of infinite topological S-height

In [17], T. Szele and J. Szendrei gave among other results a complete description
of discrete, mixed, abelian groups with no elements of actually infinite height, which
have commutative endomorphism rings. Their theorem reads:

Theorem 3.1 ([17], Theorem 2). Let X be a discrete mixed group in L with no

elements of infinite S(X)-height, i. e. such that

⋂

p∈S(X)

⋂

n∈N

pnX = {0}.

Then E(X) is commutative if and only if X is isomorphic to an S(X)-pure

subgroup of
∏loc

p∈S(X)

(

Z(pnp); {0}
)

containing
⊕

p∈S(X)

Z(pnp),

where np ∈ N0 for all p ∈ S(X).

Our aim here is to extend this theorem to more general groups in L. But first
we use it to obtain the solution to our problem in the case of compact groups in L
having nontrivial connected component and dense torsion subgroup.

Corollary 3.2. Let X be a compact group in L with X 6= c(X) 6= {0} and
∑

p∈S(X) tp(X) = X. The endomorphism ring E(X) is commutative if and only

if X is topologically isomorphic to a quotient group of

(

∏loc

p∈S(X)

(

Z(pnp); {0}
)

)∗

by a closed S(X)-pure subgroup contained in

c
((

∏loc

p∈S(X)

(

Z(pnp); {0}
)

)∗)

,

where np ∈ N0 for all p ∈ S(X).
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Proof. Since X is compact with X 6= c(X) 6= {0} and A(X∗; c(X)) = t(X∗) [8,
(24.24)], it follows that X∗ is discrete and mixed. Also, since

∑

p∈S(X) tp(X) = X,
we conclude by [4, Proposition 3.3.3] and [8, (24.22)] that

⋂

p∈S(X)

⋂

n∈N

pnX∗ = A(X∗;
∑

p∈S(X)

∑

n∈N

X[pn])

= A(X∗;
∑

p∈S(X)

tp(X)) = {0},

so that X∗ has no elements of infinite S(X)-height.

Let G =
∏loc

p∈S(X)(Z(pnp); {0}), and let Γ be a closed subgroup of G∗ For p ∈
S(X) and k ∈ N, we have

A(G; pkΓ) = {x ∈ G | pkγ(x) = 0 for all γ ∈ Γ}

= {x ∈ G | γ(pkx) = 0 for all γ ∈ Γ}

= {x ∈ G | pkx ∈ A(G; Γ)} = p−kA(G; Γ).

Since

pkG∗ ∩ Γ = A(G∗;G[pk]) ∩A(G∗;A(G; Γ)) = A(G∗;G[pk] +A(G; Γ)),

it then follows that pkG∗ ∩ Γ = pkΓ if and only if

A(G∗;G[pk] +A(G; Γ)) = A(G∗;A(G; pkΓ)) = A(G∗; p−kA(G; Γ)),

or equivalently if G[pk] + A(G; Γ) = p−kA(G; Γ), which in its turn is equivalent to
pkG∩A(G; Γ) = pkA(G; Γ). Consequently, Γ is S(X)-pure inG∗ if and only ifA(G; Γ)
is S(X)-pure in G. Finally, observing that a closed subgroup of G∗ is contained
in c(G∗) if and only if its annihilator in G contains t(G) =

⊕

p∈S(X) Z(pnp), the
assertion follows from Theorem 3.1 and duality. 2

Definition 3.3. Let S be a nonempty subset of P. A group X ∈ L is said to have

no elements of infinite topological S-height in case wS(X) = {0}.

We can prove the following generalization of Theorem 3.1.

Theorem 3.4. Let X be a mixed group in L with no elements of infinite topological

S-height, where S = S0(X). The following statements are equivalent:

(i) The subgroups pnX with p ∈ S and n ∈ N are open in X, and E(X) is

commutative.

(ii) The cyclic, pure, p-subgroups of X, where p ∈ S, split topologically from X,
and E(X) is commutative.
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(iii) S is infinite and X is topologically isomorphic to an S-pure subgroup of

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where lp, np ∈ N and np 6= 0 for all p ∈ S.

Proof. First observe that since X has no elements of infinite topological S-height,
the subgroups tp(X) are reduced for all p ∈ S, so that X contains nonzero, cyclic,
pure, p-subgroups for all p ∈ S [5, Corollary 27.3].

Assume X satisfies (i), and let A be a cyclic, pure, p-subgroup of X, where
p ∈ S. Then A ∼= Z(pn) for some n ∈ N0. Moreover, A splits algebraically from
X [5, Proposition 27.1], and hence we can write X = A∔G for some subgroup G of
X. It follows that pnX = pnG ⊂ G. As pnX is open in X, we deduce that G is open
in X too, so X = A⊕G by [1, Corollary 6.8]. This proves that (i) implies (ii).

Now assume (ii) holds. Letting p ∈ S, choose an arbitrary nonzero, cyclic, pure,
p-subgroup B(p) of X. Then B(p) ∼= Z(pnp) for some np ∈ N0. By hypothesis, there
exists a closed subgroup C(p) of X such that X = B(p) ⊕ C(p). We first show
that tp(C(p)) = {0} and pC(p) = C(p). To do this, observe that since E(X) is
commutative, we must have by [14, Lemma 3.5]

H(B(p), C(p)) = {0} = H(C(p), B(p)).

Now, if tp(C(p)) were nonzero, it would clearly follow that H(B(p), C(p)) 6= {0},
a contradiction. Thus tp(C(p)) = {0}, and hence tp(X) = B(p). Suppose further

that pC(p) 6= C(p) and pick an arbitrary element a ∈ C(p) \ pC(p). Then π(a)
is a nonzero element of C(p)/pC(p), where π ∈ H

(

C(p), C(p)/pC(p)
)

denotes the

canonical projection. By [13, (3.8)], we can write C(p)/pC(p) = 〈π(a)〉 ⊕ Γ for
some closed subgroup Γ of C(p)/pC(p). Let ϕ denote the canonical projection of
C(p)/pC(p) onto 〈π(a)〉. Since 〈π(a)〉 is a nonzero cyclic p-group, H(〈π(a)〉, B(p)) 6=
{0}. Choosing an arbitrary nonzero h ∈ H(〈π(a)〉, B(p)), it is clear that h◦ϕ◦π is a
nonzero element of H(C(p), B(p)), a contradiction. This shows that pC(p) = C(p),
and hence for all n ∈ N, pnC(p) = C(p). As pnpX = pnpC(p), it follows in particular
that

⋂

n∈N
pnX = C(p). We next proceed to establish the topological isomorphism

whose existence is asserted in (iii). For every p ∈ S, fix an arbitrary isomorphism fp

from B(p) onto Z(pnp), and let gp ∈ H(X,B(p)) denote the canonical projection of
X onto B(p) with kernel C(p). Also pick an arbitrary compact open subgroup U of
X. Clearly, we have fp(gp(U)) = Z(pnp)[plp ] for some lp ∈ N. Define

α : X →
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)
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by setting α(x) = (fpgp(x))p∈S for all x ∈ X. Then α is a group homomorphism and
α(U) ⊂

∏

p∈S Z(pnp)[plp ]. Moreover, α is injective because

ker(α) =
⋂

p∈S

ker(fpgp) =
⋂

p∈S

C(p) =
⋂

p∈S

⋂

n∈N

pnX = {0}.

Further, since every fpgp is continuous, it follows that the homomorphism x →
(fpgp(x))p∈S from U to

∏

p∈S Z(pnp)[plp ] is continuous [2, Ch. I, §4, Proposition 1].
As U is open in X, it then follows that α is continuous as well [3, Ch. III, §2, Propo-
sition 23]. In particular, α(U) is compact and hence closed in

∏

p∈S Z(pnp)[plp ]. Tak-

ing into account that
⊕

p∈S Z(pnp)[plp ] is dense in
∏

p∈S Z(pnp)[plp ] [3, Ch. III, §2,

Proposition 25] and contained in α(U), we conclude that α(U) =
∏

p∈S Z(pnp)[plp ].
This implies that α is open because U is compact in X [2, Ch. I, §9, Théorème
2, Corollaire 2] and

∏

p∈S Z(pnp)[plp ] is open in
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

. Conse-
quently, α establishes a topological isomorphism from X onto α(X). Also, since
⊕

p∈S Z(pnp) ⊂ α(X) and

⊕

p∈S

Z(pnp) =
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

[3, Ch. III, §2, Exercice 26], we have
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

⊂ α(X).

Finally, it is clear that for each p ∈ S the multiplication by p is an open mapping
on

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, and hence on X. To show that α(X) is S-pure in
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, pick any q ∈ S and n ∈ N, and let x ∈ X be such that

α(x) ∈ qn
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

.

Letting α(x) = qn(yp)p∈S with (yp)p∈S ∈
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, we set

y′p =

{

yq, if p = q,

0, if p 6= q,
and y′′p =

{

0, if p = q,

yp, if p 6= q.

Clearly α(x) = qn(y′p)p∈S + qn(y′′p)p∈S . As X = B(q) ⊕ C(q), we can write x =
bq + cq for some bq ∈ B(q) and cq ∈ C(q). Since for p 6= q we have fpgp(bq) = 0
(because H(Z(qnq),Z(pnp)) = {0}), and since fqgq(cq) = 0 (because cq ∈ ker(gq)),
we conclude that α(bq) = qn(y′p)p∈S and α(cq) = qn(y′′p)p∈S . Remembering that
fq : B(q) → Z(qnq) is an isomorphism, choose b′q ∈ B(q) such that fq(b

′
q) = yq. As

bq − qnb′q ∈ ker(α), we have bq = qnb′q. Also, since the multiplication by q is an open

map and C(q) is an open subgroup, we have qCq = qCq = Cq, so that qnCq = Cq.
Hence there exists c′q ∈ Cq such that qnc′q = cq. It follows that

α(x) = α(bq) + α(cq) = qn(α(b′q) + α(c′q)),
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so that

α(X) ∩ qn

loc
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

⊂ qnα(X).

As the converse inclusion clearly holds, we have

α(X) ∩ qn
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

= qnα(X),

so α(X) is S-pure in
∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

. Consequently, (ii) implies (iii).

Next assume (iii) holds. We already mentioned that the multiplication by p ∈ S
is open on

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, and hence on X. Let X(d) denote the group
X taken discrete. It then follows from our hypotheses that X(d) is isomorphic
to an S-pure subgroup of

∏loc
p∈S(X)(Z(pnp); {0}) containing

⊕

p∈S(X) Z(pnp), so that
E(X(d)) is commutative by Theorem 3.1. As E(X) ⊂ E(X(d)), this proves that (iii)
implies (i). 2

To state the dual analog of Theorem 3.4, a few definitions are in order. In the first
one, we reconsider the notion of comixed LCA group, introduced in [16, Definition
6.5]. The reason for this modification is that we want an LCA group to be comixed
if and only if its dual is mixed.

Definition 3.5. A group X ∈ L is said to be comixed if either (1)
⋂

n∈N0
nX is a

nontrivial subgroup of X, i. e. {0} 6=
⋂

n∈N0
nX 6= X, or (2)

⋂

n∈N0
nX = {0} and

X has no compact subgroups of the form mX, where m ∈ N0.

Definition 3.6. Let p ∈ P. A closed subgroup G of a group X ∈ L is said to be

p-copure if, for each n ∈ N, one has p−nG = G+X[pn]. Given a nonempty subset

S of P, we say G is S-copure in case it is p-copure for all p ∈ S. G is called copure

if it is P-copure.

As is easy to see, p-purity and p-copurity coincide for discrete and for compact
groups.

Definition 3.7. Let p ∈ P. A subgroup G of an abelian group X is said to be

p-submaximal if X/G is a cyclic p-group.

Our next definition is inspired by one in [1, (4.34)].

Definition 3.8. Let S be a nonempty subset of P. A group X ∈ L is said to be

S-power-proper if for each p ∈ S and n ∈ N the multiplication by pn is a proper

map, i. e. for each open subset U of X, pnU is open in pnX, taken with its topology

induced from X.

We have

Corollary 3.9. Let X be a comixed group in L, and let S = {p ∈ P | pX 6= X}. If
∑

p∈S tp(X) = X, the following statements are equivalent:
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(i) X is an S-power-proper group with commutative ring E(X), and the subgroups

X[pn] are compact for all p ∈ S and n ∈ N.

(ii) The closed, copure, p-submaximal subgroups of X, where p ∈ S, split topologi-

cally from X, and E(X) is commutative.

(iii) S is infinite and X is topologically isomorphic to a quotient group of
(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗

by a closed S-copure subgroup, contained in

c
((

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗)

,

where np, lp ∈ N and np 6= 0 for all p ∈ S.

Proof. Since X is a comixed group, X∗ is mixed. It is also easy to see that
S = S0(X

∗), and
∑

p∈S tp(X) = X if and only if X∗ has no elements of infinite
topological S-height.

Assume (i). Since X is S-power-proper, X∗ is S-power-proper too [1, P.23(d)].
It follows that, for any p ∈ S and n ∈ N, the subgroup pnX∗ is closed and hence
open in X∗ (because X[pn] is compact).

Pick any p ∈ S, and let G be a closed, copure, p-submaximal subgroup of X.
Since A(X∗, G) ∼= (X/G)∗, we see that A(X∗, G) is a cyclic, p-subgroup of X∗.
Moreover, since G is p-copure in X, we also have p−nG = G+X[pn]. Passing to
annihilators, we obtain

pnA(X∗, G) = A(X∗, G) ∩ pnX∗,

so that A(X∗, G) is p-pure and thus pure in X∗ [5, p. 114, (g)]. It then follows
from Theorem 3.4 that A(X∗, G) splits topologically from X∗, and hence G splits
topologically from X [1, Corollary 6.10]. Thus (i) implies (ii).

Now assume (ii), and pick any p ∈ S and any cyclic, pure, p-subgroup Γ of X∗.
It is easy to see that A(X,Γ) is a closed, copure, p-submaximal subgroup of X.
By hypothesis, A(X,Γ) splits topologically from X, so that Γ splits topologically
from X∗. Consequently, X∗ satisfies condition (ii) and hence (iii) of Theorem 3.4.
Observing that

k
(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)

=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

and passing to duals, we deduce that (ii) implies (iii).

Assume (iii). It follows that X∗ satisfies condition (iii) of Theorem 3.4, so that
p1X∗ is an open mapping on X∗ for all p ∈ S. By using duality, it is then easy to
see that (i) holds. 2

We recall from [7] the following definition.
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Definition 3.10. Let X be a discrete, torsionfree group in L. An independent subset

M of X is said to be quasi-pure independent if 〈M〉∗ is the internal direct sum of

subgroups 〈x〉∗ with x ∈M, and 〈x〉 = 〈x〉∗ whenever 〈x〉∗ is cyclic and x ∈M.

By Zorn’s lemma, any quasi-pure independent subset of a discrete, torsionfree
group X ∈ L is contained in a maximal quasi-pure independent subset of X
[7, Proposition 123].

We now state and prove the main theorem of this section, which extends
Theorem 3.4.

Theorem 3.11. Let X be a group in L such that t(X/c(X)) 6= {0}, and let

S = S0(X/c(X)). Suppose, in addition, the following conditions hold:

(i) wS(X/c(X)) is densely divisible and contains no compact elements;

(ii) The cyclic, pure, p-subgroups of X, where p ∈ S, and the compact, connected

subgroups of X split topologically from X.

Then E(X) is commutative if and only if for each p ∈ S there exist np, lp ∈ N
with np 6= 0 such that X is topologically isomorphic either to an S-pure subgroup of

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

or to a group of the form

D ×
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where D is topologically isomorphic to either R, Q, or an S-torsionfree quotient of

Q∗ by a closed subgroup.

Proof. Assume E(X) is commutative. By [16, Theorem 4.6], there are two cases
to consider:

(a) X is residual;

(b) X ∼= D × Y, where D is topologically isomorphic with either R, Q, or Q∗,
and Y is a topological torsion group with t(Y ) 6= {0}.

Assume (a) holds. If c(X) = {0}, we deduce from (i) that wS(X) is densely di-
visible and contains no compact elements. As d(X) ⊂ k(X), it follows that wS(X) =
{0}. Consequently, if X is mixed, we have by Theorem 3.4 that S is infinite and
X is topologically isomorphic to an S-pure subgroup of

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

, where lp, np ∈ N and np 6= 0 for all p ∈ S.
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In case X is torsion, we deduce from [14, Corollary 5.7] that X ∼=
⊕

p∈S Z(pnp). It

remains to observe that
⊕

p∈S Z(pnp) is S-pure in
∏loc

p∈S

(

Z(pnp); {0}
)

.

Next suppose that C = c(X) is nonzero. Since X is residual, C is compact [8,
(24.24)], and hence, in view of (ii), we can writeX = C⊕Z for some closed subgroup
Z of X. In particular, E(C) and E(Z) are commutative [14, Lemma 3.2]. We also
must have C = t(C). For if not, it would follow from [1, Proposition 6.12] that
C ∼= (Q∗)ν × t(C) for some cardinal number ν ≥ 1, contradicting the fact that X is
residual. Thus C = t(C). Next we shall show that C is topologically isomorphic to
a quotient of Q∗ by a closed, necessarily nonzero subgroup. To see this, it is enough
to show that C∗ is topologically isomorphic to a subgroup of Q. First observe that,
being the character group of a compact and connected group, C∗ is discrete and
torsionfree [8, (23.17) and (24.25)]. Moreover, C∗ is reduced because otherwise it
would contain a direct summand isomorphic to Q, and hence C would contain a
topological direct summand topologically isomorphic to Q∗, in contradiction with
the fact that C = t(C). Now, if A is a closed, pure subgroup of C, then A is compact
and connected [12, Corollary, p. 369]. Consequently, we can write X = A ⊕ B for
some closed subgroup B of X. It is then clear that C = A⊕ (B ∩C) [1, Proposition
6.5]. Since a subgroup L of the discrete group C∗ is pure in C∗ if and only if A(C,L)
is pure in C [1, Corollary 7.6], we deduce from [1, Corollary 6.10] that every pure
subgroup of C∗ splits from C∗. Now, let M be a maximal quasi-pure independent
subset of C∗, and hence

〈M〉∗ ∼=
⊕

x∈M

〈x〉∗.

Since 〈M〉∗ splits from C∗, we conclude by the maximality of M that C∗ = 〈M〉∗,
so C∗ is completely decomposable. Further, since E(C∗) is commutative, it follows
from [10, Theorem 3] that the groups 〈x〉∗, where x ∈M, have incomparable types.
Assume by way of contradiction that |M | > 1, and pick any distinct elements a, b ∈
M. Then

G = 〈a〉∗ ⊕ 〈b〉∗ (3.1)

is pure in C∗, has rank two, and is completely decomposable. For g ∈ G, let τ(g)
denote the type of g. We have τ(a + b) = inf

(

τ(a), τ(b)
)

[6, §85, C)]. As τ(a) and
τ(b) are incomparable, we also have τ(a + b) < τ(a) and τ(a + b) < τ(b). Further,
since 〈a+ b〉∗ splits from C∗, we clearly have

G = 〈a+ b〉∗ ⊕ Γ (3.2)

for some subgroup of rank one Γ of G [5, §16, Exercise 3(d)]. Since the number
of summands of a given type in some decomposition of a discrete, completely de-
composable group as a direct sum of groups of rank one is an invariant of that
group [6, Proposition 86.1], (3.1) and (3.2) lead to a contradiction. Therefore we
must have |M | = 1, so that C∗ is isomorphic to a subgroup of Q, and hence C is
topologically isomorphic to a quotient of Q∗ by a closed subgroup. On the other
hand, since X/c(X) ∼= Z, it is clear from (i) that wS(Z) = {0}. Therefore, in case



82 VALERIU POPA

Z is mixed, we deduce from Theorem 3.4 that Z is topologically isomorphic to an
S-pure subgroup of

∏loc
p∈S

(

Z(pnp); Z(pnp)[plp ]
)

containing
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

.
As k(Z) = Z by [16, Lemma 4.4] and

k
(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)

=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

it then follows that Z ∼=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

. In the case when Z is torsion,
we have X ∼=

⊕

p∈S Z(pnp) [14, Corollary 5.7]. Finally, if C were not S-torsionfree,
we would clearly have H(Z(pnp), C) 6= {0} for some p ∈ S. Then, combining the
canonical projection of Z onto Zp with an arbitrary isomorphism from Zp onto
Z(pnp) and with any nonzero h ∈ H(Z(pnp), C), we would obtain a nonzero element
of H(Z,C), in contradiction with [14, Lemma 3.5]. Thus C must be S-torsionfree.

Now assume (b) holds. If D is topologically isomorphic with either R or Q∗, we
must have c(Y ) = {0} since otherwise it would follow from [8, (25.20)] respectively [1,
Corollary 4.10] that H(D,Y ) 6= {0}, which is in contradiction with [14, Lemma 3.5].
As k(Y ) = Y, we then see from (i) that wS(Y ) = {0}. In case D ∼= Q, we deduce by
using as above [14, Lemma 3.5] that d(Y ) = {0}. It follows that wS(X) ∼= D, and
hence again wS(Y ) = {0}. Since E(Y ) is commutative [14, Lemma 3.2], we conclude
as for Z in the case when X ∼= C × Z that

Y ∼=
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where np, lp ∈ N and np 6= 0 for all p ∈ S.
The converse is clear. 2

By use of duality, we obtain the following

Corollary 3.12. Let X be a group in L such that k(X) is not densely divisible,

and let S = {p ∈ P|p · k(X) 6= k(X)}. Suppose, in addition, the following conditions

hold:

(i) k(X)/
∑

p∈S tp(X) is torsionfree and connected;

(ii) The closed, copure, p-submaximal subgroups of X, where p ∈ S, and the open

subgroups of X relative to which X has torsionfree quotients split topologically

from X.

Then E(X) is commutative if and only if for each p ∈ S there exist np, lp ∈ N
with np 6= 0 such that X is topologically isomorphic either to a quotient of

(

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗

by a closed, S-copure subgroup contained in

c
((

∏loc

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

)∗)

,
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or to a group of the form

D ×
∏

p∈S

(

Z(pnp); Z(pnp)[plp ]
)

,

where D is topologically isomorphic to either R, Q∗, or an S-divisible subgroup

of Q.

Proof. As is easy to see, k(X) is not densely divisible if and only if t(X∗/c(X∗)) 6=
{0} [1, Theorem 4.15]. It is also clear that S0(X

∗/c(X∗)) = S. Let Γ = X∗/c(X∗).
If W = wS(Γ), then

A(Γ∗;W ) =
∑

p∈S

tp(Γ∗),

so that

W ∗ ∼= Γ∗/A(Γ∗;W ) ∼= k(X)/
∑

p∈S

tp(k(X))

= k(X)/
∑

p∈S

tp(X).

It follows that X satisfies condition (i) if and only if X∗ satisfies condition (i) of
Theorem 3.11. Similarly, X satisfies condition (ii) if and only ifX∗ satisfies condition
(ii) of Theorem 3.11. The assertion follows from Theorem 3.11 and duality. 2

4 Bounded order-by-discrete groups and their duals

In this section we will be dealing with bounded order-by-discrete groups and
compact-by-bounded order groups, which were introduced in [14]. We begin with a
characterization of bounded order-by-discrete groups.

Theorem 4.1. A group X ∈ L is bounded order-by-discrete if and only if c(X) =
{0} and k(X) = t(X).

Proof. Assume X ∈ L is bounded order-by-discrete, and pick an arbitrary closed
subgroup of bounded order B of X such that X/B is discrete. Since B is then
open in X [8, (5.6)] and t(X) ⊃ B, it follows that t(X) is open in X too. In
particular, t(X) is locally compact and c(X) ⊂ t(X). As every torsion group in
L is totally disconnected [1, Theorem 3.5], we must have c(X) = {0}, so that
k(X) is a topological torsion group. Letting x ∈ k(X) be arbitrary, we then have
limn→∞(n!x) = 0, so n!x ∈ t(X) for sufficiently large n ∈ N, and hence x ∈ t(X). It
follows that k(X) = t(X).

For the converse, observe that since c(X) = {0}, k(X) and hence t(X) is open
in X [4, Proposition 3.3.6]. It follows that t(X) is locally compact. Since t(X) =
⋃

n∈N0
X[n], it then follows by Baire Category Theorem [8, (5.28)] that there is an
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n0 ∈ N0 such that X[n0] has nonempty interior, so that X[n0] is open in t(X) and
hence in X. Consequently, X is bounded order-by-discrete. 2

Dualizing Theorem 4.1 gives the following characterization of compact-by-
bounded order groups.

Corollary 4.2. A group X ∈ L is compact-by-bounded order if and only if

c(X) =
⋂

n∈N0
nX and k(X) = X.

Proof. It is easy to see that X is compact-by-bounded order if and only if X∗

is bounded order-by-discrete. The assertion follows then from Theorem 4.1 and
duality. 2

The following lemma considers a special case of bounded order-by-discrete groups
having commutative rings of continuous endomorphisms.

Lemma 4.3. Let X ∈ L be a bounded order-by-discrete, reduced group with primary

components of bounded order. If E(X) is commutative, then the following conditions

hold:

(i) X is discrete;

(ii) t(X) ∼=
⊕

p∈S(X) Z(pnp), where the np’s are positive integers;

(iii) X/t(X) is S(X)-divisible;

(iv)
⋂

p∈S(X) p
npX is S(X)-divisible and torsionfree,

and X/
⋂

p∈S(X) p
npX is isomorphic to an S(X)-pure subgroup of

∏loc
p∈S(X)

(

Z(pnp); {0}
)

containing
⊕

p∈S(X) Z(pnp).

Proof. As we saw in Theorem 4.1, c(X) = {0} and k(X) = t(X), so t(X) is a
topological torsion group. Moreover, t(X) is open in X. Fix any p ∈ S(X) and any
compact open subgroup U of X such that U ⊂ t(X). By [1, Theorem 3.13], we have
t(X) ∼=

∏

q∈S(X)(tq(X); tq(U)), so that

t(X) = tp(X) ⊕ tp(X)#, (4.1)

where tp(X)# =
∑

q∈S(X)\{p} tq(X). Since tp(X) is of bounded order, we also have

X = tp(X) ∔ C(p) (4.2)

for some subgroup C(p) of X [5, Corollary 27.4]. Our first task is to show that the
last direct sum is topological. For q ∈ S(X), let

qnq = max
{

o(x) | x ∈ tq(X)
}

.

It follows from decomposition (4.1) that pnpt(X) ⊂ tp(X)#. In a similar way,

writing U = tp(U) ⊕ tp(U)#, where tp(U)# =
∑

q∈S(X)\{p} tq(U), we obtain
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pnpU = pnpt(U) ⊂ tp(U)#. On the other hand, letting q ∈ S(X) \ {p}, we can
choose a(q), b(q) ∈ Z such that a(q)pnp + b(q)qnq = 1. For x ∈ tq(X), we then have

x = a(q)pnpx+ b(q)qnqx = pnpa(q)x ∈ pnpt(X),

so that tq(X) ⊂ pnpt(X). In a similar way, for x ∈ tq(U) we have x ∈ pnpU, and
hence tq(U) ⊂ pnpU. It follows that

tp(X)# =
∑

q∈S(X)\{p}

tq(X) ⊂ pnpt(X)

and

tp(U)# =
∑

q∈S(X)\{p}

tq(U) ⊂ pnpU = pnpU,

so that tp(X)# = pnpt(X) and tp(U)# = pnpU. As tp(U)# = U ∩ tp(X)#, pnpU is
open in tp(X)#, so pnpt(X) is open in tp(X)# too, and hence tp(X)# = pnpt(X).
Let ϕp ∈ E(t(X)) be the canonical projection of t(X) onto tp(X) given by (4.1),
and ψp : X → X be the canonical projection of X onto tp(X) given by (4.2). Since

tp(X)# = pnpt(X) ⊂ pnpX ⊂ C(p),

it is clear that ψp|t(X) = η ◦ ϕp, where η is the canonical injection of t(X) into X.
Further, since t(X) is open in X, it follows that ψp is continuous on X [3, Ch. III,
§2, Proposition 23], and thus X = tp(X) ⊕C(p) by [3, Ch.III, §6, Proposition 2].

Now, taking account of [14, Lemma 3.2], we conclude that E(tp(X)) is
commutative, and so tp(X) ∼= Z(pnp) by [14, Theorem 5.2]. Since in view of [14,
Lemma 3.5] we must have H(C(p), tp(X)) = {0}, it can be shown as in the proof of

Theorem 3.4 that pC(p) = C(p).

Finally, since p ∈ S(X) was arbitrarily chosen, we conclude that t(X) is count-
able, and hence discrete [11, Ch. I, Theorem 2, Corollary]. But t(X) is open in X,
so X is discrete too. In particular, qC(q) = qC(q) for all q ∈ S(X), and so, for all
q ∈ S(X), X/tq(X) is q-divisible as an isomorphic copy of C(q). Since

X/t(X) ∼= (X/tq(X))/(t(X)/tq(X))

for all q ∈ S(X), it follows that X/t(X) is S(X)-divisible. Thus X satisfies (i), (ii)
and (iii).

To establish the first part of (iv), let X∞ =
⋂

p∈S(X) p
npX, and pick any s ∈ S(X)

and x ∈ X∞. Since snsX is s-divisible, there exists y ∈ snsX such that x = sy.
Letting r ∈ S(X)\{s}, choose a(r), b(r) ∈ Z such that a(r)s+ b(r)rnr = 1. We have

y = a(r)sy + b(r)rnry = a(r)x+ b(r)rnry ∈ X∞ + rnrX ⊂ rnrX,
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so that y ∈ X∞.As x ∈ X∞ and s ∈ S(X) were arbitrary, it follows thatX∞ is S(X)-
divisible. Moreover, since X∞∩ t(X) = {0}, X∞ is also torsionfree. Now we proceed
to establish the second part of (iv). For each p ∈ S(X), let gp ∈ H(X, tp(X)) denote
the canonical projection of X onto tp(X) with kernel C(p), and fp an isomorphism

from tp(X) onto Z(pnp). The mapping α : X →
∏loc

p∈S(X)

(

Z(pnp); {0}
)

, given by
α(x) = (fpgp(x))p∈S(X) for all x ∈ X, is then a group homomorphism with kernel
X∞, so that X/X∞ is isomorphic with α(X). It is also clear that, for all q ∈ S(X),
α maps tq(X) onto the subgroup of

∏loc
p∈S(X)

(

Z(pnp); {0}
)

consisting of all elements
with zero p-components for p 6= q, whence we deduce that

⊕

p∈S(X)

Z(pnp) ⊂ α(X).

Finally, it can be seen, following the same way as in the proof of Theorem 3.4, that
α(X) is S(X)-pure in

∏loc
p∈S(X)

(

Z(pnp); {0}
)

.

The proof is complete. 2

Let us recall from [1] the following definition.

Definition 4.4. Let p ∈ P. A group X ∈ L is called p-thetic in case there exists

h ∈ H(Z(p∞),X) such that h(Z(p∞)) is dense in X.

We are now ready to prove the main theorem of this section.

Theorem 4.5. Let X be a bounded order-by-discrete group in L. If E(X) is com-

mutative, then X is discrete and satisfies exactly one of the following conditions:

(i) X is isomorphic with either

⊕

p∈S1

Z(p∞) ×
⊕

p∈S2

Z(pnp) or Q ×
⊕

p∈S(X)

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and the np’s are positive integers.

(ii) S(X) is finite and X = t(X) ⊕ W, where W is a reduced, S(X)-divisible
subgroup of X, and t(X) ∼=

⊕

p∈S(X) Z(pnp) for some positive integers np.

(iii) X is reduced, S(X) is infinite, X/t(X) is S(X)-divisible, and there exist po-

sitive integers np, one for each p ∈ S(X), such that the following conditions

hold:

1) t(X) ∼=
⊕

p∈S(X) Z(pnp);

2)
⋂

p∈S(X) p
npX is S(X)-divisible and torsionfree;

3) X/
⋂

p∈S(X) p
npX is isomorphic to an S(X)-pure subgroup of

∏loc
p∈S(X)

(

Z(pnp); {0}
)

containing
⊕

p∈S(X) Z(pnp).
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Proof. First assume X contains a subgroup D algebraically isomorphic to Z(p∞)
for some p ∈ S(X). Since D is then p-thetic, it follows from [1, Proposition 5.20
and Proposition 5.21] that either D ∼= Z(p∞) or else D is compact and connected.
But X is totally disconnected by Theorem 4.1, so that the latter cannot occur, and
hence D ∼= Z(p∞). Now, since Z(p∞) is splitting in the class of totally disconnected
LCA groups [1, Proposition 6.21], we can write X = D⊕A for some closed subgroup
A of X. If A were not a torsion group, it would follow by Theorem 4.1 that t(A)
is open in A, so A/t(A) is nonzero, discrete and torsionfree. Hence we would have
H(A/t(A),D) 6= {0}, whence H(A,D) 6= {0}, contradicting by [14, Lemma 3.5]
the commutativity of E(X). Consequently, A must be torsion. In particular, X is
torsion as a direct sum of two torsion groups. It then follows from [14, Corollary
5.7] that

X ∼=
⊕

p∈S1

Z(p∞) ×
⊕

p∈S2

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and the np’s are positive integers.

Next assume d(t(X)) = {0} but still d(X) 6= {0}, and pick a subgroup V of
X algebraically isomorphic to Q. Since t(X) is open in X and V ∩ t(X) = {0}, it
follows that V is discrete and hence closed in X [8, (5.10)]. We can write X = V ⊕B
for some closed subgroup B of X, because Q is splitting in the class of totally
disconnected LCA groups [1, Proposition 6.21]. As above, we make use of [14,
Lemma 3.5] to deduce that H(B,V ) = {0} = H(V,B), which implies B = t(B) and
d(B) = {0}. Since E(B) is clearly commutative, it follows from [14, Corollary 5.7]
that B ∼=

⊕

p∈S(X) Z(pnp), where the np’s are positive integers.

Next assume X is reduced. If t(X) is of bounded order, it follows that t(X) splits
algebraically from X [5, Theorem 27.5], and since by Theorem 4.1 t(X) is open in
X, this splitting is topological [1, Corollary 6.8], i. e. X = t(X) ⊕ W for some
discrete subgroup W of X. As E(t(X)) must be commutative, we conclude from [14,
Corollary 5.7] that t(X) is discrete and isomorphic to

⊕

p∈S(X) Z(pnp), where the
np’s are positive integers. It follows, in particular, that X is discrete. Moreover,
since t(X) is of bounded order, S(X) must be finite. Finally, by [16, Theorem 6.1],
we must also have pW = W for all p ∈ S(X).

It remains to consider the case when t(X) is not of bounded order. We shall
show that then X has primary components of bounded order. Since X is bounded
order-by-discrete, there is n ∈ N0 such that X/X[n] is discrete. Pick any p ∈ S(X),
and write n = pkpn′, where kp ∈ N and p ∤ n′. To see that tp(X) is of bounded order,
it is enough to show that tp(X/X[n]) is of bounded order. Suppose not. Then
either X/X[n] has a direct summand isomorphic to Z(p∞) [5, Theorem 21.2], or
tp(X/X[n]) is reduced and has direct summands of arbitrarily high orders [5, §27,
Exercise 1]. Since tp(X/X[n]) is pure in X/X[n], we deduce from [5, Lemma 26.1
and Theorem 27.5] that in the second case X/X[n] has as direct summands cyclic
p-subgroups of arbitrarily high orders. Hence we can write

X/X[n] = T ⊕G, (4.3)
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where T is isomorphic to either Z(p∞), or Z(plp) with lp > kp. Here we must have
G 6= {0}. This is clear in case T ∼= Z(plp) because otherwise tp(X/X[n]) would
be of bounded order, contrary to our assumption. On the other hand, if we had
G = {0} and T ∼= Z(p∞), then X would be torsion. As E(X) is commutative,
we would conclude from [14, Corollary 5.7] that X is also discrete and, for each
q ∈ S(X), tq(X) is isomorphic to either Z(q∞) or Z(qnq) for some nq ∈ N. In
particular, by [9, Corollary 8.11(ii)] we would have

X/X[n] ∼=
⊕

q∈S(X)

(

tq(X)/tq(X[n])
)

.

Since in the considered case X/X[n] ∼= Z(p∞), this would imply tp(X) ∼= Z(p∞),
contrary to the assumption that X is reduced. Thus G 6= {0}. Now, passing to duals
in (4.3), we deduce that nX∗ = T ′ ⊕ G′, where T ′ ∼= T ∗ and G′ ∼= G∗ [8, (23.18)].
As by [14, Lemma 3.1] E(X∗) is commutative, we must have

H(G′, T ′) = H(G′, T ′)[n] and H(T ′, G′ = H(T ′, G′)[n],

since otherwise an application of [14, Lemma 3.5] with ω = n1X∗ and any h ∈
H(G′, T ′) ∪ H(T ′, G′) satisfying nh 6= 0 would produce a contradiction. Since for
any L,M ∈ L, H(M∗, L∗) ∼= H(L,M) [12, Corollary 2, p. 377], it follows that

H(T,G) = H(T,G)[n] and H(G,T ) = H(G,T )[n].

Now we can show that either of the cases T ∼= Z(p∞) or T ∼= Z(plp) leads to a
contradiction. Suppose first T ∼= Z(p∞).We must have G = t(G). For, if G contained
an element, say a, of infinite order, then, choosing any b ∈ T with o(b) > pkp , we
could define f ∈ H(〈a〉, T ) by the rule f(a) = b. Since T is divisible, there would
exist f0 ∈ H(G,T ) such that f0|〈a〉 = f, and hence nf0 6= 0, a contradiction. Thus
G = t(G), so X/X[n] = t(X/X[n]), and hence X = t(X). Since by the assumption
X is reduced, it follows from [14, Corollary 5.7] that X ∼=

⊕

q∈S(X) Z(qnq), where the
nq’s are positive integers. But then X/X[n] is reduced, contrary to the assumption
that T ∼= Z(p∞). Next suppose T ∼= Z(plp). If there existed c ∈ tp(G) with o(c) > pkp ,
then we could find c′ ∈ tp(G) such that pkp < o(c′) ≤ plp . It would follow that there
exists g ∈ H(Z(plp), G) given by g(1 + plpZ) = c′ such that ng 6= 0. Since this would
imply H(T,G) 6= H(T,G)[n], we arrive at a contradiction. Hence we must have
pkptp(G) = {0}, which implies tp(X/X[n]) is of bounded order, a contradiction.

Consequently, our assumption that tp(X/X[n]) is not of bounded order leads to
a contradiction, so tp(X/X[n]) must be of bounded order, whence we deduce that
tp(X) is of bounded order too. As p ∈ S(X) was arbitrary, it follows that X has
primary components of bounded order. Moreover, since t(X) is not of bounded
order, S(X) has to be infinite. Then, an application of Lemma 4.3 gives us (iii).

The proof is complete. 2

We conclude this section by stating the dual analog of Theorem 4.5.
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Corollary 4.6. Let X be a compact-by-bounded order group in L. If E(X) is com-

mutative, then X is compact and satisfies exactly one of the following conditions:

(i) X is topologically isomorphic with either

∏

p∈S1

Zp ×
∏

p∈S2

Z(pnp) or Q∗ ×
∏

p∈S(X)

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and the np’s are positive integers.

(ii) S(X) is finite and X = c(X) ⊕ M, where c(X) is S(X)-torsionfree with

m(c(X)) = c(X), and M ∼=
∏

p∈S(X) Z(pnp) for some positive integers np.

(iii) X = m(X), S(X) is infinite, c(X) is S(X)-torsionfree, and there exist positive

integers np, one for each p ∈ S(X), such that the following conditions hold:

1) X/c(X) ∼=
∏

p∈S(X) Z(pnp);

2) X/
∑

p∈S(X)X[pnp ] is densely divisible and S(X)-torsionfree;

3)
∑

p∈S(X)X[pnp ] is topologically isomorphic to a quotient group of
(

∏loc
p∈S

(

Z(pnp); {0}
)

)∗
by a closed, S(X)-pure subgroup contained

in c
((

∏loc
p∈S

(

Z(pnp); {0}
)

)∗)

.

Proof. Since a group X ∈ L is compact-by-bounded order if and only if X∗ is
bounded order-by-compact, the assertion follows from Theorem 4.5 and duality. 2
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