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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(55), 2007, Pages 64–72
ISSN 1024–7696

About Quasiconformal Maps in Finsler Spaces

Veronica-Teodora Borcea

Abstract. We consider a constant C which measures the deviation of the Finsler
metric from a Riemannian metric and we prove that the problem of the existence of
quasiconformal mappings between Finsler spaces can be reduced to the same problem
between Riemann spaces.
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1 Introduction

The quasiconformal mappings represent a generalization of the conformal trans-
formations. It is known that there exist different equi- valent definitions for the
conformal transformations, most of these using some conformal invariants (modulus
of the ring or a family of arcs, angles, infinitesimal circles,...) or, as the solutions of
a Cauchy-Riemann system.

The conformal transformations were used for the modelling, sometimes with
approximation, of some phenomena. For example, in the hydrodynamic, where were
considered ”ideal fluids” (incompressible and not viscous) and their flow was without
whirlpools.

The definitions of quasiconformal mappings appeared, naturally, from the corre-
sponding definitions of the conformal transformations, for example, by substituting
quasi-invariance for the invariance.

K. Suominen extends the study of the quasiconformality to the finite dimensional
Riemannian manifolds [1], and P. Caraman to the Riemann-Wiener manifolds [2].

The study of quasiconformality was extended by us to the infinit dimensional
Riemannian manifolds and to the Finsler spaces [3, 4].

In 1982 M. Nakai and H. Tanaka proved the existence of quasiconformal map-
pings between finite dimensional Riemannian manifolds [5].

In this paper we associate to a Finsler space a constant C, which measures the
deviation of the Finslerian metric from a riemannian metric. By using this constant
we establish an inequality between the Finslerian and Riemannian characteristic
functions and we prove that the problem of the existence of quasiconformal map-
pings between finite dimensional Finsler spaces can be reduced to the same problem
between finite dimensional Riemann manifolds. The main result is
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Theorem A. A homeomorphism f is Finslerian quasiconformal iff f is Riemannian
quasiconformal.

2 Regular atlases

Let us consider M a n-dimensional, connected, paracompact, orientable, C∞-

differentiable manifold and L : TM → R a Finsler metric on M (TM =
⋃

x∈M

TxM

denotes the tangent bundle of M and TxM the tangent space at x ∈ M).

The restriction of L to TxM , L (x, .) : TxM → R, is a norm, generally non-
Hilbertian, denoted by ‖·‖ and

L2 (x,X) = aij (x,X) XiXj ,

for every X = Xi ∂
∂xi ∈ TxM , where

aij (x,X) =
1

2

∂2L2 (x,X)

∂Xi∂Xj

are homogeneous functions of degree zero with respect to X. We have

‖X‖ = L (x,X) =
√

aij (x,X) XiXj .

The manifold M is a metric space with the geodesic metric

d (x, y) = inf {ℓ (γ) / γ ∈ Γ} ,

where Γ is the set of all differentiable arcs joining x with y and ℓ (γ)=

∫ 1

0

∥

∥

∥

∥

dγ

dt

∥

∥

∥

∥

dt.

The geodesics of M are the autoparalleles of nonlinear Cartan connection ∇ and

their equation is ∇ ·

γ(t)

·

γ (t) = 0.

If γX (t) is the geodesic with the initial condition (x,X), then γX (t) =
γαX

(

α−1t
)

for every α ∈ R\ {0} and the map expx : Vx → M , expx X = γX (1)
satisfies ‖Y ‖ = d (x, expx Y ) for every Y ∈ Vx (Vx is the maximum domain where
expx is a diffeomorphism).

Lemma 1. If M is a Finsler space, then for every ε ∈ (0,∞) there exists rx =
r (x, ε) ∈ (0,∞) such that expx is a (1 + ε)-isometry on the ball B (0x, rx) ⊂ TxM ,
that is

(1 + ε)−1 ‖Y − Z‖ ≤ d (expx Y, expx Z) ≤ (1 + ε) ‖Y − Z‖, (1)

for every Y,Z ∈ B (0x, rx) .

Proof. For every ε ∈ (0,∞) let us consider rx ∈ (0,∞) such that the inequality
‖Tx expx ‖ ≤ 1 + ε is satisfied, for every X ∈ B (0x, rx). Let us consider γ : [0, 1] →
TxM , γ (t) = tY + (1 − t) Z and γ1 (t) = (expx ◦γ) (t). We have
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d (expx Y, expx Z) ≤ ℓ (γ1) =

∫ 1

0

∥

∥

∥

∥

dγ1

dt

∥

∥

∥

∥

dt ≤

∫ 1

0

∥

∥

∥

∥

dγ

dt

∥

∥

∥

∥

∥

∥Tγ(t) expx

∥

∥ dt ≤

≤ (1 + ε) ℓ (γ) = (1 + ε) ‖Y − Z‖.

Analogously, results the left-hand side of (1).

Remark 1. If Z = 0x and Y = exp−1
x y, we obtain

d (x, y) = d (expx 0x, expx Y ) = ‖Y ‖

and hence expx (B (0x, rx)) is the geodesic ball B (x, rx), consequently exp−1
x is a

(1 + ε)-isometry, too.

Let us consider the homeomorphism ϕx : B (0, αx) → B (x, rx), αx ∈ (0,∞),
such that ϕx (0) = x (B (0, αx) = Bx is the ball with center 0 and radius αx in Rn).

The pair hx = (Bx, ϕx) is called ϕ-chart at x and the set A = {hx/ x ∈ M} is
called ϕ-atlas on M.

Obviously, for every ε ∈ (0,∞), hε
x = (B (0x, rx) , expx) is an exp-chart and

Aε = {hε
x/ x ∈ M} is an exp-atlas, called the atlas of geodesic balls.

To any ϕ-atlas we can associate the function kA : M → [1,∞]

kA (x) = lim sup
α→0

sup {d (x, y) / y ∈ ϕx (S (0, α))}

inf {d (x, y) / y ∈ ϕx (S (0, α))}
, α ∈ (0, αx) ,

called the parameter of A; kA (x) is called the parameter of the ϕ-chart hx (we shall
sometimes omit the subscript A if the choice of the atlas is clear from context).

If k (x) < ∞ we say that the ϕ-chart hx is k-regular. If all the ϕ-charts of A are
k-regular, we say that the atlas A is k-regular.

If ϕx is a conformal homeomorphism we say that hx is a conformal chart. The
atlas A is said to be conformal if its charts are conformal. In this case we obtain
k (x) = 1 and so, any conformal atlas has the parameter k = 1. Particularly, the
atlas of geodesic balls Aε has the parameter k = 1.

Let f : D → D̃ be a homeomorphism, where D, D̃ are domains in M .

If A is a ϕ-atlas on D, we can consider the ϕ̃-atlas Ã =
{

h̃x̃ / x̃ ∈ M̃
}

, on

D̃, with h̃x̃ = (Bx̃, ϕ̃x̃), Bx̃ = B (0, αx̃), ϕ̃x̃ = f ◦ ϕx, x̃ = f (x) and αx̃ chosen
such that ϕ̃x̃ (Bx̃) ⊂ B (x̃, rx̃), (B (x̃, rx̃) is the geodesic ball in D̃ where exp−1

x̃ is
(1 + ε)-isometry).

Ã and h̃x̃ are called, respectively, ϕ̃-atlas and ϕ̃-chart induced by f .
The parameter of Ã will be

k̃Ã (x̃) = lim sup
α→0

sup
{

d̃ (x̃, ỹ) / ỹ ∈ ϕ̃x̃ (S (0, α))
}

inf
{

d̃ (x̃, ỹ) / ỹ ∈ ϕ̃x̃ (S (0, α))
} , α ∈ (0, αx̃) .

Generally, if A is k-regular, it does not result that Ã is k̃-regular.
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The homeomorphism f is called kk̃−regular if there exists a ϕ−atlas A, k−regu-
lar, on D such that the ϕ̃−atlas, Ã, induced by f is k̃−regular on D̃.

The function

qf : D → [1,∞] , qf (x) = inf
{

k (x) · k̃ (x̃)
}

,

where infimum is taken over all k−regular ϕ−atlases on D, is called the Finslerian
characteristic function of f .

It follows that f is kk̃−regular if qf (x) < ∞, for every x ∈ D.

Let us consider a f−isomorphism of vector bundles T : TD → TD̃. The restric-
tion, Tx, of T to TxD, Tx : TxD → Tx̃D̃, x̃ = f (x), is an isomorphism of linear spaces,
hence the image by Tx of B (0x, αx) is an ellipsoid Ẽ0 (Tx) ⊂ B (0x̃, rx̃) ⊂ Tx̃D̃, where
rx̃ = αx ‖Tx‖. We can consider αx such that expx̃ is (1 + ε)-isometry on B (0x̃, rx̃).

It follows that h̃x̃ = (B (0x, αx) , Tx) is a T -chart at 0x̃ ∈ Tx̃D̃ and so, we can

consider a T̃ -chart on D̃, induced by expx̃, H̃x̃ =
(

B (0x, αx) , T̃x̃

)

, T̃x̃ = expx̃ ◦Tx,

and, in such a way, we obtain a T̃ -atlas Ã =
{

H̃x̃ � x̃ ∈ D̃
}

, called atlas of geodesic

ellipsoids.

The geodesic ellipsoid E0 (Tx) = expx̃

(

Ẽ0 (Tx)
)

has the same extreme semiaxes

as Ẽ0 (Tx) (expx̃ behaves as an isometry for the distances measured from 0x̃).

Let us consider Ẽα (Tx) = Tx (S (0x, α)), α ∈ (0, αx), and

Pα =
{

d̃
(

0x̃, Ỹ
)

� Ỹ ∈ Ẽα (Tx)
}

=
{∥

∥

∥
Ỹ

∥

∥

∥
� ‖Y ‖ = α

}

.

The extreme semiaxes of Ẽα (Tx) are given by

ã0 (α, x̃) = inf Pα = α
∥

∥T−1
x

∥

∥

−1
,

ã1 (α, x̃) = supPα = α ‖Tx‖ .

The function

pT : M̃ → R, pT (x̃) =
ã1 (α, x̃)

ã0 (α, x̃)
= ‖Tx‖

∥

∥T−1
x

∥

∥

is called the principal characteristic parameter of the atlas of geodesic ellipsoids.

Arguing as above for f−1 and T−1, we obtain

pT−1 (x) = ‖Tx‖
∥

∥T−1
x

∥

∥ = pT (x̃) .

The parameter of the atlas of geodesic ellipsoids is

k̃ (x̃) = lim sup
α→0

ã1 (α, x̃)

ã0 (α, x̃)
= pT (x̃) .
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Lemma 2. If f : D → D̃ is a differentiable homeomorphism at x ∈ D with Txf
bijective, then:

a) f is kk̃-regular on D iff for every x ∈ D, Fx = exp−1
x̃ ◦f ◦ expx is kk̃-regular

at 0x ∈ TxD;

b) Fx is kk̃-regular at 0x iff Txf is kk̃-regular at 0x;

c) qf (x) = qTxf (0x) = qFx
(0x) .

Proof. a) Let A be a ϕ-atlas k-regular on D, such that the induced ϕ̃-atlas Ã is
k̃-regular on D̃. We consider hx = (Bx, ϕx) ∈ A and h̃x̃ = (Bx̃, ϕ̃x̃) ∈ Ã, where
ϕ̃x̃ = f ◦ ϕx. It follows that Hx = (Bx, φx), φx = exp−1

x ◦ϕx is k-regular and

H̃x̃ =
(

Bx̃, φ̃x̃

)

, φ̃x̃ = exp−1
x̃ ◦ϕ̃x̃ is k̃-regular.

Because

φ̃x̃ = exp−1
x̃ ◦ϕ̃x̃ = exp−1

x̃ ◦f ◦ expx ◦ exp−1
x ◦ϕx = Fx ◦ φx,

it follows that H̃x̃ is the φ̃x̃-chart induced by Fx and so, Fx is kk̃-regular.

For f = expx̃ ◦Fx◦exp−1
x , arguing as above, we obtain the sufficiency. In addition,

we obtain

qf (x) = qFx
(0x) . (2)

b) Let us consider the k-regular chart Hx = (Bx, φx) with the parameter

k (x) = lim sup
α→0

supPα

inf Pα
< ∞, Pα = {‖X‖ � X ∈ φx (S (0, α))} (3)

and the chart, H̄x̃ =
(

Bx, φ̄x̃

)

, φ̄x̃ = Txf ◦ φx, induced by Txf , for which

k̄ (x̃) = lim sup
α→0

supP ′

α

inf P ′
α

, P ′

α = {‖(Txf) (X)‖ � X ∈ φx (S (0, α))} . (4)

For the φ̃-chart, H̃x̃ =
(

Bx, φ̃x̃

)

, φ̃x̃ = Fx ◦ φx, induced by Fx, we have

k̃ (x̃) = lim sup
α→0

supP ′′

α

inf P ′′
α

, P ′′

α = {‖Fx (X)‖ � X ∈ φx (S (0, α))} . (5)

Since Txf = DFx (0x), it follows that

Fx (X) = (Txf) (X) + εx (X) ‖X‖ , εx : TxM → TxM, lim
X→0x

‖εx (X)‖ = 0.

We have

lim sup
α→0

(

sup P̄α

)

= 0, P̄α = {‖εx (X)‖ � X ∈ φx (S (0, α))} . (6)

Since Txf is an isomorphism of topological vector spaces, we get
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‖(Txf) (X)‖ ≥
‖X‖

∥

∥

∥
(Txf)−1

∥

∥

∥

.

It follows that

supP ′

α ≥
supPα

∥

∥

∥
(Txf)−1

∥

∥

∥

; inf P ′

α ≥
inf Pα

∥

∥

∥
(Txf)−1

∥

∥

∥

. (7)

We have

‖Txf (X)‖ − ‖εx‖ ‖X‖ ≤ ‖Fx (X)‖ ≤ ‖Txf (X)‖ + ‖εx‖ ‖X‖

and so

supP ′

α − supPα sup P̄α ≤ supP ′′

α ≤ supP ′

α + supPα sup P̄α,

inf P ′

α − supPα sup P̄α ≤ inf P ′′

α ≤ inf P ′

α + supPα sup P̄α.

We obtain











































k̄ (x̃) lim sup
α→0

1 −
∥

∥

∥
(Txf)−1

∥

∥

∥
sup P̄α

1 +
supPα

inf Pα

inf Pα

inf P ′
α

sup P̄α

≤ k̃ (x̃) ,

k̃ (x̃) ≤ k̄ (x̃) lim sup
α→0

1 +
∥

∥

∥
(Txf)−1

∥

∥

∥
sup P̄α

1 −
supPα

inf Pα

inf Pα

inf P ′
α

sup P̄α

.

(8)

From (3), (6), (7) and (8) it follows that k̃ (x̃) = k̄ (x̃), which proves the assertion
b) and we have

qFx
(0x) = qTxf (0x) . (9)

c) It results from (2) and (9) .

Lemma 3. If T : V → Ṽ is an isomorphism of n-dimensional normed vector spaces,

then T is kk̃-regular with k (X) = ‖T‖
∥

∥T−1
∥

∥ , k̃
(

X̃
)

= 1 and qT (X) = pT−1 (X),

for every X ∈ V .

Proof. Let us consider the k̃-regular φ̃-chart, H̃X̃ =
(

B
(

0X̃ , 1
)

, φ̃X̃

)

, φ̃X̃ Ỹ =

X̃ + Ỹ , X̃ = TX. It follows that k̃
(

X̃
)

= 1. The map T−1 induces a φ-chart

HX =
(

B
(

0X̃ , 1
)

, φX

)

, φX = T−1 ◦ φ̃X̃ , with k (X) = ‖T‖
∥

∥T−1
∥

∥ < ∞ and so

HX is k-regular. Thus, we obtain that T is kk̃-regular with k (X) = ‖T‖
∥

∥T−1
∥

∥ ,

k̃
(

X̃
)

= 1. We have pT−1 (X) = k (X) k̃
(

X̃
)

= ‖T‖
∥

∥T−1
∥

∥ and so
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qT (X) ≤ pT−1 (X) . (10)

Let us consider a k-regular ϕ-chart, hX = (B (0, 1) , ϕX) and the ϕ̃-chart induced

by T , h̃X̃ =
(

B (0, 1) , ϕ̃X̃

)

, ϕ̃X̃ = T ◦ ϕX , with the parameter k̃
(

X̃
)

. We have two
cases:

1) k (X) ≥ pT−1 (X), which implies that k (X) k̃
(

X̃
)

≥ pT−1 (X). It follows

that qT (X) ≥ pT−1 (X) and from (10) we obtain qT (X) = pT−1 (X) .

2) k (X) < pT−1 (X). We denote by σα = ϕX (S (0, α)) and

r0 = inf {‖Y − X‖ � Y ∈ σα} , r1 = sup {‖Y − X‖ � Y ∈ σα} ;

it follows that σα ⊂ B̄ (X, r1)−B (X, r0). Taking t0 = r0 ‖T‖ and t1 = r1

∥

∥T−1
∥

∥

−1
,

it follows that the ellipsoid Et0

(

T−1
)

= T−1
(

S
(

X̃, t0

))

has the minimum semiaxis

a0 (t0,X) = r0 = t0 ‖T‖−1 and Et1

(

T−1
)

= T−1
(

S
(

X̃, t1

))

has the maximum

semiaxis a1 (t1,X) = r1 = t1
∥

∥T−1
∥

∥. We obtain

k (X) = r1r
−1
0 = t1t

−1
0 ‖T‖

∥

∥T−1
∥

∥ = t1t
−1
0 pT−1 (X)

and since k (X) < pT−1 (X) it follows that t1 < t0. We have

t0 ≤ sup
{
∥

∥

∥
TY − X̃

∥

∥

∥
� Y ∈ σα

}

,

t1 ≥ inf
{

∥

∥

∥
TY − X̃

∥

∥

∥
� Y ∈ σα

}

,

hence k̃
(

X̃
)

≥ t0t
−1
1 = (k (X))−1 pT−1 (X) and then k (X) k̃

(

X̃
)

≥ pT−1 (X),

which implies qT (X) ≥ pT−1 (X). By using (10) we obtain qT (X) = pT−1 (X) .

Remark 2. From Lemmas 2 and 3, it follows that if f : D → D̃ is a differentiable
homeomorphism at x with Jf (x) 6= 0, then f is kk̃-regular at x and qf (x) =

‖Txf‖
∥

∥

∥
(Txf)−1

∥

∥

∥
.

3 The proof of main result

We consider X (M) the Lie algebra of the tangent fields on M and X0 (M) =
{V / V ∈ X (M) , ‖V (x)‖ = 1, ∀x ∈ M} .

The matrix aV = [aij (x, V )] , for a fixed V ∈ X0 (M) , is a Riemannian metric
on M and the map

‖·‖V : TxM → R, ‖X‖V =
√

aij (x, V )XiXj

is an Euclidean norm in TxM.
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Because the norms ‖·‖ and ‖·‖V are equivalent, there exists the map CV : M →
[1,∞) such that

C−1
V (x) ‖X (x)‖V ≤ ‖X (x)‖ ≤ CV (x) ‖X (x)‖V , ∀X ∈ X (M) .

For every V ∈ X0 (M) we consider

P (x, V ) = {CV (x) / C−1
V (x) ‖X (x)‖V ≤ ‖X (x)‖ ≤ CV (x) ‖X (x)‖V ,

∀X ∈ X (M)}

and the map

C : M → [1,∞), C (x) = inf {Px, V )/V ∈ X0 (M)} .

It follows that for every ε > 0, there exists Vε ∈ X0 (M) such that C (x) ≤
CVε

(x) < C (x) + ε and so, we can find V0 ∈ X0 (M) which satisfies

C−1 (x) ‖X (x)‖V0
≤ ‖X (x)‖ ≤ C (x) ‖X (x)‖V0

, ∀X ∈ X (M) .

If we consider C = sup {C (x) / x ∈ M} ∈ [1,∞], we have

C−1 ‖X (x)‖V0
≤ ‖X (x)‖ ≤ C ‖X (x)‖V0

, ∀X ∈ X (M) , ∀x ∈ M

hence, if C = 1 then L is a Riemannian metric and if C > 1, it is a Finsler metric,
that is C measures the deviation of the Finsler metric from a riemannian metric.

In the following we suppose that C ∈ (1,∞) and we denote by ‖X (x)‖0 the
norm ‖X (x)‖V0

.

If f : D → D̃ is a non-degenerate differentiable homeomorphism at x ∈ M , then

between the Riemannian characteristic function q0
f (x) = ‖Txf‖0

∥

∥

∥
(Txf)−1

∥

∥

∥

0
and

the Finslerian characteristic function qf (x) we have the relation

C−4q0
f (x) ≤ qf (x) ≤ C4q0

f (x) . (11)

Lemma 4. If f : D → D̃ is a homeomorphism with qf bounded in D, then f is
almost everywhere (a.e.) differentiable (with respect to the Lebesgue measure) and
Jf (x) 6= 0 a.e. in D.

Proof. Let us consider the atlas of geodesic balls Aε on D and Fx = exp−1
x̃ ◦f ◦expx :

B (0x, rx) → Tx̃D̃, x̃ = f (x). It results that qFx
(Y ) ≤ (1 + ε)4 qf (y) for every

Y ∈ B (0x, rx), y = expx Y . We obtain that qFx
is bounded on B (0x, rx), hence it

is differentiable a.e. with JFx
6= 0 a.e.(see [6]). It follows that f is differentiable

a.e. on B (x, rx) with Jf 6= 0 a.e. Since M is paracompact the assertion of theorem
follows.

Definition. A homeomorphism f : D → D̃ is called K−Finslerian quasiconformal
in D, (K − FQC), 1 ≤ K < ∞, if qf is bounded in D and qf (x) ≤ K a.e. in D.
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If the Finsler metric on M is a Riemannian metric, we say that f is K−Rieman-
nian quasiconformal in D, (K − RQC).

From (11) we obtain:
If f is K − FQC in D, then C−4q0

f (x) ≤ qf (x) ≤ K a.e. in D and hence

q0
f (x) ≤ C4K. We obtain that f is K0 − RQC in D, with K0 = C4K.

Analogously, we obtain that if f is K − RQC in D, then f is K0 − FQC in D,
with K0 = C4K, hence the Theorem A is proved.

Remark 3. From Theorem A it follows that the existence of the quasiconformal
mappings in Finsler spaces can be reduced to the existence of the quasiconformal
mappings in Riemann spaces.
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