A characterization of the solutions of the Darboux Problem for third order hyperbolic inclusions

Georgeta Teodoru

Abstract. In this paper we consider the Darboux Problem for a third order hyperbolic inclusion of the form $u_{xyz} \in F(x,y,z,u)$ and we prove a characterization of the solutions of the considered problem using the Aumann integral defined for multifunctions.

Mathematics subject classification: 35L30, 35R70, 47H10.

Keywords and phrases: Multifunction, hyperbolic inclusion, upper semi-continuity, initial values, absolutely continuous in Carathéodory's sense function, Aumann integral.

1 Introduction

In this paper we consider the Darboux Problem for a third order hyperbolic inclusion of the form

$$\frac{\partial^{3} u\left(x,y,z\right)}{\partial x \, \partial y \, \partial z} \in F\left(x,y,z,u\right), \ \left(x,y,z\right) \in D = [0,a] \times [0,b] \times [0,c], \ u \in \Omega \subset \mathbb{R}^{n} \quad (1.1)$$

with initial values

$$\begin{cases}
 u(x, y, 0) = \varphi(x, y), & (x, y) \in D_1 = [0, a] \times [0, b], \\
 u(0, y, z) = \psi(y, z), & (y, z) \in D_2 = [0, b] \times [0, c], \\
 u(x, 0, z) = \chi(x, z), & (x, z) \in D_3 = [0, a] \times [0, c]
\end{cases} (1.2)$$

where φ, ψ, χ are absolutely continuous in Carathéodory's sense functions $[2, \S 565 - 570], \varphi \in C^*(D_1; \mathbb{R}^n), \psi \in C^*(D_2; \mathbb{R}^n), \chi \in C^*(D_3; \mathbb{R}^n)$ and they satisfy the conditions

$$\begin{cases} u(x,0,0) = \varphi(x,0) = \chi(x,0) = v^{1}(x), & x \in [0,a], \\ u(0,y,0) = \varphi(0,y) = \psi(y,0) = v^{2}(y), & y \in [0,b], \\ u(0,0,z) = \psi(0,z) = \chi(0,z) = v^{3}(z), & z \in [0,c], \\ u(0,0,0) = v^{1}(0) = v^{2}(0) = v^{3}(0) = v^{0}, \end{cases}$$

$$(1.3)$$

where $F: D \times \Omega \to 2^{\mathbb{R}^n}$ is a multifunction with compact, convex and non-empty values and $\Omega \subset \mathbb{R}^n$ is an open subset.

Under suitable assumptions, we proved in [16] an existence theorem for a local solution of the Darboux Problem (1.1) + (1.2) and that the set of its solutions is

[©] Georgeta Teodoru, 2007

compact in Banach space $C(D_0; \mathbb{R}^n)$, $D_0 = [0, x_0] \times [0, y_0] \times [0, z_0] \subseteq D$; moreover, as a function of the initial values this set defines an upper semi-continuous multifunction.

In [17] we proved a theorem of prolongation for the solutions of the considered problem and also an existence theorem for a saturated solution.

In this paper we prove a characterization of the solutions of Darboux Problem (1.1) + (1.2) using the Aumann integral defined for multifunctions.

This study has been suggested by [15] and it provides an extension of the results in that article.

2 Preliminaries

The definitions and Theorems 2.1-2.5 plus Propositions 2.1-2.4 in this section are taken from [1, 2, 5-14].

Definition 2.1. Let X and Y be two non-empty sets. A multifunction $\Phi: X \to 2^Y$ is a function from X into the family of all non-empty subsets of Y.

To each $x \in X$, a subset $\Phi(x)$ of Y is associated by the multifunction Φ . The set $\bigcup_{x \in X} \Phi(x)$ is the range of Φ . $\Phi(X) = \{\bigcup \Phi(x) \mid x \in X\}$.

Definition 2.2. Let us consider $\Phi: X \to 2^Y$.

- a) If $A \subset X$, the *image* of A by Φ is $\Phi(A) = \bigcup_{x \in A} \Phi(x)$;
- b) If $B \subset Y$, the counterimage of B by Φ is

$$\Phi^{-}(B) = \{x \in X \mid \Phi(x) \cap B \neq \emptyset\};$$

c) The graph of Φ , denoted graph Φ , is the set

$$\operatorname{graph} \Phi = \{(x, y) \in X \times Y \mid y \in \Phi(x)\}.$$

Definition 2.3. Let us now take $\Phi: X \to 2^Y$. An element $x \in X$ with the property $x \in \Phi(x)$ is called a *fixed point* of the multifunction Φ .

Definition 2.4. A univalued function $\varphi: X \to Y$ is said to be a *selection* of $\Phi: X \to 2^Y$ if $\varphi(x) \in \Phi(x)$ for all $x \in X$.

Definition 2.5. Let X and Y be two topological spaces. The multifunction $\Phi: X \to 2^Y$ is *upper semi-continuous* if, for any closed $B \subset Y$, $\Phi^-(B)$ is closed in X.

Definition 2.6. If (X, \mathcal{F}) is a measurable space and Y is a topological space, the multifunction $\Phi: X \to 2^Y$ is measurable if $\Phi^-(B) \in \mathcal{F}$ for every closed subset $B \subset Y$, \mathcal{F} being the σ -algebra of the measurable sets of X, i.e. $\Phi^-(B)$ is measurable.

Theorem 2.1 [13]. Let X and Y be two metric spaces, Y compact and $\Phi: X \to 2^Y$ a multifunction with the property that $\Phi(x)$ is a closed subset of Y for any $x \in X$. The following assertions are equivalent:

- i) the multifunction Φ is upper semi-continuous;
- ii) the graph of Φ is a closed subset of $X \times Y$;
- iii) any would be the seguences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$, from $x_n\to x$, $y_n\in\Phi(x_n)$ and $y_n \to y$ it follows that $y \in \Phi(x)$.

Definition 2.7 [2, 7, 8]. The function $u: \triangle \to \mathbb{R}^n, \triangle \subset \mathbb{R}^2$, is absolutely continuous in Carathéodory's sense [2, §565 - 570] if and only if it is continuous on \triangle , absolutely continuous in x (for any y), absolutely continuous in y (for any x), $u_x(x,y)$ is (possibly after a suitable definition on a two-dimensional set of zero measure) absolutely continuous in y (for any x) and u_{xy} is Lebesgue-integrable on \triangle .

Theorem 2.2 [2, 6, 14]. The function $u: \triangle \to \mathbb{R}^n$, $\triangle = [0, a] \times [0, b] \subset \mathbb{R}^2$, is absolutely continuous in Carathéodory's sense on \triangle if and only if there exist $f \in L^{1}(\Delta; \mathbb{R}^{n}), g \in L^{1}([0, a]; \mathbb{R}^{n}), h \in L^{1}([0, b]; \mathbb{R}^{n}) \text{ such that }$

$$u(x,y) = \int_{0}^{x} \int_{0}^{y} f(s,t) ds dt + \int_{0}^{x} g(s) ds + \int_{0}^{y} h(t) dt + u(0,0).$$

We denote the class of absolutely continuous functions in Carathéodory's sense by $C^*(\Delta;\mathbb{R}^n)$ [7, 8]. In [6], this space is denoted by $AC(\Delta;\mathbb{R}^n)$.

Theorem 2.3 [6]. The space $C^*(\Delta; \mathbb{R}^n)$ endowed with the norm

$$\|u\left(\cdot,\cdot\right)\| = \int_{0}^{a} \int_{0}^{b} \|u_{xy}\left(s,t\right)\| \, ds \, dt + \int_{0}^{a} \|u_{x}\left(s,0\right)\| \, ds + \int_{0}^{b} \|u_{y}\left(0,t\right)\| \, dt + \|u\left(0,0\right)\|,$$

 $\triangle = [0,a] \times [0,b] \subset \mathbb{R}^2$, where $\|\cdot\|$ is the Euclidean norm, is a Banach space.

Definition 2.8 [2, 9]. The function $u: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^3$, is absolutely *continuous* in Carathéodory's sense $[2, \S 565 - 570]$ if and only if u(x, y, z) is continuous on D, absolutely continuous in each variable (for any pair of the other two variables) and similarly for $u_x(x,y,z)$, $u_y(x,y,z)$, $u_z(x,y,z)$, $u_{xy}(x,y,z)$, $u_{yz}(x,y,z)$, $u_{xz}(x,y,z)$, and u_{xyz} is Lebesgue-integrable on D.

Theorem 2.4 [6]. The function $u:D\to\mathbb{R}^n$, $D=[0,a]\times[0,b]\times[0,c]\subset\mathbb{R}^3$, is absolutely continuous in Carathéodory's sense on D if and only if there exist $f \in L^1(D;\mathbb{R}^n), g_1 \in L^1(D_1;\mathbb{R}^n), g_2 \in L^1(D_2;\mathbb{R}^n), g_3 \in L^1(D_3;\mathbb{R}^n),$ $h_1 \in L^1([0,a];\mathbb{R}^n), h_2 \in L^1([0,b];\mathbb{R}^n), h_3 \in L^1([0,c];\mathbb{R}^n), such that$

$$u(x,y,z) = \int_0^x \int_0^y \int_0^z f(r,s,t) dr ds dt + \int_0^x \int_0^y g_1(r,s) dr ds + \int_0^y \int_0^z g_2(s,t) ds dt + \int_0^x \int_0^z g_3(r,t) dr dt + \int_0^x h_1(r) dr + \int_0^y h_2(s) ds + \int_0^z h_3(t) dt + u(0,0,0).$$

We denote the class of absolutely continuous functions in Carathéodory's sense on D by $C^*(D; \mathbb{R}^n)$ [9].

Theorem 2.5 [6]. The space $C^*(D; \mathbb{R}^n)$ endowed with the norm

$$||u(\cdot,\cdot,\cdot)|| = \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} ||u_{xyz}(r,s,t)|| dr ds dt + \int_{0}^{a} \int_{0}^{b} ||u_{xy}(r,s,0)|| dr ds + \int_{0}^{b} \int_{0}^{c} ||u_{yz}(0,s,t)|| ds dt + \int_{0}^{a} \int_{0}^{c} ||u_{xz}(r,0,t)|| dr dt + \int_{0}^{a} ||u_{x}(r,0,0)|| dr + \int_{0}^{b} ||u_{y}(0,s,0)|| ds + \int_{0}^{c} ||u_{z}(0,0,t)|| dt + ||u(0,0,0)||,$$

where $\|\cdot\|$ is the Euclidean norm, is a Banach space.

We denote by d(x, y) the Euclidean distance from x to y, $x, y \in \mathbb{R}^n$, \mathbb{R}^n is the Euclidean space. If $A \subset \mathbb{R}^n$, $d(x, A) = \inf \{d(x, y) \mid y \in A\}$.

B[x,r] is the open ball of radius r>0 centered at $x\in\mathbb{R}^n$, Conv A is the convex covering of $A\subset\mathbb{R}^n$ and

$$|A| = \sup \{ \|\zeta\| \mid \zeta \in A \}.$$

 $\mathcal{C}(\mathbb{R}^n)$ is the set of compact and non-empty subsets of \mathbb{R}^n . Similarly with [1, 5, 15], we define the Aumann integral for multifunctions of three variables.

Definition 2.9. Let $D = [0, a] \times [0, b] \times [0, c] \subset \mathbb{R}^3$. For each $(x, y, z) \in D$, let H(x, y, z) be a non-empty subset of \mathbb{R}^n . Let \mathcal{H} be the set of functions $h: D \to \mathbb{R}^n$ integrable on D and $h(x, y, z) \in H(x, y, z)$ for each $(x, y, z) \in D$. Then, by the integral of the multifunction $H: D \to 2^{\mathbb{R}^n}$ we mean the set

$$\iiint\limits_{D} H(x, y, z) dx dy dz = \left\{ \iiint\limits_{D} h(x, y, z) dx dy dz \mid h \in \mathcal{H} \right\}.$$

In what follows we list some properties of the integral defined above.

Proposition 2.1. If $H: D \to 2^{\mathbb{R}^n}$ is an upper semi-continuous multifunction and there exists a positive real number C such that

$$|H\left(x,y,z\right)| = \sup\left\{ \left\|\zeta\right\| \mid \zeta \in H\left(x,y,z\right)\right\} \le C$$

for each $(x, y, z) \in D$, then

$$\iiint\limits_D H(x,y,z) \, dx \, dy \, dz = \iiint\limits_D \operatorname{conv} H(x,y,z) \, dx \, dy \, dz.$$

Proposition 2.2. If $H_k: D \to 2^{\mathbb{R}^n}$, $k \in \mathbb{N}$, are upper semi-continuous multifunctions and there exists a positive real number C such that $|H_k(x, y, z)| \leq C$ for each

 $(x,y,z) \in D$ and $k \in \mathbb{N}$, then

$$\iiint\limits_{D} \underline{\lim} H_{k}\left(x,y,z\right) dx \, dy \, dz \subset \underline{\lim} \iiint\limits_{D} H_{k}\left(x,y,z\right) dx \, dy \, dz.$$

Taking into account Definition 2 in [5], we have $(x,y,z)\in\underline{\lim}H_{k}\left(x,y,z\right)$ iff each neighbourhood of (x, y, z) intersects all the sets $H_k(x, y, z)$ with k large enough.

Proposition 2.3. If A is a compact subset of \mathbb{R}^n , independent of (x,y,z), then

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} A \, dx \, dy \, dz = (x_2 - x_1) (y_2 - y_1) (z_2 - z_1) \operatorname{conv} A,$$

where $(x_1, y_1, z_1), (x_2, y_2, z_2) \in D$.

Moreover, we need the following proposition.

Proposition 2.4. If K is a convex set in a Banach space X, then the set $K_{\varepsilon} = \bigcup_{x \in K} B[x, \varepsilon]$ is convex.

3 Results

In [16] the notion of a local solution for the Darboux Problem (1.1) + (1.2) is defined and is proved an existence theorem for a local solution of this problem, together with some properties of the set of its solutions, namely that this set is a compact subset in Banach space $C(D_0; \mathbb{R}^n)$ and, as a function of initial values, it defines an upper semi-continuous multifunction on $D_0 = [0, x_0] \times [0, y_0] \times [0, z_0] \subseteq D$.

Let the following hypotheses be satisfied:

- (H_1) $F: D \times \Omega \to 2^{\mathbb{R}^n}$ is a multifunction with compact convex non-empty values in \mathbb{R}^n , $D = [0, a] \times [0, b] \times [0, c] \subset \mathbb{R}^3$, and $\Omega \subset \mathbb{R}^n$ is an open subset.
- (H_2) For any $(x,y,z) \in D$, the mapping $u \to F(x,y,z,u)$ is upper semi-continuous on Ω .
- (H_3) For any $u \in \Omega$, the mapping $(x, y, z) \to F(x, y, z, u)$ is Lebesgue-measurable
- (H_4) There exists a function $k: D \to \mathbb{R}_+, k \in \mathcal{L}^1(D; \mathbb{R}^n)$ such that $\|\zeta\| \le k(x, y, z), (\forall) \zeta \in F(x, y, z, u), \quad (\forall) (x, y, z) \in D, \quad (\forall) u \in \Omega.$
- (H_5) The functions $\varphi \in C^*(D_1;\mathbb{R}^n), \ \psi \in C^*(D_2;\mathbb{R}^n), \ \chi \in C^*(D_3,\mathbb{R}^n)$ are absolutely continuous in Carathéodory's sense functions and satisfy condition (1.3).

Remark 1. The function $\alpha: D \to \mathbb{R}^n$ defined by

$$\alpha(x, y, z) = \varphi(x, y) + \psi(y, z) + \chi(x, z) - \varphi(x, 0) - - \varphi(0, y) - \psi(0, z) + \psi(0, 0) = = \varphi(x, y) + \psi(y, z) + \chi(x, z) - v^{1}(x) - v^{2}(y) - v^{3}(z) + v^{0},$$
(3.1)

is an absolutely continuous in Carathéodory's sense function on D, $\alpha \in C^*(D; \mathbb{R}^n)$ [2, §565 – 570].

Remark 2. Denote by $M \subset \Omega$ the convex compact set in which the function $\alpha: D \to \mathbb{R}^n$, defined by (3.1), takes its values for all $(x, y, z) \in D_0$.

Remark 3. Let $(x_0, y_0, z_0) \in]0, a] \times [0, b] \times [0, c]$ be a point such that

$$\int_{0}^{x_{0}} \int_{0}^{y_{0}} \int_{0}^{z_{0}} k(r, s, t) dr ds dt < d(M, C_{\Omega}),$$

where $d(M, C_{\Omega})$ is the distance from M to $C_{\Omega} = \mathbb{R}^n - \Omega$, an inequality immediately resulting from the integrability of function k.

Definition 3.1 [16]. The *Darboux Problem* for the hyperbolic inclusion (1.1) means to determine a *solution* of this inclusion which satisfies the initial conditions (1.2).

Definition 3.2 [16]. A local solution of Darboux Problem (1.1) + (1.2) is defined as a function $U: D_0 \to \Omega, U \in C^*(D_0; \mathbb{R}^n)$, absolutely continuous in Carathéodory's sense $[2, \S 565 - 570]$, which satisfies (1.1) for a.e $(x, y, z) \in D_0$, and also initial conditions (1.2) for all $(x, y) \in [0, x_0] \times [0, y_0]$, all $(y, z) \in [0, y_0] \times [0, z_0]$, all $(x, z) \in [0, x_0] \times [0, z_0]$.

In [16] we proved the following

Theorem 3.1 [16]. Let the hypotheses $(H_1) - (H_5)$ be satisfied. Then:

- (i) there exists at least a local solution U of Darboux Problem (1.1) + (1.2);
- (ii) the set S_{α} of the local solutions U is compact in Banach space $C(D_0; \mathbb{R}^n)$;
- (iii) the multifunction $\alpha \to S_{\alpha}$ is upper semi-continuous on $C^*(D_0; \mathbb{R}^n)$, taking values in $C(D_0; \mathbb{R}^n)$.

The solution U is a fixed point of a suitable multifunction which satisfies the Kakutani-Ky Fan fixed point theorem and it is of the form

$$U(x,y,z) = \alpha(x,y,z) + \int_0^x \int_0^y \int_0^z \beta(r,s,t) \, dr \, ds \, dt, \quad (x,y,z) \in D_0, \quad (3.2)$$

where

$$\beta(x, y, z) \in \Gamma(x, y, z) \subset F(x, y, z, U(x, y, z))$$
 for a.e. $(x, y, z) \in D_0$, (3.3)

 β is a measurable selection of the multifunction $\Gamma: D_0 \to \mathcal{C}(\mathbb{R}^n)$ [3, 4, 16].

Definition 3.3 [17]. A local solution for the Darboux Problem (1.1) + (1.2) U: $D_0 \to \Omega$ is prolongable (or non-saturated) if there exists a solution $U: D \to \mathbb{R}^n$ for the Darboux Problem (1.1) + (1.2) such that

$$\begin{cases}
D_0 \subseteq \widetilde{D}, & D_0 \neq \widetilde{D}, \\
\widetilde{U}(x, y, z) = U(x, y, z), & (x, y, z) \in D_0,
\end{cases}$$

where $\widetilde{D} \subseteq D$ is a union of D_0 with a finite number of adjacent parallelepipeds.

In [17] we proved the following theorems:

Theorem 3.2 [17]. Let the hypotheses $(H_1) - (H_5)$ be satisfied together with the hypotheses:

- (H_6) The set Ω is bounded, that is there exists a constant $C \in \mathbb{R}_+$ such that $||u|| \leq$ $C, (\forall) u \in \Omega.$
- (H_7) The multifunction F maps bounded sets onto bounded sets, hence a constant $K \in \mathbb{R}_+$ exists such that

$$\sup \{ \|\zeta\| \mid \zeta \in F(x, y, z, u) \} \le K,$$

for any $(x, y, z, u) \in D \times \Omega$.

Then the local solution U is prolongable.

Theorem 3.3 [17]. We assume the hypotheses $(H_1) - (H_7)$ to be satisfied. If $U: D_0 \to \Omega$ is a local solution of Darboux Problem (1.1) + (1.2) that is nonsaturated, hence prolongable, then there exists a saturated solution $U^*: D^* \to \Omega$ of the Darboux Problem (1.1) + (1.2) such that

$$\begin{cases}
D_0 \subseteq D^*, & D_0 \neq D^*, & D^* \subseteq D, \\
U^*(x, y, z) = U(x, y, z), & (x, y, z) \in D_0,
\end{cases}$$

hence U^* is a prolongation of U onto D^* that has been built by joining D_0 with a union of parallelepipeds adjacent to D_0 .

Theorem 3.4 [17]. Let the hypotheses $(H_1) - (H_7)$ be satisfied. If the saturated solution U^* is bounded on D^* , then $D^* = D$.

Theorem 3.5 [17]. Let the hypotheses $(H_1) - (H_7)$ be satisfied together with the hypothesis:

The multifunction $F: D \times \Omega \to 2^{\mathbb{R}^n}$ is sub-linear, hence two constants $k_1 > 0$ and $k_2 \in \mathbb{R}$ exist with the property

$$\sup \{ \|\zeta\| \mid \zeta \in F(x, y, z, u) \} \le k_1 \|u\| + k_2, \text{ for a.e. } (x, y, z) \in D, u \in \Omega.$$
 (3.4)

Then the saturated solution $U^*: D \to \Omega$ is bounded on D.

The saturated solution U^* has the form, by Theorem 3.1 [16],

$$U^{*}(x,y,z) = \alpha(x,y,z) + \int_{0}^{x} \int_{0}^{y} \int_{0}^{z} \beta^{*}(r,s,t) dr ds dt, \quad (x,y,z) \in D, \quad (3.5)$$

where $\alpha(x, y, z)$ is given by (3.1) and β^* is a measurable selection of the multivalued mapping Γ^* [3, 4, 16], defined on D with compact non-empty values in \mathbb{R}^n , i.e. $\Gamma^*: D \to \mathcal{C}(\mathbb{R}^n)$, such that

$$\beta^*(x, y, z) \in \Gamma^*(x, y, z) \subseteq F(x, y, z, U^*(x, y, z)) \text{ for a.e. } (x, y, z) \in D.$$
 (3.6)

Definition 3.4. A function $U: D \to \mathbb{R}^n$ is called a *solution* of the Darboux Problem (1.1)+(1.2) if it is absolutely continuous in Carathéodory's sense on $D, U \in C^*(D; \mathbb{R}^n)$ [2, §565 – 570] and satisfies (1.1) for a.e. $(x, y, z) \in D$, and also initial conditions (1.2) for all $(x, y) \in D_1$, all $(y, z) \in D_2$, all $(x, z) \in D_3$.

Similarly with [5, 15] in this paper we prove a theorem of characterization of the solutions for Darboux Problem (1.1) + (1.2).

Theorem 3.6. Let the hypotheses (H'_1) , (H_3) , (H_4) , (H_5) of Theorem 3.1 be satisfied:

 (H_1') $F: D \times \Omega \to 2^{\mathbb{R}^n}$ is an upper semi-continuous multifunction with compact convex non-empty values in \mathbb{R}^n , $D = [0,a] \times [0,b] \times [0,c] \subset \mathbb{R}^3$ and $\Omega \subset \mathbb{R}^n$ is an open bounded set.

The hypothesis (H'_1) includes the hypothesis (H_6) .

Then, the continuous function $U: D \to \mathbb{R}^n$ is a solution of Darboux Problem (1.1) + (1.2) if and only if for each $(x_1, y_1, z_1), (x_2, y_2, z_2) \in D$ the membership relation

$$[U(x_{2}, y_{2}, z_{2}) - U(x_{1}, y_{2}, z_{2}) - U(x_{2}, y_{1}, z_{2}) + U(x_{1}, y_{1}, z_{2})] -$$

$$-[U(x_{2}, y_{2}, z_{1}) - U(x_{1}, y_{2}, z_{1}) - U(x_{2}, y_{1}, z_{1}) + U(x_{1}, y_{1}, z_{1})] \in$$

$$\in \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} F(x, y, z, U(x, y, z)) dx dy dz,$$

$$(3.7)$$

holds, and U satisfies the conditions (1.2).

The difference in (3.7) is an extension of hyperbolic difference for functions in two variables.

Proof. The necessity of (3.7) is a consequence of the following arguments. Let U be a solution of (1.1) + (1.2) on D. It exists from Theorem 3.4 and has the form (3.5). We denote $U^* = U$.

$$U(x,y,z) = \alpha(x,y,z) + \int_0^x \int_0^y \int_0^z \beta(r,s,t) \, dr \, ds \, dt, \quad (x,y,z) \in D,$$
 (3.8)

$$\beta(x, y, z) \in \Gamma(x, y, z) \subseteq F(x, y, z, U(x, y, z))$$
 for a.e. $(x, y, z) \in D$. (3.9)

We denote $\delta = [x_1, x_2] \times [y_1, y_2] \times [z_1, z_2] \subseteq D$. By (3.8) it follows that

$$\frac{\partial^{3}U\left(x,y,z\right)}{\partial x \partial y \partial z} = \beta\left(x,y,z\right) \in \Gamma\left(x,y,z\right) \subseteq F\left(x,y,z,U\left(x,y,z\right)\right)$$
for a.e. $(x,y,z) \in D$

and U satisfies the conditions (1.2).

Choosing two points $(x_1, y_1, z_1), (x_2, y_2, z_2) \in D$ and integrating the equation (3.10) on δ we get

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} \frac{\partial^3 U(x, y, z)}{\partial x \partial y \partial z} dx \, dy \, dz = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \frac{\partial^2 U(x, y, z)}{\partial x \partial y} \Big|_{z=z_1}^{z=z_2} dx \, dy =$$

$$= \int_{x_1}^{x_2} \int_{y_1}^{y_2} \left[\frac{\partial^2 U(x, y, z_2)}{\partial x \partial y} - \frac{\partial^2 U(x, y, z_1)}{\partial x \partial y} \right] dx \, dy =$$

$$= \int_{x_1}^{x_2} \int_{y_1}^{y_2} \frac{\partial^2 U(x, y, z_2)}{\partial x \partial y} dx \, dy - \int_{x_1}^{x_2} \int_{y_1}^{y_2} \frac{\partial^2 U(x, y, z_1)}{\partial x \partial y} dx \, dy =$$

$$= \int_{x_1}^{x_2} \frac{\partial U(x, y, z_2)}{\partial x} \Big|_{y=y_1}^{y=y_2} dx - \int_{x_1}^{x_2} \frac{\partial U(x, y, z_1)}{\partial x} \Big|_{y=y_1}^{y=y_2} dx =$$

$$= \int_{x_1}^{x_2} \left[\frac{\partial U(x, y_2, z_2)}{\partial x} - \frac{\partial U(x, y_1, z_2)}{\partial x} \right] dx -$$

$$- \int_{x_1}^{x_2} \left[\frac{\partial U(x, y_2, z_1)}{\partial x} - \frac{\partial U(x, y_1, z_1)}{\partial x} \right] dx =$$

$$= \left[(U(x, y_2, z_2) \Big|_{x=x_1}^{x=x_2} - U(x, y_1, z_2) \Big|_{x=x_1}^{x=x_2} \right) -$$

$$- \left(U(x, y, z_1) \Big|_{x=x_2}^{x=x_2} - U(x, y_1, z_1) \Big|_{x=x_2}^{x=x_2} \right) =$$

$$= \left[(U(x_2, y_2, z_2) - U(x_1, y_2, z_2)) - (U(x_2, y_1, z_2) - U(x_1, y_1, z_2)) \right] -$$

$$- \left[(U(x_2, y_2, z_2) - U(x_1, y_2, z_2)) - (U(x_2, y_1, z_2) - U(x_1, y_1, z_2)) \right] -$$

$$- \left[U(x_2, y_2, z_2) - U(x_1, y_2, z_2) - U(x_2, y_1, z_2) + U(x_1, y_1, z_2) \right] -$$

$$- \left[U(x_2, y_2, z_1) - U(x_1, y_2, z_2) - U(x_2, y_1, z_2) + U(x_1, y_1, z_2) \right] -$$

$$- \left[U(x_2, y_2, z_1) - U(x_1, y_2, z_2) - U(x_2, y_1, z_2) + U(x_1, y_1, z_2) \right] -$$

$$- \left[U(x_2, y_2, z_1) - U(x_1, y_2, z_1) - U(x_2, y_1, z_1) + U(x_1, y_1, z_1) \right] =$$

$$= \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} \beta(x, y, z) \, dx \, dy \, dz \in$$

$$\subseteq \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} F(x, y, z, U(x, y, z)) \, dx \, dy \, dz.$$
(3.11)

According to (3.11), we have (3.7) satisfied it was stated.

In order to prove the *sufficiency* of (3.7), we firstly prove that the continuous function U, satisfying (3.7) and (1.2), has the derivative $\frac{\partial^3 U(x,y,z)}{\partial x \partial y \partial z}$ for a.e $(x,y,z) \in D$. For this, we prove that U is absolutely continuous in Carathéodory's sense on D. We associate to the continuous function U, the interval function $[2, \S453, 565]$,

$$\Phi(\delta) = \left[U(x_2, y_2, z_2) - U(x_1, y_2, z_2) - U(x_2, y_1, z_2) + U(x_1, y_1, z_2) \right] - \left[U(x_2, y_2, z_1) - U(x_1, y_2, z_1) - U(x_2, y_1, z_1) + U(x_1, y_1, z_1) \right].$$
(3.12)

We prove that $\Phi(\delta)$ is absolutely continuous, using the Theorem 1 in [2, §453]. From (3.7) and (3.12) we get

$$\Phi(\delta) \in \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} F(x, y, z, U(x, y, z)) dx dy dz.$$
 (3.13)

In view of Definition 2.9 and (3.11), the relation (3.7) holds for $(x, y, z) \in \delta$. Then (3.7), (3.11), (3.13) yield

$$\Phi(\delta) = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} \beta(x, y, z) \, dx \, dy \, dz \in
\in \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} F(x, y, z, U(x, y, z_1)) \, dx \, dy \, dz.$$
(3.14)

According to the hypothesis (H_4) , we obtain

$$\|\Phi(\delta)\| \le \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} \|\beta(x, y, z)\| \, dx \, dy \, dz \le$$

$$\le \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} k(x, y, z) \, dx \, dy \, dz. \tag{3.15}$$

We set

$$\eta(\lambda) = \sup_{\mu(\delta) < \lambda} \|\Phi(\delta)\|, \text{ for any } \lambda \in \mathbb{R}_+.$$
(3.16)

In view of the absolute continuity of the integral, for each $\varepsilon > 0$ there exists a $\delta_1(\varepsilon) > 0$ such that

$$\iiint_{\delta} k(x, y, z) dx dy dz = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} k(x, y, z) dx dy dz < \varepsilon,$$
 (3.17)

whenever $\mu(\delta) < \delta_1(\varepsilon)$.

Let $\lambda < \delta_1(\varepsilon)$. According to (3.15), (3.16), (3.17) we obtain

$$\eta(\lambda) \le \sup \iiint_{\delta} k(x, y, z) dx dy dz = \int_{x_1}^{x_2} \int_{y}^{y_2} \int_{z_1}^{z_2} k(x, y, z) dx dy dz < \varepsilon, \tag{3.18}$$

whenever $\mu(\delta) \leq \lambda < \delta_1(\varepsilon)$, or

$$\lim_{\lambda \to 0} \eta(\lambda) = 0. \tag{3.19}$$

According to Theorem in [2, §453] the interval function $\Phi(\delta)$ is absolutely continuous. Since the continuous function U satisfies the conditions (1.3) the hypothesis (H_5) holds too. In view of [2, §567]the function U is absolutely continuous in Carathéodory's sense. From Theorems 5, 6 [2, §569 – 570] the function U has the derivative $\frac{\partial^3 U(x,y,z)}{\partial x \partial y \partial z}$ for a.e. $(x,y,z) \in D$.

It remains to prove that the function U satisfies the inclusion (1.1).

Taking into account the hypothesis (H_1) and the continuity of the function U, it follows that the multifunction $\widetilde{F}: D \to 2^{\mathbb{R}^n}$, given by

$$\widetilde{F}(x,y,z) = F(x,y,z,U(x,y,z)), \quad (x,y,z) \in D, \tag{3.20}$$

is upper semi-continuous on D. Then by Theorem 9.3.1 [13] and [5], Definition 1, we deduce

$$\widetilde{F}\left(\left[B\left(x,y,z\right),\delta_{2}\right]\right)\subset B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right],\quad\left(x,y,z\right)\in D,$$
(3.21)

where $B\left[\left(x,y,z\right),\delta_{2}\right]$ is the open ball centered at $\left(x,y,z\right)\in D$ of radius $\delta_{2}=\delta_{2}\left(\varepsilon\right)>0$ and

$$B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right] = \left\{\omega \in \mathbb{R}^{n} \mid d\left(\omega,\widetilde{F}\left(x,y,z\right)\right) < \varepsilon\right\}. \tag{3.22}$$

Fix $(x, y, z) \in D$. If $(x', y', z') \in B[(x, y, z), \delta_2]$, then

$$\widetilde{F}\left(x',y',z'\right)\subset B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]$$
 (3.23)

because by Definition 2.1, and by Definition 9.1.2 [13, p.67) and also [5, 2] we have

$$\widetilde{F}\left(B\left[\left(x,y,z\right),\delta_{2}\right]\right)=\left\{\bigcup\widetilde{F}\left(x',y',z'\right)\mid\left(x',y',z'\right)\in B\left[\left(x,y,z\right),\delta_{2}\right]\right\}.\tag{3.24}$$

The condition (3.7) may be rewritten as

$$\left[U\left(x',y',z'\right) - U\left(x,y',z'\right) - U\left(x',y,z'\right) + U\left(x,y,z'\right)\right] - \\
- \left[U\left(x',y',z\right) - U\left(x,y',z\right) - U\left(x',y,z\right) + U\left(x,y,z\right)\right] \in \\
\in \int_{x}^{x'} \int_{y}^{y'} \int_{z}^{z'} F\left(r,s,t,U\left(r,s,t\right)\right) dr \, ds \, dt, \tag{3.25}$$

for the domain $[x, x'] \times [y, y'] \times [z, z'] \subseteq D$.

According to (3.20), we deduce from (3.25) that

$$[U(x',y',z') - U(x,y',z') - U(x',y,z') + U(x,y,z')] - [U(x',y',z) - U(x,y',z) - U(x',y,z) + U(x,y,z)] \in$$

$$\in \int_{x}^{x'} \int_{y}^{y'} \int_{z}^{z'} \widetilde{F}(r, s, t,) dr ds dt.$$
(3.26)

By $(x', y', z') \in B[(x, y, z), \delta_2]$, we obtain $|x - x'| < \delta_2$, $|y - y'| < \delta_2$, $|z - z'| < \delta_2$. Moreover $|r - x| < \delta_2$, $|s - y| < \delta_2$, $|t - z| < \delta_2$ for $x \le r \le x'$, $y \le s \le y'$, $z \le t \le z'$.

By (3.23) we have

$$\widetilde{F}\left(r,s,t\right)\subset B\left[\widetilde{F}\left(r,s,t\right),\varepsilon\right].$$
 (3.27)

Then, by (3.27), the relation (3.26) yields

$$\left[U\left(x',y',z'\right) - U\left(x,y',z'\right) - U\left(x',y,z\right) + U\left(x,y,z'\right)\right] - \\
- \left[U\left(x',y',z\right) - U\left(x,y',z\right) - U\left(x',y,z\right) + U\left(x,y,z\right)\right] \in \\
\in \int_{x}^{x'} \int_{y}^{y'} \int_{z}^{z'} B\left[\widetilde{F}\left(r,s,t,\right),\varepsilon\right] dr \, ds \, dt. \tag{3.28}$$

As the multifunction \widetilde{F} , given by (3.20), is upper semi-continuous on D, the set $B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]$ is closed in \mathbb{R}^{n} .

In view of (3.22) it follows that $B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]$ is also bounded in \mathbb{R}^n and therefore it is a compact set. Then we can use Proposition 2.3, setting $A=B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]$ and $[x,x']\times[y,y']\times[z,z']$ instead of $\delta=[x_1,x_2]\times[y_1,y_2]\times[z_1,z_2]$, we obtain

$$\int_{x}^{x'} \int_{y}^{y'} \int_{z}^{z'} B\left[\widetilde{F}(x, y, z), \varepsilon\right] dr ds dt =$$

$$= (x' - x) (y' - y) (z' - z) \operatorname{conv} B\left[\widetilde{F}(x, y, z), \varepsilon\right].$$
(3.29)

According to (3.29), the relation (3.28) yields

$$\left[U\left(x',y',z'\right) - U\left(x,y',z'\right) - U\left(x',y,z'\right) + U\left(x,y,z'\right)\right] - \\
- \left[U\left(x',y',z\right) - U\left(x,y',z\right) - U\left(x',y,z\right) + U\left(x,y,z\right)\right] \in \\
\in \left(x'-x\right)\left(y'-y\right)\left(z'-z\right)\operatorname{conv}B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right].$$
(3.30)

By Proposition (2.4), the set $B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]$ is convex and therefore

$$\operatorname{conv} B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right] = B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]. \tag{3.31}$$

Using (3.31), the relation (3.30) yields

$$[U(x',y',z') - U(x,y',z') - U(x',y,z') + U(x,y,z')] - [U(x',y',z) - U(x,y',z) - U(x',y,z) + U(x,y,z)] \in$$

$$\in (x'-x)(y'-y)(z'-z)B\left[\widetilde{F}(x,y,z),\varepsilon\right]. \tag{3.32}$$

From (3.32) we get

$$\left[\frac{U\left(x',y',z'\right) - U\left(x,y',z'\right)}{x'-x} - \frac{U\left(x',y,z'\right) - U\left(x,y,z'\right)}{x'-x}\right] - \left[\frac{U\left(x',y',z\right) - U\left(x,y',z\right)}{x'-x} - \frac{U\left(x',y,z\right) - U\left(x,y,z\right)}{x'-x}\right] \in \left(y'-y\right)\left(z'-z\right)B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right].$$
(3.33)

Taking into account that $B\left[\widetilde{F}\left(x,y,z\right),\varepsilon\right]$ is closed, the relation (3.33) yields

$$\lim_{x' \to x} \left\{ \left[\frac{U\left(x', y', z'\right) - U\left(x, y', z'\right)}{x' - x} - \frac{U\left(x', y, z'\right) - U\left(x, y, z'\right)}{x' - x} \right] - \left[\frac{U\left(x', y', z\right) - U\left(x, y', z\right)}{x' - x} - \frac{U\left(x', y, z\right) - U\left(x, y, z\right)}{x' - x} \right] \right\} =$$

$$= \left\{ \left[\frac{\partial U}{\partial x} \left(x, y', z' \right) - \frac{\partial U}{\partial x} \left(x, y, z' \right) \right] - \left[\frac{\partial U}{\partial x} \left(x, y', z \right) - \frac{\partial U}{\partial x} \left(x, y, z \right) \right] \right\} \in$$

$$\in \left(y' - y \right) \left(z' - z \right) B \left[\widetilde{F} \left(x, y, z \right), \varepsilon \right]$$

$$(3.34)$$

and

$$\lim_{y' \to y} \left[\frac{\frac{\partial U}{\partial x} (x, y', z') - \frac{\partial U}{\partial x} (x, y, z')}{y' - y} - \frac{\frac{\partial U}{\partial x} (x, y', z) - \frac{\partial U}{\partial x} (x, y, z)}{y' - y} \right] \in \left(z' - z \right) B \left[\widetilde{F} (x, y, z), \varepsilon \right]$$
(3.35)

or

$$\frac{\partial^{2} U}{\partial x \partial y}\left(x, y, z'\right) - \frac{\partial^{2} U}{\partial x \partial y}\left(x, y, z\right) \in \left(z' - z\right) B\left[\widetilde{F}\left(x, y, z\right), \varepsilon\right]. \tag{3.36}$$

It results

$$\frac{\partial^{2} U}{\partial x \partial y}(x, y, z') - \frac{\partial^{2} U}{\partial x \partial y}(x, y, z)}{z' - z} \in B\left[\widetilde{F}(x, y, z), \varepsilon\right]$$
(3.37)

and

$$\lim_{z' \to z} \frac{\frac{\partial^2 U}{\partial x \partial y}(x, y, z') - \frac{\partial^2 U}{\partial x \partial y}(x, y, z)}{z' - z} = \frac{\partial^3 U}{\partial x \partial y \partial z}(x, y, z) \in B\left[\widetilde{F}(x, y, z), \varepsilon\right]. \quad (3.38)$$

Since $\widetilde{F}(x,y,z)$ is closed and F is an upper semi-continuous multifunction, the relation (3.38) yields, for $\varepsilon \to 0$,

$$\frac{\partial^{3} U}{\partial x \partial y \partial z}(x, y, z) \in \widetilde{F}(x, y, z) = F(x, y, z, U(x, y, z)) \text{ for a.e. } (x, y, z) \in D. \quad (3.39)$$

Therefore, U satisfies the inclusion (1.1) as stated.

References

- [1] Aumann R.J. Integrals of Set Valued Functions. Journal of Mathematical Analysis and Applications, 1956, 12, p. 1–12.
- [2] CARATHÉODORY C. Vorlesungen über Reelle Funktionen. Chelsea Publishing Company, New York, 1968, 3 Ed.
- [3] CASTAING GH. Sur les équations differentielles multivoques. Comptes Rendus Acad. Sci. Paris, 1966, 263, N 2, Série A, P. 63–66.
- [4] Castaing Ch. Quelques problèmes de mésurabilité liés à la théorie de la commande. Comptes Rendus Acad. Sci. Paris, 1966, **262**, N 7, Série A, p. 409–411.
- [5] CELLINA A. Multivalued differential equations and ordinary differential equations. SIAM J. Appl. Math., 1970, 18, N 2, p. 533–538.
- [6] CERNEA A. *Incluziuni diferențiale hiperbolice și control optimal*. Editura Academiei Române, București, 2001.
- [7] DEIMLING K. A Carathéodory theory for systems of integral equations. Ann. Mat. Pura Appl., 1970,4, N 86, p. 217–260.
- [8] Deimling K. Das Picard-Problem für $u_{xy} = f(x, y, u, u_x, u_y)$ unter Carathéodory-Voraussetzungen. Math. Z., 1970, **114**, p. 303–312.
- [9] DEIMLING K. Das charakteristiche Anfangswertproblem für u_{x1x2x3} = f unter Carathéodory-Voraussetzungen. Arch. Math. (Basel), 1971, 22, p. 514-522.
- [10] MARANO S. Generalized Solutions of Partial Differential Inclusions Depending on a Parameter. Rend. Acad. Naz. Sc. XL., Mem. Mat., 1989, 13, p. 281–295.
- [11] MARANO S. Classical Solutions of Partial Differential Inclusions in Banach space. Appl. Anal., 1991, 42, p. 127–143.
- [12] MARANO S. Controllability of Partial Differential Inclusions Depending on a Parameter and Distributed Parameter Control Process. Le Matematiche, 1990, XLV, p. 283–300.
- [13] Rus I.A. Principii și aplicații ale teoriei punctului fix. Editura Dacia, Cluj-Napoca, 1979.
- [14] SOSULSKI W. On neutral partial functional-differential inclusions of hyperbolic type. Demonstratio Mathematica, 1990, 23, p. 893–909.
- [15] TEODORU G. A characterization of the solutions of the Darboux Problem for the equation $\frac{\partial^2 z}{\partial x \partial y} \in F(x,y,z).$ Analele Științifice ale Universității "Al. I. Cuza" Iași, 1987, **33**, s. I a, Matematică, f. 1, p. 33–38.
- [16] TEODORU G. The Darboux Problem for third order hyperbolic inclusions. Libertas Matematica, 2003, 23, p. 119–127.
- [17] TEODORU G. Prolongation of solutions of the Darboux Problem for third order hyperbolic inclusions. Libertas Matematica, 2006, 26, p. 83–96.

Department of Mathematics Technical University "Gh. Asachi" Iaşi 11 Carol I Blvd., RO-700506 Iaşi 6, România

E-mail: teodoru@math.tuiasi.ro

Received October 4, 2006