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1 Introduction

In this paper we consider the Darboux Problem for a third order hyperbolic
inclusion of the form

Pu(z,y,z)

8!1781/62 eF(m’y’Z’u)’ (w,y,Z)ED:[O,CL]X[O,Z)]X[O,C], ueQ C R (11)

with initial values

u(x,y,O)zgo(:L",y), ($>y)6D1:[07a]x[0’b]7
u(O,y,z) = 1/1(?/72’)7 (y,Z) €Dy = [Ovb] X [076]7 (1'2)
u(z,0,2) =x(x,2), (x,2)€ D3=][0,a] x[0,c]

where ¢,,x are absolutely continuous in Carathéodory’s sense functions
[2,8565 — 570], ¢ € C* (D1;R™), ¢ € C* (D9;R™), x € C* (D3;R™) and they satisfy
the conditions

’LL(:L',0,0):(,D(QZ‘,O):X(ZL',O):U (:E)v $€[07a]7

u(0,4,0) = ¢ (0,y) =4 (y,0) =v*(y), y€[0,b], (1.3)
u(0,0,2) =9 (0,2) = x(0,2) =v*(2), 2€0,d, '
1 (0,0,0) = v! (0) = v (0) = v3 (0) = 2°,

where F : D x Q — 28" is a multifunction with compact, convex and non-empty
values and 2 C R" is an open subset.

Under suitable assumptions, we proved in [16] an existence theorem for a local
solution of the Darboux Problem (1.1) + (1.2) and that the set of its solutions is
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compact in Banach space C (Dg; R™), Do=10, 0] %[0, y0] %[0, z0] C D; moreover, as a
function of the initial values this set defines an upper semi-continuous multifunction.

In [17] we proved a theorem of prolongation for the solutions of the considered
problem and also an existence theorem for a saturated solution.

In this paper we prove a characterization of the solutions of Darboux Problem
(1.1) + (1.2) using the Aumann integral defined for multifunctions.

This study has been suggested by [15] and it provides an extension of the results
in that article.

2 Preliminaries

The definitions and Theorems 2.1-2.5 plus Propositions 2.1-2.4 in this section
are taken from [1, 2, 5-14].

Definition 2.1. Let X and Y be two non-empty sets. A multifunction ® : X — 2Y
is a function from X into the family of all non-empty subsets of Y.

To each x € X, a subset ® (x) of Y is associated by the multifunction ®. The
set |J @ (x) is the range of ®. & (X)={J®(x) |z € X}.

reX
Definition 2.2. Let us consider ® : X — 2V,

a) If A C X, the image of Aby ®is & (A) = |J @ (x);
€A
b) If B C Y, the counterimage of B by ® is

" (B)={ze X |®(zx)NB#0};
¢) The graph of ®, denoted graph @, is the set
graph® = {(z,y) e X xY |y € & (2)}.

Definition 2.3. Let us now take ® : X — 2¥. An element z € X with the property
x € ®(x) is called a fized point of the multifunction ®.

Definition 2.4. A univalued function ¢ : X — Y is said to be a selection of
d:X —2Vif p(x) € ®(z) for all v € X.

Definition 2.5. Let X and Y be two topological spaces. The multifunction
®: X — 2Y is upper semi-continuous if, for any closed B C Y, &~ (B) is closed
in X.

Definition 2.6. If (X,F) is a measurable space and Y is a topological space,
the multifunction ® : X — 2Y is measurable if ®~ (B) € F for every closed sub-
set B C Y, F being the o-algebra of the measurable sets of X, i.e. ®~ (B) is
measurable.

Theorem 2.1 [13]. Let X and Y be two metric spaces, Y compact and ® : X — 2V

a multifunction with the property that ® (x) is a closed subset of Y for any x € X.
The following assertions are equivalent:
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i) the multifunction ® is upper semi-continuous;
i1) the graph of ® is a closed subset of X X Y;

i11) any would be the sequences (Tn),cny nd (Yn)pens from xn — x, yp € @ (25)
and y, — y it follows that y € ® (x).

Definition 2.7 [2, 7, 8]. The function u : A — R" A C R?, is absolutely con-
tinuous in Carathéodory’s sense [2,8565 — 570] if and only if it is continuous on
A, absolutely continuous in z (for any y), absolutely continuous in y (for any z),
ug (z,y) is (possibly after a suitable definition on a two-dimensional set of zero mea-
sure) absolutely continuous in y (for any x) and u,, is Lebesgue-integrable on A.

Theorem 2.2 [2, 6, 14]. The function u : A — R", A = [0,a] x [0,b] C R?,
is absolutely continuous in Carathéodory’s sense on A if and only if there exist
feL'(NRY), g L' ([0,a] ;R™), h € L' ([0,b] ; R™) such that

T Yy z Yy
u(z,y) :/ / f(s,t)dsdt+/ g(s)ds+/ h (t)dt +u (0,0).
o Jo 0 0
We denote the class of absolutely continuous functions in Carathéodory’s sense
by C* (A;R™) [7, 8]. In [6], this space is denoted by AC (A;R™).
Theorem 2.3 [6]. The space C* (A;R™) endowed with the norm

a b a b
() = /O /O ltay (s, £)]| ds dt + /0 s (3, 0)]] ds + /O ity (0,) ] dt + [ (0,0)]],

A =[0,a] x [0,b] C R2, where ||| is the Euclidean norm, is a Banach space.

Definition 2.8 [2, 9]. The function u : D — R™, D C R3, is absolutely continuous
in Carathéodory’s sense [2,8565 — 570] if and only if u (z,y, z) is continuous on D,
absolutely continuous in each variable (for any pair of the other two variables) and
similarly for ug (x,v, 2), uy (2,9, 2), U, (2, Y, 2), Ugy (2, Y, 2), Uy: (T, Y, 2), Uz (T, Y, 2),
and gy, is Lebesgue-integrable on D.

Theorem 2.4 [6]. The function w : D — R", D = [0,a] x [0,b] x [0,c] C R3,
is absolutely continuous in Carathéodory’s sense on D if and only if there ex-
ist f e L'(D;R"), g1 € L'(DiR"), go € L'(Dy;R"), g3 € L' (D3R"),
hi € L' ([0,a] ;R™), ho € L' ([0,b];R™), hs € L ([0, ] ; R™), such that

z Y z T y
u(:lt,yaz):/ / / f(r,s,t)drdsdt—l—/ / g1 (r,s)drds+
o Jo Jo o Jo
Yy z T z
+/ / 92 (S,t)dsdt—i-/ / gs (r,t) dr dt+
o Jo o Jo

+/Oxh1(T)d?”—l—/yhg(S)ds—l-/zhg(t)dt—i-u(o,o,()).

0 0
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We denote the class of absolutely continuous functions in Carathéodory’s sense
on D by C* (D;R"™) [9].

Theorem 2.5 [6]. The space C* (D;R™) endowed with the norm

a b c a b
Y =:]f j/ J/ Huxyz(né%tﬂldrdsdt+—j/ J/ lty (ry 5,0 dr ds+
0 0 0 0 0
b c a c
ﬁ//wW@&www+//wwmwwwmw
0 0 0 0

a b
+/u%mmww+/w%m@mwﬁ
0 0
+/u%@awﬁ+mw@mm
0

where ||| is the Euclidean norm, is a Banach space.

We denote by d (z,y) the Euclidean distance from z to y, x,y € R™, R™ is the
Euclidean space. If A C R", d(z,A) =inf{d (z,y) |y € A}.

B [z, 7] is the open ball of radius 7 > 0 centered at x € R", Conv A is the convex
covering of A C R" and

| Al = sup{[[¢]| [ ¢ € A}

C (R™) is the set of compact and non-empty subsets of R™. Similarly with [1, 5, 15],
we define the Aumann integral for multifunctions of three variables.

Definition 2.9. Let D = [0,a] x [0,b] x [0,c] C R3. For each (z,y,2) € D, let
H (z,y, z) be a non-empty subset of R"”. Let H be the set of functions h : D — R"
integrable on D and h(z,y,2) € H (x,y,z) for each (z,y,2z) € D. Then, by the
integral of the multifunction H : D — 28" we mean the set

// H(z,y,2)drdydz = ///h(a:,y,z)da:dydz]hEH
D D

In what follows we list some properties of the integral defined above.

Proposition 2.1. If H : D — 2R" is an upper semi-continuous multifunction and
there exists a positive real number C' such that

[H (z,y,2)| = sup {[IC[| | ¢ € H (z,y,2)} <C

for each (z,y,z) € D, then

// H(x,y,z dxdydz-///coan x,y,z)drdydz.

Proposition 2.2. If H, : D — 28", k € N, are upper semi-continuous multifunc-
tions and there exists a positive real number C such that |Hy (z,y,z)| < C for each
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(x,y,2) € D and k € N, then

///h_mHk (z,y,2) dx dy dz Chﬂ///Hk (z,y,2) dx dy dz.
D D

Taking into account Definition 2 in [5], we have (x,y, z) € limHy, (x,y, z) iff each
neighbourhood of (z,y, z) intersects all the sets Hy, (z,y, z) with k large enough.

Proposition 2.3. If A is a compact subset of R™, independent of (z,vy,z), then

T2 Y2 z2
/ / / Adudydz = (5 — 1) (32 — 1) (22 — 21) conv 4,
Tl Y1 Z1

where (x1,y1,21) , (€2,Y2,22) € D.
Moreover, we need the following proposition.

Proposition 2.4. If K is a convex set in a Banach space X, then the set

K. = |J B]x,¢| is conver.
reK

3 Results

In [16] the notion of a local solution for the Darboux Problem (1.1) 4+ (1.2) is
defined and is proved an existence theorem for a local solution of this problem,
together with some properties of the set of its solutions, namely that this set is a
compact subset in Banach space C (Dy;R"™) and, as a function of initial values, it
defines an upper semi-continuous multifunction on Dy = [0, zo] % [0, yo] % [0, 29| C D.

Let the following hypotheses be satisfied:

(Hy) F:DxQ — 2% is a multifunction with compact convex non-empty values in
R™, D = [0,a] x [0,b] x [0,¢] C R3, and Q C R" is an open subset.

(Hg) For any (x,y,z) € D, the mapping u — F (x,y, z,u) is upper semi-continuous
on 2.

(H3) For any u € , the mapping (x,y,z) — F (z,y, z,u) is Lebesgue-measurable
on D.

(H,;) There exists a function k : D — Ry, k € £ (D;R") such that

1Kl <k (2,y,2), (V) C € Fx,y,2,u), (V)(z,9,2) €D, (V)ue,

(Hs) The functions ¢ € C*(D;R"™), ¢ € C*(Dg;R"™), x € C*(D3,R™) are ab-
solutely continuous in Carathéodory’s sense functions and satisfy condition
(1.3).
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Remark 1. The function « : D — R” defined by

a(r,y,z) =¢(@y) + ¢ (Y,2) +x(2,2) — ¢ (,0) -
- @(an) - ¢(072) +¢(07O) =
=@ (@,y) + ¥ (y,2) +x(2,2) —v' (2) =0 (1) = 0° (2) +0°,  (3.1)
is an absolutely continuous in Carathéodory’s sense function on D, o € C*(D;R"™)
[2,8565 — 570].

Remark 2. Denote by M C  the convex compact set in which the function
a: D — R" defined by (3.1), takes its values for all (z,y, z) € Dy.

Remark 3. Let (xg,yo, 20) €]0,a]x]0,b]x]0,c|] be a point such that

Yo
/ / / (rys,t)drdsdt < d(M,Cq),

where d (M, Cq) is the distance from M to Cq = R™ — ), an inequality immediately
resulting from the integrability of function k.

Definition 3.1 [16]. The Darboux Problem for the hyperbolic inclusion (1.1) means
to determine a solution of this inclusion which satisfies the initial conditions (1.2).

Definition 3.2 [16]. A local solution of Darboux Problem (1.1)+ (1.2) is defined as
a function U : Dy — Q,U € C* (Dy; R™), absolutely continuous in Carathéodory’s
sense [2,8565 — 570], which satisfies (1.1) for a.e (z,y,2z) € Dy, and also initial
conditions (1.2) for all (z,y) € [0, x0] x [0, yo], all (y,2) € [0,y0] x [0, 0], all (x,z) €
[0, xo] X [O, ZO].

In [16] we proved the following
Theorem 3.1 [16]. Let the hypotheses (Hy) — (Hs) be satisfied. Then:

(i) there exists at least a local solution U of Darboux Problem (1.1) 4 (1.2);
(ii) the set Sy of the local solutions U is compact in Banach space C (Dg;R™);

(#i1) the multifunction o — S is upper semi-continuous on C* (Dg;R™), taking
values in C' (Dgy; R™).

The solution U is a fixed point of a suitable multifunction which satisfies the
Kakutani-Ky Fan fixed point theorem and it is of the form

U(z,y,2) = a(x,y,z / / / B(r,s,t)drdsdt, (z,y,z)€ Dy, (3.2)
where
B(x,y,2) €T (x,y,2) C F(2,y,2U (z,y,2)) for a.e. (2,y,2) € Dy, (3-3)

0 is a measurable selection of the multifunction T': Dy — C (R"™) [3, 4, 16].
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Definition 3.3 [17]. A local solution for the Darboux Problem (1.1) + (1.2) U :

Dy — Q is prolongable (or non-saturated) if there exists a solution U: D — R" for
the Darboux Problem (1.1) + (1.2) such that

Dy C 57 Dy 7£ 157
U(‘Tayﬂz):U(x7y7z)7 (‘Tayaz)ED07
where D C D is a union of Dy with a finite number of adjacent parallelepipeds.

In [17] we proved the following theorems:

Theorem 3.2 [17]. Let the hypotheses (Hy) — (Hs) be satisfied together with the
hypotheses:

(Hg) The set Q is bounded, that is there exists a constant C' € Ry such that ||u]| <
C,, (V)ue Q.

(H7) The multifunction F' maps bounded sets onto bounded sets, hence a constant
K e Ry exists such that

sup{[[C]l [ ¢ € F (2,y,2,u)} < K,
for any (z,y,z,u) € D x .

Then the local solution U is prolongable.

Theorem 3.3 [17]. We assume the hypotheses (Hy) — (Hz7) to be satisfied. If
U : Dy — Q is a local solution of Darbouz Problem (1.1) + (1.2) that is non-
saturated, hence prolongable, then there exists a saturated solution U* : D* — Q) of
the Darboux Problem (1.1) + (1.2) such that

Dy C D*, Dy+#D*, D*CD,
u* (m,y,z)zU(m,y,z), (m,y,z) 6D07

hence U* is a prolongation of U onto D* that has been built by joining Do with a
union of parallelepipeds adjacent to Dy.

Theorem 3.4 [17]. Let the hypotheses (Hy) — (H7) be satisfied. If the saturated
solution U™ is bounded on D*, then D* = D.

Theorem 3.5 [17]. Let the hypotheses (Hy) — (H7) be satisfied together with the
hypothesis:

(Hg) The multifunction F : D x  — 28" is sub-linear, hence two constants ki > 0
and ko € R exist with the property

sup{||¢|| | CEF (x,y, z,u)} < ky ||ul| + k2, for a.e. (x,y,2)€D, ue. (3.4)
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Then the saturated solution U* : D — ) is bounded on D.
The saturated solution U* has the form, by Theorem 3.1 [16],

U* (2,9, 2) = o (2,1, 2 ///ﬁ (ros. ) drdsdt, (z.4,2) €D, (3.5

where « (z,y, z) is given by (3.1) and 3* is a measurable selection of the multivalued
mapping I'* [3, 4, 16], defined on D with compact non-empty values in R", i.e.
I'*: D — C(R™), such that

B (x,y,2) € T* (x,y,2) C F(x,y,2,U" (z,y,2)) for a.e. (x,y,2) € D. (3.6)

Definition 3.4. A function U : D — R" is called a solution of the Darboux
Problem (1.1)4(1.2) if it is absolutely continuous in Carathéodory’s sense on D, U €
C* (D;R™) [2,8565 — 570] and satisfies (1.1) for a.e. (z,y,2) € D, and also initial
conditions (1.2) for all (z,y) € Dy, all (y,z) € Dy, all (z,2) € Ds.

Similarly with [5, 15] in this paper we prove a theorem of characterization of the
solutions for Darboux Problem (1.1) + (1.2).

Theorem 3.6. Let the hypotheses (H}), (Hs), (Hy), (Hs) of Theorem 3.1 be satis-
fied:

(H]) F:DxQ — 2R™ is an upper semi-continuous multifunction with compact
convex non-empty values in R™, D = [0,a] x [0,b] x [0,c] C R3 and Q C R™ is
an open bounded set.

The hypothesis (Hy) includes the hypothesis (Hg).

Then, the continuous function U : D — R" is a solution of Darboux Problem
(1.1) + (1.2) if and only if for each (z1,y1,21), (®2,y2,22) € D the membership
relation

U (x2,y2,22) — U ($1,y2722) — U (z2,91,22) + U (21,41, 22)] —
— U (w2,y2,21) = U (w1,y2,21) — U (22,91, 21) + U (21,91, 21)] €

/ /:2/ (z,y,2,U (2,y,2)) dv dy dz, (3.7)

holds, and U satisfies the conditions (1.2).
The difference in (3.7) is an extension of hyperbolic difference for functions in
two variables.

Proof. The necessity of (3.
be a solution of (1.1) + (1.2
(3.5). We denote U* = U.

7) is a consequence of the following arguments. Let U
) on D. It exists from Theorem 3.4 and has the form

Ulz,y,z) =a(x,y,2) ///Brstdrdsdt (z,y,2) € D, (3.8)
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B* = [ is a measurable selection of multivalued mapping I'* = T" [3, 4, 16] defined
on D with compact non-empty values in R",T": D — C (R"),

B(z,y,2) €T (x,y,2) C F(x,y,2,U (2,y,2)) forae (z,y,2)€D. (3.9
We denote 0 = [x1,x2] X [y1,y2] X [21,22] C D. By (3.8) it follows that

U (z,y, 2)

pu— C )
ERENER B(z,y,2z) €T (x,y,2) C F (x,y,2,U (z,y,2)) (3.10)

for a.e. (z,y,2) € D

and U satisfies the conditions (1.2).
Choosing two points (x1,y1,21), (T2,y2,22) € D and integrating the equation
(3.10) on & we get

vz 2 9317 (r,y,2 /”/WOQU(xyz)
U @Y%) 1o e — gr\LY2)
/ /y / ERENER y oy T oxdy
.’L’ ' Ys ZQ) - 82U ('Z'?y? Zl) _
/ /y [ D0y dedy | W=

2 9°U (z,y, z2) / /y2 U (x,y,21)
= ——————"dxdy ——————dxdy =
/ /y 00y o1 Jn 0x0y

:/“"’2 E?U(w,y,zz)‘y dex_/xz aU(a:,y,zl)‘y v

z2=2z9
dx dy =

z=z1

1 ax Y=y1 1 ax Y=y1
_ /”E2 [8U (x,y2,22) OU ($>y1,22)} d
- - T—
o ox Ox
_ /x2 aU (x,yQ,Zl) - 8U (x7y1721) dr =
o ox Ox
T=x9 T=T2
= (U (7,92, 22) — U (2,41, 22) ) -
T=x1 T=x1
(Ve [ -vena [ ) -
T=x1 T=x1

= [(U (z2,y2, 22) = U (21,92, 22)) — (U (w2,y1,22) — U (21,91, 22))| —

—[(U (w2,y2,21) = U (z1,92,21)) — (U (22,91, 21) — U (21,91, 21))] =
= [U (22,y2,22) — U (z1,y2, 22) — U (22,91, 22) + U (21,91, 22)] —
—[U (22,92, 21) = U (w1,92,21) — U (22,91, 21) + U (21,91, 21)] =

Y2 Y2
/ / / B(x,y,z dmdydze/ / / I'(z,y,2)dxdydz C
Y1 yi Ja

_/ / / F (z,y,2,U (x, 1y, z))dx dydz. (3.11)

According to (3.11), we have (3.7) satisfied it was stated.
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In order to prove the sufficiency of (3.7), we firstly prove that the continu-
BU (2,9, 2)
0x0y0z
(xz,y,2) € D. For this, we prove that U is absolutely continuous in Carathéodory’s
sense on D. We associate to the continuous function U, the interval function

[2, 8453, 565],

ous function U, satisfying (3.7) and (1.2), has the derivative for a.e

®(0) = [U (z2,y2,22) — U (21,Y2,22) — U (x2,91,22) + U (z1,91,22)] —
— U (z2,y2,21) — U (21,92, 21) — U (22,91, 21) + U (w1,91,21)] - (3.12)

We prove that @ (J) is absolutely continuous, using the Theorem 1 in [2, §453].
From (3.7) and (3.12) we get

x2 Y2 22
(§) € / / / F(z,y,2,U (z,y,2)) dedy dz. (3.13)
x1 Y1 21

In view of Definition 2.9 and (3.11), the relation (3.7) holds for (z,y,z) € §. Then
(3.7), (3.11), (3.13) yield

cI>(<5):/m2/y2 ZQﬂ(a;,y,z)da:dydze

z1 Y1

1
T2 Y2 z2
€ / / F(z,y,2,U (x,y,21))dzdy dz. (3.14)
1 Jy

21

According to the hypothesis (Hy), we obtain

T2 Y2 z2
H<I>(5)H§/ / / 16 (2, 2)| d dy dz <
x1 Yy

2 ;/2 1272
< / / k(x,y,z)drdydz. (3.15)
z1 Y1 21
We set
n(A) = sup [|® ()], for any A € R;. (3.16)
p(6)<A

In view of the absolute continuity of the integral, for each € > 0 there exists a
01 (€) > 0 such that

T2 Y2 z2
///k: (x,y,2)dxdydz = / / / k(z,y,z)dxdydz < e, (3.17)
5 1 Y1 21

whenever £ (0) < 61 (g).
Let A < 61 (). According to (3.15), (3.16), (3.17) we obtain

T2 Y2 z2
n()\)gsup///k‘(:n,y,z) drdydz = / / / k(x,y,z)dedydz < e, (3.18)
s v Jy Ja
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whenever p (0) < A < 61 (¢), or

)1\1_)1%77()\) 0. (3.19)
According to Theorem in [2, §453] the interval function ® (J) is absolutely con-
tinuous. Since the continuous function U satisfies the conditions (1.3) the hypoth-
esis (Hs) holds too. In view of [2, §567]the function U is absolutely continuous in
Carathéodory’s sense. From Theorems 5, 6 [2,8569 — 570] the function U has the
o3U (z,v, 2)
Ox Oy 0z
It remains to prove that the function U satisfies the inclusion (1.1).
Taking into account the hypothesis (H;) and the continuity of the function U,
it follows that the multifunctionF : D — 2R"™ given by

derivative for a.e. (z,y,z) € D.

F(z,y,2) = F(2,y,2,U (,y,2)), (2,y,2) € D, (3.20)

is upper semi-continuous on D. Then by Theorem 9.3.1 [13] and [5], Definition 1,
we deduce

F([B(z,y,2),02]) C B [ﬁ (z,y,2) ,5] , (x,y,2) €D, (3.21)

where B [(x,y, z) , 02] is the open ball centered at (z,y, z) € D of radius dy = d2 (¢) >
0 and

B[Fv(x,y,z), } {wGR"|d< F(x,y,z )) <€}. (3.22)
Fix (z,y,2) € D. If («/,y,2') € B(z,y, 2),02], then

F (w’,y',z/) CcB [ﬁ (z,y,2) ,E] (3.23)

because by Definition 2.1, and by Definition 9.1.2 [13, p.67) and also [5, 2] we have

F(Bl(w.y,2),0) = {UF (@.¢.2) | ('.¢/,7) € Bl(w,y,2), ). (324)
The condition (3.7) may be rewritten as

U («,y,2") = U (z,y/,2") = U (a/,9,2) + U (2,y,2")] —
—[U (2. ¢, z) —U(m Y, z2) U (2',y,2) + U (z,y,2)] €

/ / / (rys,t,U (r,s,t)) drdsdt, (3.25)

for the domain [z,2'] X [y,y'] X [2,2'] C D.
According to (3.20), we deduce from (3.25) that
U («,y/,2") = U (z,¢/,2") = U (a/,9,2) + U (2,y,2")] —
- [U (x/7y/7 Z) -U (x7y/7 Z) -U (x/7y7 Z) +U (‘T7y7 Z):| S
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2! Y P
6/ / / F(r,s,t,)drdsdt. (3.26)
x y z

By (2/,y,7') € B|(z,y,2),02], we obtain |z — 2'| < da, |y — /| < b2, |2 — 2| <
da. Moreover |r — x| < 02, |s—y| < 0o, [t —2] < dg for z < r <2/, y < s <y,
z <t <z,

By (3.23) we have

F(r,s,t)C B [ﬁ (r,s,t) ,E] . (3.27)

Then, by (3.27), the relation (3.26) yields

[U (x/,y/, Z/) -U ($7y/7 Z/) -U (x/vyv Z) +U ($7y7 Z/)] -
- [U (x/,y/,z) -U (x,y/,z) -U ($l,y,Z) + U($,y,2§)] €

2! ' o _
€ / / / B [F (r,s,t,),a] dr ds dt. (3.28)
x y z

As the multifunction F , given by (3.20), is upper semi-continuous on D, the set

B [F (z,y,2) ,E] is closed in R™.
In view of (3.22) it follows that B [FV (z,y,2) ,6} is also bounded in R™ and

therefore it is a compact set. Then we can use Proposition 2.3, setting A =
B [F (x,y,2) ,E] and [z, 2] x [y,y'] x [z, 2] instead of § = [x1, x2] X [y1,y2] X [21, 22],

/x/ /y,/ B [ﬁ(x>y’z),€] drdsdt =
z Yy

= (2'—2) (v —y) (¢ — 2) conv B [ﬁ (z,y,2) ,E] . (3.29)

we obtain

According to (3.29), the relation (3.28) yields

[U (:E',y/, z/) -U (:E,y/, z/) -U (x/,y, z/) +U (:E,y, z/)] —
— U (2. y,2) U (2,¢/,2) = U (¢/,y,2) + U (z,y,2)] €
€ (2 —x)(y—y) (7 —2) convB [ﬁ’ (x,y,2) ,5} . (3.30)

By Proposition (2.4), the set B [ﬁ (z,y,2) ,5] is convex and therefore
conv B [ﬁ (z,y,2) ,5] =B [FV (z,y,2) ,6} . (3.31)

Using (3.31), the relation (3.30) yields

U («,y,2") = U (z,¢/,2") = U (a/,9,2) + U (z,y,2")] —
— [U (x/,y/,z) -U (m,y’,z) -U (a;’,y,z) + U(w,y,z)] €
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€ (x/ — a:) (y’ — y) (z/ — z) B [ﬁ (z,y,2) ,E] . (3.32)
From (3.32) we get
[U(x’,y’,z’) ~U,y,2) Ul y?) - U(x,y,z/)} B

T —x T —x
o U(33/7y/72’) - U(x7y/7z) o U(‘T/7y7 Z) - U(.Z',y7 Z) c
' —x ' —x
€y —-y)(7—=2B [FV (z,y,2) ,6} . (3.33)

Taking into account that B [1?’ (x,y, 2) ,E} is closed, the relation (3.33) yields

o {[LEA) Vs V&) U]

! S T —x Tz —x
U(:E’,y’,z)—U(:E,y’,z) U(m’,y,z)—U(m,y,z) _
B ' —x B ' —x N
oUu oUu oUu oUu
= { [% (x7y/72'/) - % (‘Tayaz/):| - [% (x7y/72) - % (.Z',y, Z):| } €
€ (y’ — y) (z’ — z) B [ﬁ (z,y,2) ,E] (3.34)
and
oUu oUu oUu oUu
. %(x>y,7zl)_%(x7y>zl) %(3:72/7’2)_%(‘%7?%’2)
o Y —y B Y —y ©
€ (z/ — z) B [FV (z,y,2) ,6} (3.35)
or 52 52
8x—gy (a:,y,z') — 8x—gy (x,y,2) € (z' — z) B [ﬁ (x,y,2) ,E] . (3.36)
It results
o*U o*U
a.9. . (337 Y, Z,) T a9.a. (337 Y, Z)
0xdy 0xdy ~
T €B [F (x,y,2) ,E] (3.37)
and
OV (o= 2V ()
. Ozdy T dxoy 70U ~
Zl/lglz o = P20y0 (x,y,2)€B [F (x,y,2) ,E] . (3.38)

Since F (z,y,2) is closed and F' is an upper semi-continuous multifunction, the
relation (3.38) yields, for ¢ — 0,
837(](:13 2)EF (z,y,2) = F (z,y,2,U (z,y,2)) for a.e. (z,y,2) € D. (3.39)
8xayaz 7y7 7y7 - 7y7 ) 7y7 b 7y7 * *

Therefore, U satisfies the inclusion (1.1) as stated.
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