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LiScNLE – a Matlab package for some nonlinear partial

differential evolution equations
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Abstract. We will present a MATLAB package for nonlinear evolution equations,
based on the Lyapunov-Schmidt (LS) method. The eigenfunctions basis of the linear
part is used to represent the solution at every time level (or for every value of the
parameters in the case of bifurcation analysis). These eigenfunctions are calculated
in a preprocessing stage or are given by the user.
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1 Introduction

Much of the work of an engineer or scientist is that of formulating suitable
mathematical models for a particular physical system. For a dynamical system in
continuous time, the model is often some system of ordinary differential equations
or partial differential equations. When formulating such models, one of the goals
is to maximize qualitative correctness in representing the dynamics of the physical
system. However, in many cases, correctly representing the dynamics is not the sole
objective in formulating mathematical models. In particular, the model needs to
be useful for its intended application. For example, if a model is required in some
kind of real-time feedback control scheme, then a model that is computationally
intensive may be unsuitable for this purpose. We may wish to sacrifice some of
the correctness of the model in order to make the equations easier to solve or to
allow faster computation of the trajectories. In other words, given a model of a
dynamical system that is known to correctly represent the system dynamics, how do
we formulate a model of reduced complexity which retains as much of the original
predictive capability as possible?

Many of the mathematicians of the twentieth century devoted their efforts to
studying boundary value problems for linear differential equations. However, in
many cases problems arising in biology, mechanics, chemistry, may be seen as non-
linear perturbations of linear ones. All these can be represented in the abstract
form Lu = Nu where L : X → Y (linear) and N : Y → Y (nonlinear) are suitable
operators between Banach spaces X,Y where X ⊂ Y compactly.

When L is invertible, Lu = Nu can be rewritten as a fixed point equation
u = [L−1N ]u. In case L−1 : Y → X and N : Y → Y are continuous and carry
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bounded sets into bounded sets, L−1N : Y → Y is completely continuous. Thus,
the Schauder’s Fixed Point Theorem (which extends the well-known Brower’s Fixed
Point Theorem to completely continuous operators on infinite dimensional Banach
spaces) could be used in the treatment of such problems.

Schauder’s Fixed Point Theorem had little impact outside the scope of nonlinear
perturbations of invertible operators. Often we must treat some problems where
the equation is a nonlinear perturbation of a linear operator with nontrivial kernel
(problems at resonance). A useful tool for studying such type of problems is the
Lyapunov-Schmidt reduction method.

The Lyapunov-Schmidt (LS) method, elaborated in the years 1906-1908 and
reformulated in a modern mathematical language by L. Cesari [1] after 1963 applies
to some nonlinear equations of the type Lu = Nu, in the presence of boundary
conditions, considered on the domain of the linear operator L.

As a simple example (following [2]), let us consider the problem

−u′′ − αu′ − λ1(α)u + g(u) = 0, t ∈ [0, π] , (1)

u(0) = u(π) = 0

where α is a given real number, λ1(α) = 1+α2/4 is the first eigenvalue of the linear
problem

−u′′(t) − αu′(t) = λu(t), t ∈ [0, π] ,

u(0) = u(π) = 0

and g is a continuous and T – periodic function with zero mean.

In order to apply the Lyapunov-Schmidt reduction method, we consider the
linear differential operator

L : W 2,1
0

(0, π) → L1(0, π), Lu = −u′′ − αu′ − λ1(α)u

and the Nemytskii operator

N : W 2,1
0

(0, π) → L1(0, π), Nu(t) = −g(u(t)), ∀t ∈ [0, π]

so that (1) is equivalent to the operator equation Lu = Nu.

It is well known that L is a linear Fredholm operator of zero index, kerL = sp(ϕ),
im(L) = ψ⊥, where

ϕ(t) =
e−

α
2

t sin t√
∫ π

0

(
e−

α
2

s sin s
)2
, ψ(t) =

e
α
2

t sin t√
∫ π

0

(
e

α
2

s sin s
)2

, t ∈ [0, π].

The splitting W 2,1
0

(0, π) = sp(ϕ) ⊕ ϕ⊥ leads us to rewrite any element u ∈

W 2,1
0

(0, π) as u = ũ+uϕ, where u ∈ IR and ũ ∈ ϕ⊥ and to observe that L : ϕ⊥ → ψ⊥
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is a topological isomorphism. Let us denote K : ψ⊥ → ϕ⊥ the inverse of this
isomorphism and define the projection

Q : L1(0, π) → L1(0, π), h 7→

(∫ π

0

h(s)ψ(s)ds

)
ψ.

This way, equation Lu = Nu becomes equivalent to the Lyapunov-Schmidt system

ũ = K(I −Q)N(ũ+ uϕ), (2)
∫ π

0

g(ũ(s) + uϕ(s))ψ(s)ds = 0. (3)

From the auxiliary equation (2) we observe that, being N bounded and K com-
pact, the Schauder Fixed Point Theorem implies the existence, for any u ∈ IR, of
the fixed point ũ(u) ∈ ϕ⊥. Consequently, the bifurcation equation (3) becomes an
equation for u ∈ IR,

∫ π

0

g(ũ (u) (s) + uϕ(s))ψ(s)ds = 0.

and the solvability of Lu = Nu comes from the solvability of this one-dimensional
equation.

This method could be easily extended to the case of a nonlinear evolution equa-

tion on a Hilbert space H (usually an L2 space) of the form
du

dt
= F (u) ≡ Lu+Nu

where the domain of F is dense in H. We assume that {ϕi, i = 0, 1, . . . } forms a
complete orthogonal basis for H (for example the eigenfunctions of L).

Fix m ∈ IN and let P ≡ Pm : H → Xm ≡ X be the orthogonal projection from
H onto the finite dimensional subspace spanned by {ϕ1, . . . , ϕm}. Let Q ≡ Qm =
(I − P ) : H → Y ≡ Ym be the complementary orthogonal projection.

Given u ∈ H, let Pu = p and Qu = q. The equation can be rewritten as

dp

dt
= PF (p, q), (4)

dq

dt
= QF (p, q). (5)

The strategy is fairly simple: study the dynamics of the low dimensional Galerkin
projection (4) (where q = q(p) from (5)) to draw conclusions about the dynamics of
the given equation.

Although it has been used for a long time only for the theoretical demonstration
of the existence and branching of the solutions of such problems, the LS method
(or the alternative method, following Cesari) is also very useful for the effective
approximation of these solutions.

We will present LiScNLE, a MATLAB package for dynamical systems, based on
the LS method. The eigenfunctions basis of the linear part L of the system is used to
represent the solution at every time level, or for every value of the parameters in the
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case of bifurcation analysis. These eigenfunctions are calculated in a preprocessing
stage [3] or are given by the user. Also, other functions could be used as basis. The
package extends a preliminary steady version [4].

The advantage of the LS method consists of the important reduction of the di-
mension of the nonlinear system to be solved together with the possibility to oversee
the approximating errors. This advantage can be remarked in some examples, which
prove that the LS method behaves better than other known methods, such as bvp4c
or sbvp.

The first two sections present the basic theory and the implementation of
LiScNLE. The last two sections present examples and conclusions.

2 The LS method

We assume that the linear part L of the equation Lu = Nu is a Sturm-Liouville
operator

Ly ≡
1

w(x)

[
−(p(x)y′)′ + q(x)y

]
, x ∈ [a, b],

y(a) cosα+ (py′)(a) sinα = 0, y(b) cos β + (py′)(b) sin β = 0

where 1/p, q, w are real-valued functions on [a, b], p(x) > 0, w(x) > 0 on [a, b], p ∈
C1[a, b], q, w ∈ C[a, b]. It is well known that the eigenvalues of L form an increasing
sequence λ0 < λ1 < . . . converging to infinity and the corresponding eigenfunctions
ϕn form an orthogonal (orthonormal) basis of the Hilbert space L2

w(a, b). We remark
the asymptotic behaviour of the eigenvalues λn ∈ O(n2).

A theoretical but constructive variant of the LS method could be found in [5, 6].
We are looking for an approximate solution of the equation Lu = Nu of the form
u =

∑N
i=1

ciϕi (eigenfunction expansion) which leads to the following equation for
the unknowns ci

N∑

i=1

ciLϕi = N

(
N∑

i=1

ciϕi

)
.

We obtain the equation

m∑

i=1

ciλiϕi +
N∑

i=m+1

ciλiϕi = N

(
N∑

i=1

ciϕi

)
(6)

where m is a positive integer, less than N . By applying the partial inverse Hm of L,

Hmu =

N∑

i=m+1

ci
λi

ϕi
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to (6), we are led to

N∑

i=m+1

ciϕi = HmN

(
N∑

i=1

ciϕi

)
=

N∑

i=m+1

Ciϕi

so that we have

ci = Ci(c1, . . . , cN ), i = m+ 1, . . . , N.

For a sufficiently great m we may calculate cm+1, . . . , cN as functions of c1 . . . cm,
using Banach Fixed Point Theorem.

By applying the projection Pm to (6) we obtain the determining equation

m∑

i=1

ciλiϕi = PmN

(
N∑

i=1

ciϕi

)

which is a small finite dimensional system for c1, . . . , cm.

In fact, in LS methods, the true unknowns are c1, . . . , cm; the other coefficients

cm+1, . . . , cN are calculated as coefficients of the associated fixed point.

The first version of our package applies only to the Sturm-Liouville case for the
linear operator L, in the form

Lu =
1

w(x)

[
d

dx

(
p(x)

du

dx

)
+ g(x)u

]
,

au′(0) + bu(0) = 0, cu′(1) + du(1) = 0.

There exists a Matlab package MATSLISE of V. Ledoux (2004) [7], based on the
works of L. Ixaru which uses the so called CP methods to calculate the eigenfunc-
tions of Sturm-Liouville or Schrodinger operators but this package works slowly. A
more interesting package is MWRtools of R.A. Adomaitis (1998–2001) [8] which uses
spectral methods to calculate the eigenfunctions of the Sturm-Liouville operator in
order to solve some linear boundary value problems.

We remark that in the case of Galerkin’s method, the approximating solutions
are being looked for under the form u∗ =

∑N
k=1

ckϕk, where the coefficients ck, k =
1, . . . , N , are determined from the equations (Lu∗ − Nu∗, ϕk) = 0, k = 1, . . . , N ,
i.e.

(λku
∗ −Nu∗, ϕk) = 0, k = 1, . . . , N.

These equations are got from the determining equations for m = N . If m = 0 the
system of the determining equations disappears. The associate function to a certain
u∗ verifies the equation y = L−1Ny, so the algorithm is reduced, in this case, to the
transformation of the equation Lu = Nu into a fixed point problem. Obviously, this
case arises only when the inverse L−1 exists and L−1N is a contraction.
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3 Implementation

In this section we propose a Chebyshev-tau method to solve the Sturm-Liouville
problem in order to get a good basis ϕi and we present the corresponding Matlab
package.

Let us consider the problem

p2(x)u
′′ + p1(x)u

′ + p0(x)u = g(x) x ∈ (a, b) , (7)

α11u(x11) + α12u
′(x12) = β1,

α21u(x12) + α22u
′(x22) = β2 (8)

and let us suppose for the moment a = −1, b = 1. A powerful methods to solve

(7) is to express u as a Chebyshev series u(x) = c0
T0(x)

2
+ c1T1(x) + . . . where

Ti(x) = cos(i cos−1(x)) is the standard Chebyshev polynomial of order i. For the
practical implementation, we define the vectors c and t by cT = (c0, c1, c2, . . . ),

tT =

(
T0

2
, T1, T2, . . .

)
so that u(x) = cT t = tT c.

There exists a matrix X for which x · u(x) = (Xc)T t, see [9, 10],

X0,1 = 1,Xii = 0,Xi,i−1 = Xi,i+1 =
1

2
.

Then, in general, xmu(x) = (Xmc)T t and f(x)u(x) = (f(X)c)T t for analytical
functions f , i.e.

f(x) =
∞∑

k=0

fk

xk

k!
.

Moreover,
u(x)

xm
= (X−mc)

T
t if the l.h.s. has no singularity at the origin. Of course,

X is a tri-diagonal matrix, X2 is a penta-diagonal matrix and so on but, generally,
the matrix version funm(X)of the scalar function f(x) or X−m = [inv(X)]m are no
longer sparse matrices.

Similarly, let D be the differentiation matrix giving
dmu

dxm
= (Dmc)T t. D is an

upper triangular matrix with Dii = 0, Dij = 0 for (j − i) even and Dij = 2j
otherwise.

Applying these formulae to equation (7), we get

(p2(X)D2 + p1(X)D + p0(X))c = g

where G are the coefficients of the r.h.s. function g(x).

g(x) = g0
T0(x)

2
+ g1T1(x) + . . . .

The condition (8) can be formulated in a similar manner. We define

tij =

(
T0(xij)

2
, T1(xij), T2(xij), . . .

)T
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so that it can be written in the form hT
i c = βi, i = 1, 2, where

hT
i =

2∑

j=1

αijt
T
ijD

j−1, i = 1, 2.

Now we define the matrices A =
∑

2

i=0
Pi(X)Di and H = (h1, h2)

T . Then the
vector c satisfies (

H
A

)
c =

(
β
q

)
(9)

of the form Ac = b, where β = (β1, β2)
T .

Of course, in reality we cannot work with infinite matrices but only with finite
portions (N × N) of them. For the initial conditions, we restrict ti to have N
components and use the truncation DN instead of D, so that the computed matrix

will be

(
H∗

A∗

)
. We then take the first N rows and columns of

(
H∗

A∗

)
as the

matrix to use, together with the first N elements of

(
β
q

)
.

If we have another interval [a, b] instead of [−1, 1] for x, we use the change of

coordinates x = αξ + β where α =
b− a

2
and β =

b+ a

2
so that ξ ∈ [−1, 1]. We

must change X to αX + βI and D to D/α.
LiScNLE (Liapunov-Schmidt Non-Linear Evolution) is a Matlab package for the

study of some nonlinear differential evolution equations for the unknown function
u(x, t)

∂u

∂t
+ Lu = Nu, x ∈ (a, b), t > 0

where L is a Sturm-Liouville operator

Lu ≡
1

w(x)

[
−
∂

∂x

(
p(x)

∂u

∂x

)
+ q(x)u

]

and Nu is a nonlinear (differential) operator

Nu ≡ N(x, u,
∂u

∂x
).

We have also boundary value conditions

a11u(a, t) + a12

∂u

∂x
(a, t) = 0,

a12u(b, t) + a22

∂u

∂x
(b, t) = 0

and initial condition u(x, 0) = u0(x).
We perform a time semi-discretization by Crank-Nicolson method (for example)

un+1 − un

∆t
=

1

2

(
−Lun+1 +Nun+1 − Lun +Nun

)
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i.e.

un+1 +
∆t

2
Lun+1 =

∆t

2
Nun+1 + un −

∆t

2
Lun +

∆t

2
Nun

where

un = u(x, n∆t), u0 = u0(x)

and ∆t is the time step. For each n, this problem is of the form

Lun+1 = Nun+1

where

Lu =

(
I +

∆t

2
L

)
u,

Nu =
∆t

2
Nu+ F, F = un −

∆t

2
Lun +

∆t

2
Nun

so that the numerical steady Lyapunov-Schmidt method LiScNLS [4] could be
applied.

Remark 1. If we have a second order in time equation,

∂2u

∂t2
+ Lu = Nu, x ∈ (a, b), t > 0,

with the same boundary conditions and initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x),

the Crank-Nicolson discretization looks like

un+1 − 2un + un−1

∆t2
=

1

2

(
−Lun+1 +Nun+1 − Lun−1 +Nun−1

)

i.e.

un+1 +
∆t2

2
Lun+1 =

∆t2

2
Nun+1 + un−1 −

∆t2

2
Lun−1 +

∆t2

2
Nun−1 + 2(un − un−1).

Remark 2. The backward-Euler method is

un+1 − 2un + un−1

∆t2
= −Lun+1 +Nun+1

i.e.

un+1 + ∆t2Lun+1 = ∆t2Nun+1 + 2un − un−1.

If λk, ϕk, k = 1, 2, . . . , are the eigenvalues and the eigenfunctions of the Sturm-

Liouville operator L, then 1 +
∆t

2
λk, ϕk, k = 1, 2, . . . , are the eigenvalues and the
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eigenfunctions of the operator L. Let us suppose that we know the first n eigenfunc-
tions and eigenvalues of L,

LΦk = λkΦk, k = 1, . . . , n

where ∫ b

a

ΦkΦjwdx = δkj, k, j = 1, . . . , n.

Then, we search for the solution of the nonlinear steady problem

Lu = Nu (10)

of the form (see [5],[6] for the hypotheses on L and N )

u =
n∑

i=1

ciΦi = Φ · c

The nonlinear part is

N (u) = N

(
n∑

i=1

ciΦi

)
=

n∑

i=1

CiΦi

where

Ci =

∫ b

a

N (u) · Φi · wdx, i = 1, . . . , n.

Let us choose an index m and project the equation Lu = Nu on
span {Φm+1, . . . ,Φn}, i.e.

ci =
1

λi

Ci(c1, . . . , cn), i = m+ 1, . . . , n. (11)

For a sufficiently great m, for fixed c1, . . . , cm, the above operator becomes a
contraction so we can iterate until a fixed point

c∗ =
(
c1, . . . , cm, c

∗

m+1, . . . , c
∗

n

)

which is a solution of the equations (11). Of course, c∗i , i = m+ 1, . . . , N , depend
on ci, i = 1, . . . ,m.

Now we project the equation Lu = Nu on span {Φ1, . . . ,Φm}, i.e.

λici = Ci(c1, . . . , cm, c
∗

m+1, . . . , c
∗

n) (12)

which represents a nonlinear algebraic system for c1, . . . , cm. Given c1, . . . , cm, each
evaluation of Ci

(
c1, . . . , cm, c

∗
m+1, . . . , c

∗
n

)
means the fixed point iterations (11). We

solve this system by a Newton method and finally we obtain the solution

c∗ ≡
(
c∗1, . . . , c

∗

m, c
∗

m+1, . . . , c
∗

n

)



32 TITUS PETRILA, DAMIAN TRIF

(i.e. u = Φ · c∗) of the problem (10).
This problem has a natural extension for a nonlinear part of the formN(x, u(x), u′(x)),

that is

N(x,

n∑

i=1

ciΦi,

n∑

i=1

ciΦ
′

i)

The main function of LiScNLE is the function evol for the first order (in time)
problems:

function [lam,phi,phip,x,C,kod]=...

evol(n,errtol,Lfun,m,Nfun,ICfun,dt,K,scene)

Here n is the dimension of the discretized problem, errtol is the tolerance used
in the stopping criteria, Lfun describes the linear part of the equation (see LiScEig

Tutorial [3]), m is the truncation parameter.
The nonlinear r.h.s. of the problem (10) is coded in Nfun (see LiScNLS

Tutorial [4]),ICfun describes the initial condition u0(x), dt is the time step,
K is the number of time steps to be performed and scene is used for the plot of the
solution.

For the second order (in time) problems the corresponding file is evol2.
The output parameters of evol are:
lam – the eigenvalues of the linear part
phi, phip – the eigenfunctions and their derivatives
x – the grid
C – the coefficients of the numerical solution with respect to the eigenfunctions

phi, column n+ 1 for the n− time level, n = 0, 1, . . . ,K.
kod – indicates the status of the solution.
We remark that, given the coefficients C of the solution with respect to the

eigenfunctions phi, the values of the solutions at the Legendre grid points x are phi∗
C and a plot of the solution could be obtained using the command plot(x,phi*C);

More details about the implementation could be found in the tutorial of LiScNLE
[11].

4 Examples

The tutorial of LiScNLE [11] contains many difficult examples:
– the Burgers equation, which exhibits a near shock,
– a steady solution of a nonlinear reaction-difusion problem,
– the blowing-up behavior for a forced heat equation,
– the Allen-Cohn equation,
– periodical stable and unstable solutions for Kuramoto-Sivashinski equation,
– a moving step solution for Fisher equation,
– an example from electrodynamics (system, also in MATLAB demo),
– the sine-Gordon equation (second order in time).
Let us present here the Fisher equation example,
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ut − uxx = u(1 − u), x ∈ IR, t > 0,

u(t,−∞) = 1, u(t,∞) = 0,

u(0, x) =
1

(
1 + e

x
√

6

)2

with the exact solution

u(t, x) =
1

(
1 + e

−
5t

6
+

x
√

6

)2
.

First, the spatial domain is truncated to [−50, 50]. Next, the boundary values
are homogenized by using the function u0(x) = (50 − x)/100. The basic command
is

[lam,phi,phip,x,C,kod]=evol(256,1.e-5,’LFisher’,...

0,’NFisher’,’ICFisher’,0.01,1000,[-50 50 0 1]);

The absolute error is 2.5x10−3 in the region of the step and about 10−5 in general,
due to truncation of the spatial domain.

5 Conclusions

The comparison between LiScNLE and SBVP 1.0 of Auzinger [12] or bvp4c of
Matlab (see Matlab help) shows an important reduction of the computing time for
LiScNLE.. The Matlab profile reports show that about 75% of the computing time
was spent on computation of the eigenfunctions and only about 6% on the effective
calculations of the numerical solution. We have good reasons to use LS method.

1. We can build a database with known eigenfunctions.

2. In the problems with parameters, where we have (for example) bifurcations,
or in evolution problems, we can use repeatedly the same eigenfunctions.

3. The eigenfunctions carry physical information, so that our LS solution has a
better structure for studies.

4. LS method could be easily extended to 2D or 3D (evolution) problems, with
non-invertible linear part.

5. In all the cases, we finally have to solve a very small nonlinear system, usu-
ally with m = 0, 1, 2, values which also carry information about bifurcation
behaviour.
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